glibc/sysdeps/ieee754/ldbl-128ibm/e_lgammal_r.c
Joseph Myers e44acb2063 Use floor functions not __floor functions in glibc libm.
Similar to the changes that were made to call sqrt functions directly
in glibc, instead of __ieee754_sqrt variants, so that the compiler
could inline them automatically without needing special inline
definitions in lots of math_private.h headers, this patch makes libm
code call floor functions directly instead of __floor variants,
removing the inlines / macros for x86_64 (SSE4.1) and powerpc
(POWER5).

The redirection used to ensure that __ieee754_sqrt does still get
called when the compiler doesn't inline a built-in function expansion
is refactored so it can be applied to other functions; the refactoring
is arranged so it's not limited to unary functions either (it would be
reasonable to use this mechanism for copysign - removing the inline in
math_private_calls.h but also eliminating unnecessary local PLT entry
use in the cases (powerpc soft-float and e500v1, for IBM long double)
where copysign calls don't get inlined).

The point of this change is that more architectures can get floor
calls inlined where they weren't previously (AArch64, for example),
without needing special inline definitions in their math_private.h,
and existing such definitions in math_private.h headers can be
removed.

Note that it's possible that in some cases an inline may be used where
an IFUNC call was previously used - this is the case on x86_64, for
example.  I think the direct calls to floor are still appropriate; if
there's any significant performance cost from inline SSE2 floor
instead of an IFUNC call ending up with SSE4.1 floor, that indicates
that either the function should be doing something else that's faster
than using floor at all, or it should itself have IFUNC variants, or
that the compiler choice of inlining for generic tuning should change
to allow for the possibility that, by not inlining, an SSE4.1 IFUNC
might be called at runtime - but not that glibc should avoid calling
floor internally.  (After all, all the same considerations would apply
to any user program calling floor, where it might either be inlined or
left as an out-of-line call allowing for a possible IFUNC.)

Tested for x86_64, and with build-many-glibcs.py.

	* include/math.h [!_ISOMAC && !(__FINITE_MATH_ONLY__ &&
	__FINITE_MATH_ONLY__ > 0) && !NO_MATH_REDIRECT] (MATH_REDIRECT):
	New macro.
	[!_ISOMAC && !(__FINITE_MATH_ONLY__ && __FINITE_MATH_ONLY__ > 0)
	&& !NO_MATH_REDIRECT] (MATH_REDIRECT_LDBL): Likewise.
	[!_ISOMAC && !(__FINITE_MATH_ONLY__ && __FINITE_MATH_ONLY__ > 0)
	&& !NO_MATH_REDIRECT] (MATH_REDIRECT_F128): Likewise.
	[!_ISOMAC && !(__FINITE_MATH_ONLY__ && __FINITE_MATH_ONLY__ > 0)
	&& !NO_MATH_REDIRECT] (MATH_REDIRECT_UNARY_ARGS): Likewise.
	[!_ISOMAC && !(__FINITE_MATH_ONLY__ && __FINITE_MATH_ONLY__ > 0)
	&& !NO_MATH_REDIRECT] (sqrt): Redirect using MATH_REDIRECT.
	[!_ISOMAC && !(__FINITE_MATH_ONLY__ && __FINITE_MATH_ONLY__ > 0)
	&& !NO_MATH_REDIRECT] (floor): Likewise.
	* sysdeps/aarch64/fpu/s_floor.c: Define NO_MATH_REDIRECT before
	header inclusion.
	* sysdeps/aarch64/fpu/s_floorf.c: Likewise.
	* sysdeps/ieee754/dbl-64/s_floor.c: Likewise.
	* sysdeps/ieee754/dbl-64/wordsize-64/s_floor.c: Likewise.
	* sysdeps/ieee754/float128/s_floorf128.c: Likewise.
	* sysdeps/ieee754/flt-32/s_floorf.c: Likewise.
	* sysdeps/ieee754/ldbl-128/s_floorl.c: Likewise.
	* sysdeps/ieee754/ldbl-128ibm/s_floorl.c: Likewise.
	* sysdeps/m68k/m680x0/fpu/s_floor_template.c: Likewise.
	* sysdeps/powerpc/powerpc32/power4/fpu/multiarch/s_floor.c: Likewise.
	* sysdeps/powerpc/powerpc32/power4/fpu/multiarch/s_floorf.c: Likewise.
	* sysdeps/powerpc/powerpc64/fpu/multiarch/s_floor.c: Likewise.
	* sysdeps/powerpc/powerpc64/fpu/multiarch/s_floorf.c: Likewise.
	* sysdeps/riscv/rv64/rvd/s_floor.c: Likewise.
	* sysdeps/riscv/rvf/s_floorf.c: Likewise.
	* sysdeps/sparc/sparc64/fpu/multiarch/s_floor.c: Likewise.
	* sysdeps/sparc/sparc64/fpu/multiarch/s_floorf.c: Likewise.
	* sysdeps/x86_64/fpu/multiarch/s_floor.c: Likewise.
	* sysdeps/x86_64/fpu/multiarch/s_floorf.c: Likewise.
	* sysdeps/powerpc/fpu/math_private.h [_ARCH_PWR5X] (__floor):
	Remove macro.
	[_ARCH_PWR5X] (__floorf): Likewise.
	* sysdeps/x86_64/fpu/math_private.h [__SSE4_1__] (__floor): Remove
	inline function.
	[__SSE4_1__] (__floorf): Likewise.
	* math/w_lgamma_main.c (LGFUNC (__lgamma)): Use floor functions
	instead of __floor variants.
	* math/w_lgamma_r_compat.c (__lgamma_r): Likewise.
	* math/w_lgammaf_main.c (LGFUNC (__lgammaf)): Likewise.
	* math/w_lgammaf_r_compat.c (__lgammaf_r): Likewise.
	* math/w_lgammal_main.c (LGFUNC (__lgammal)): Likewise.
	* math/w_lgammal_r_compat.c (__lgammal_r): Likewise.
	* math/w_tgamma_compat.c (__tgamma): Likewise.
	* math/w_tgamma_template.c (M_DECL_FUNC (__tgamma)): Likewise.
	* math/w_tgammaf_compat.c (__tgammaf): Likewise.
	* math/w_tgammal_compat.c (__tgammal): Likewise.
	* sysdeps/ieee754/dbl-64/e_lgamma_r.c (sin_pi): Likewise.
	* sysdeps/ieee754/dbl-64/k_rem_pio2.c (__kernel_rem_pio2):
	Likewise.
	* sysdeps/ieee754/dbl-64/lgamma_neg.c (__lgamma_neg): Likewise.
	* sysdeps/ieee754/flt-32/e_lgammaf_r.c (sin_pif): Likewise.
	* sysdeps/ieee754/flt-32/lgamma_negf.c (__lgamma_negf): Likewise.
	* sysdeps/ieee754/ldbl-128/e_lgammal_r.c (__ieee754_lgammal_r):
	Likewise.
	* sysdeps/ieee754/ldbl-128/e_powl.c (__ieee754_powl): Likewise.
	* sysdeps/ieee754/ldbl-128/lgamma_negl.c (__lgamma_negl):
	Likewise.
	* sysdeps/ieee754/ldbl-128/s_expm1l.c (__expm1l): Likewise.
	* sysdeps/ieee754/ldbl-128ibm/e_lgammal_r.c (__ieee754_lgammal_r):
	Likewise.
	* sysdeps/ieee754/ldbl-128ibm/e_powl.c (__ieee754_powl): Likewise.
	* sysdeps/ieee754/ldbl-128ibm/lgamma_negl.c (__lgamma_negl):
	Likewise.
	* sysdeps/ieee754/ldbl-128ibm/s_expm1l.c (__expm1l): Likewise.
	* sysdeps/ieee754/ldbl-128ibm/s_truncl.c (__truncl): Likewise.
	* sysdeps/ieee754/ldbl-96/e_lgammal_r.c (sin_pi): Likewise.
	* sysdeps/ieee754/ldbl-96/lgamma_negl.c (__lgamma_negl): Likewise.
	* sysdeps/powerpc/power5+/fpu/s_modf.c (__modf): Likewise.
	* sysdeps/powerpc/power5+/fpu/s_modff.c (__modff): Likewise.
2018-09-14 13:09:01 +00:00

993 lines
30 KiB
C

/* Natural logarithm of gamma function. IBM Extended Precision version.
Copyright 2001 by Stephen L. Moshier <moshier@na-net.ornl.gov>
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, see
<http://www.gnu.org/licenses/>. */
/* This file was copied from sysdeps/ieee754/ldbl-128/e_lgammal_r.c. */
#include <math.h>
#include <math_private.h>
#include <float.h>
static const long double PIL = 3.1415926535897932384626433832795028841972E0L;
static const long double MAXLGM = 0x5.d53649e2d469dbc1f01e99fd66p+1012L;
static const long double one = 1;
static const long double huge = LDBL_MAX;
/* log gamma(x) = ( x - 0.5 ) * log(x) - x + LS2PI + 1/x P(1/x^2)
1/x <= 0.0741 (x >= 13.495...)
Peak relative error 1.5e-36 */
static const long double ls2pi = 9.1893853320467274178032973640561763986140E-1L;
#define NRASY 12
static const long double RASY[NRASY + 1] =
{
8.333333333333333333333333333310437112111E-2L,
-2.777777777777777777777774789556228296902E-3L,
7.936507936507936507795933938448586499183E-4L,
-5.952380952380952041799269756378148574045E-4L,
8.417508417507928904209891117498524452523E-4L,
-1.917526917481263997778542329739806086290E-3L,
6.410256381217852504446848671499409919280E-3L,
-2.955064066900961649768101034477363301626E-2L,
1.796402955865634243663453415388336954675E-1L,
-1.391522089007758553455753477688592767741E0L,
1.326130089598399157988112385013829305510E1L,
-1.420412699593782497803472576479997819149E2L,
1.218058922427762808938869872528846787020E3L
};
/* log gamma(x+13) = log gamma(13) + x P(x)/Q(x)
-0.5 <= x <= 0.5
12.5 <= x+13 <= 13.5
Peak relative error 1.1e-36 */
static const long double lgam13a = 1.9987213134765625E1L;
static const long double lgam13b = 1.3608962611495173623870550785125024484248E-6L;
#define NRN13 7
static const long double RN13[NRN13 + 1] =
{
8.591478354823578150238226576156275285700E11L,
2.347931159756482741018258864137297157668E11L,
2.555408396679352028680662433943000804616E10L,
1.408581709264464345480765758902967123937E9L,
4.126759849752613822953004114044451046321E7L,
6.133298899622688505854211579222889943778E5L,
3.929248056293651597987893340755876578072E3L,
6.850783280018706668924952057996075215223E0L
};
#define NRD13 6
static const long double RD13[NRD13 + 1] =
{
3.401225382297342302296607039352935541669E11L,
8.756765276918037910363513243563234551784E10L,
8.873913342866613213078554180987647243903E9L,
4.483797255342763263361893016049310017973E8L,
1.178186288833066430952276702931512870676E7L,
1.519928623743264797939103740132278337476E5L,
7.989298844938119228411117593338850892311E2L
/* 1.0E0L */
};
/* log gamma(x+12) = log gamma(12) + x P(x)/Q(x)
-0.5 <= x <= 0.5
11.5 <= x+12 <= 12.5
Peak relative error 4.1e-36 */
static const long double lgam12a = 1.75023040771484375E1L;
static const long double lgam12b = 3.7687254483392876529072161996717039575982E-6L;
#define NRN12 7
static const long double RN12[NRN12 + 1] =
{
4.709859662695606986110997348630997559137E11L,
1.398713878079497115037857470168777995230E11L,
1.654654931821564315970930093932954900867E10L,
9.916279414876676861193649489207282144036E8L,
3.159604070526036074112008954113411389879E7L,
5.109099197547205212294747623977502492861E5L,
3.563054878276102790183396740969279826988E3L,
6.769610657004672719224614163196946862747E0L
};
#define NRD12 6
static const long double RD12[NRD12 + 1] =
{
1.928167007860968063912467318985802726613E11L,
5.383198282277806237247492369072266389233E10L,
5.915693215338294477444809323037871058363E9L,
3.241438287570196713148310560147925781342E8L,
9.236680081763754597872713592701048455890E6L,
1.292246897881650919242713651166596478850E5L,
7.366532445427159272584194816076600211171E2L
/* 1.0E0L */
};
/* log gamma(x+11) = log gamma(11) + x P(x)/Q(x)
-0.5 <= x <= 0.5
10.5 <= x+11 <= 11.5
Peak relative error 1.8e-35 */
static const long double lgam11a = 1.5104400634765625E1L;
static const long double lgam11b = 1.1938309890295225709329251070371882250744E-5L;
#define NRN11 7
static const long double RN11[NRN11 + 1] =
{
2.446960438029415837384622675816736622795E11L,
7.955444974446413315803799763901729640350E10L,
1.030555327949159293591618473447420338444E10L,
6.765022131195302709153994345470493334946E8L,
2.361892792609204855279723576041468347494E7L,
4.186623629779479136428005806072176490125E5L,
3.202506022088912768601325534149383594049E3L,
6.681356101133728289358838690666225691363E0L
};
#define NRD11 6
static const long double RD11[NRD11 + 1] =
{
1.040483786179428590683912396379079477432E11L,
3.172251138489229497223696648369823779729E10L,
3.806961885984850433709295832245848084614E9L,
2.278070344022934913730015420611609620171E8L,
7.089478198662651683977290023829391596481E6L,
1.083246385105903533237139380509590158658E5L,
6.744420991491385145885727942219463243597E2L
/* 1.0E0L */
};
/* log gamma(x+10) = log gamma(10) + x P(x)/Q(x)
-0.5 <= x <= 0.5
9.5 <= x+10 <= 10.5
Peak relative error 5.4e-37 */
static const long double lgam10a = 1.280181884765625E1L;
static const long double lgam10b = 8.6324252196112077178745667061642811492557E-6L;
#define NRN10 7
static const long double RN10[NRN10 + 1] =
{
-1.239059737177249934158597996648808363783E14L,
-4.725899566371458992365624673357356908719E13L,
-7.283906268647083312042059082837754850808E12L,
-5.802855515464011422171165179767478794637E11L,
-2.532349691157548788382820303182745897298E10L,
-5.884260178023777312587193693477072061820E8L,
-6.437774864512125749845840472131829114906E6L,
-2.350975266781548931856017239843273049384E4L
};
#define NRD10 7
static const long double RD10[NRD10 + 1] =
{
-5.502645997581822567468347817182347679552E13L,
-1.970266640239849804162284805400136473801E13L,
-2.819677689615038489384974042561531409392E12L,
-2.056105863694742752589691183194061265094E11L,
-8.053670086493258693186307810815819662078E9L,
-1.632090155573373286153427982504851867131E8L,
-1.483575879240631280658077826889223634921E6L,
-4.002806669713232271615885826373550502510E3L
/* 1.0E0L */
};
/* log gamma(x+9) = log gamma(9) + x P(x)/Q(x)
-0.5 <= x <= 0.5
8.5 <= x+9 <= 9.5
Peak relative error 3.6e-36 */
static const long double lgam9a = 1.06045989990234375E1L;
static const long double lgam9b = 3.9037218127284172274007216547549861681400E-6L;
#define NRN9 7
static const long double RN9[NRN9 + 1] =
{
-4.936332264202687973364500998984608306189E13L,
-2.101372682623700967335206138517766274855E13L,
-3.615893404644823888655732817505129444195E12L,
-3.217104993800878891194322691860075472926E11L,
-1.568465330337375725685439173603032921399E10L,
-4.073317518162025744377629219101510217761E8L,
-4.983232096406156139324846656819246974500E6L,
-2.036280038903695980912289722995505277253E4L
};
#define NRD9 7
static const long double RD9[NRD9 + 1] =
{
-2.306006080437656357167128541231915480393E13L,
-9.183606842453274924895648863832233799950E12L,
-1.461857965935942962087907301194381010380E12L,
-1.185728254682789754150068652663124298303E11L,
-5.166285094703468567389566085480783070037E9L,
-1.164573656694603024184768200787835094317E8L,
-1.177343939483908678474886454113163527909E6L,
-3.529391059783109732159524500029157638736E3L
/* 1.0E0L */
};
/* log gamma(x+8) = log gamma(8) + x P(x)/Q(x)
-0.5 <= x <= 0.5
7.5 <= x+8 <= 8.5
Peak relative error 2.4e-37 */
static const long double lgam8a = 8.525146484375E0L;
static const long double lgam8b = 1.4876690414300165531036347125050759667737E-5L;
#define NRN8 8
static const long double RN8[NRN8 + 1] =
{
6.600775438203423546565361176829139703289E11L,
3.406361267593790705240802723914281025800E11L,
7.222460928505293914746983300555538432830E10L,
8.102984106025088123058747466840656458342E9L,
5.157620015986282905232150979772409345927E8L,
1.851445288272645829028129389609068641517E7L,
3.489261702223124354745894067468953756656E5L,
2.892095396706665774434217489775617756014E3L,
6.596977510622195827183948478627058738034E0L
};
#define NRD8 7
static const long double RD8[NRD8 + 1] =
{
3.274776546520735414638114828622673016920E11L,
1.581811207929065544043963828487733970107E11L,
3.108725655667825188135393076860104546416E10L,
3.193055010502912617128480163681842165730E9L,
1.830871482669835106357529710116211541839E8L,
5.790862854275238129848491555068073485086E6L,
9.305213264307921522842678835618803553589E4L,
6.216974105861848386918949336819572333622E2L
/* 1.0E0L */
};
/* log gamma(x+7) = log gamma(7) + x P(x)/Q(x)
-0.5 <= x <= 0.5
6.5 <= x+7 <= 7.5
Peak relative error 3.2e-36 */
static const long double lgam7a = 6.5792388916015625E0L;
static const long double lgam7b = 1.2320408538495060178292903945321122583007E-5L;
#define NRN7 8
static const long double RN7[NRN7 + 1] =
{
2.065019306969459407636744543358209942213E11L,
1.226919919023736909889724951708796532847E11L,
2.996157990374348596472241776917953749106E10L,
3.873001919306801037344727168434909521030E9L,
2.841575255593761593270885753992732145094E8L,
1.176342515359431913664715324652399565551E7L,
2.558097039684188723597519300356028511547E5L,
2.448525238332609439023786244782810774702E3L,
6.460280377802030953041566617300902020435E0L
};
#define NRD7 7
static const long double RD7[NRD7 + 1] =
{
1.102646614598516998880874785339049304483E11L,
6.099297512712715445879759589407189290040E10L,
1.372898136289611312713283201112060238351E10L,
1.615306270420293159907951633566635172343E9L,
1.061114435798489135996614242842561967459E8L,
3.845638971184305248268608902030718674691E6L,
7.081730675423444975703917836972720495507E4L,
5.423122582741398226693137276201344096370E2L
/* 1.0E0L */
};
/* log gamma(x+6) = log gamma(6) + x P(x)/Q(x)
-0.5 <= x <= 0.5
5.5 <= x+6 <= 6.5
Peak relative error 6.2e-37 */
static const long double lgam6a = 4.7874908447265625E0L;
static const long double lgam6b = 8.9805548349424770093452324304839959231517E-7L;
#define NRN6 8
static const long double RN6[NRN6 + 1] =
{
-3.538412754670746879119162116819571823643E13L,
-2.613432593406849155765698121483394257148E13L,
-8.020670732770461579558867891923784753062E12L,
-1.322227822931250045347591780332435433420E12L,
-1.262809382777272476572558806855377129513E11L,
-7.015006277027660872284922325741197022467E9L,
-2.149320689089020841076532186783055727299E8L,
-3.167210585700002703820077565539658995316E6L,
-1.576834867378554185210279285358586385266E4L
};
#define NRD6 8
static const long double RD6[NRD6 + 1] =
{
-2.073955870771283609792355579558899389085E13L,
-1.421592856111673959642750863283919318175E13L,
-4.012134994918353924219048850264207074949E12L,
-6.013361045800992316498238470888523722431E11L,
-5.145382510136622274784240527039643430628E10L,
-2.510575820013409711678540476918249524123E9L,
-6.564058379709759600836745035871373240904E7L,
-7.861511116647120540275354855221373571536E5L,
-2.821943442729620524365661338459579270561E3L
/* 1.0E0L */
};
/* log gamma(x+5) = log gamma(5) + x P(x)/Q(x)
-0.5 <= x <= 0.5
4.5 <= x+5 <= 5.5
Peak relative error 3.4e-37 */
static const long double lgam5a = 3.17803955078125E0L;
static const long double lgam5b = 1.4279566695619646941601297055408873990961E-5L;
#define NRN5 9
static const long double RN5[NRN5 + 1] =
{
2.010952885441805899580403215533972172098E11L,
1.916132681242540921354921906708215338584E11L,
7.679102403710581712903937970163206882492E10L,
1.680514903671382470108010973615268125169E10L,
2.181011222911537259440775283277711588410E9L,
1.705361119398837808244780667539728356096E8L,
7.792391565652481864976147945997033946360E6L,
1.910741381027985291688667214472560023819E5L,
2.088138241893612679762260077783794329559E3L,
6.330318119566998299106803922739066556550E0L
};
#define NRD5 8
static const long double RD5[NRD5 + 1] =
{
1.335189758138651840605141370223112376176E11L,
1.174130445739492885895466097516530211283E11L,
4.308006619274572338118732154886328519910E10L,
8.547402888692578655814445003283720677468E9L,
9.934628078575618309542580800421370730906E8L,
6.847107420092173812998096295422311820672E7L,
2.698552646016599923609773122139463150403E6L,
5.526516251532464176412113632726150253215E4L,
4.772343321713697385780533022595450486932E2L
/* 1.0E0L */
};
/* log gamma(x+4) = log gamma(4) + x P(x)/Q(x)
-0.5 <= x <= 0.5
3.5 <= x+4 <= 4.5
Peak relative error 6.7e-37 */
static const long double lgam4a = 1.791748046875E0L;
static const long double lgam4b = 1.1422353055000812477358380702272722990692E-5L;
#define NRN4 9
static const long double RN4[NRN4 + 1] =
{
-1.026583408246155508572442242188887829208E13L,
-1.306476685384622809290193031208776258809E13L,
-7.051088602207062164232806511992978915508E12L,
-2.100849457735620004967624442027793656108E12L,
-3.767473790774546963588549871673843260569E11L,
-4.156387497364909963498394522336575984206E10L,
-2.764021460668011732047778992419118757746E9L,
-1.036617204107109779944986471142938641399E8L,
-1.895730886640349026257780896972598305443E6L,
-1.180509051468390914200720003907727988201E4L
};
#define NRD4 9
static const long double RD4[NRD4 + 1] =
{
-8.172669122056002077809119378047536240889E12L,
-9.477592426087986751343695251801814226960E12L,
-4.629448850139318158743900253637212801682E12L,
-1.237965465892012573255370078308035272942E12L,
-1.971624313506929845158062177061297598956E11L,
-1.905434843346570533229942397763361493610E10L,
-1.089409357680461419743730978512856675984E9L,
-3.416703082301143192939774401370222822430E7L,
-4.981791914177103793218433195857635265295E5L,
-2.192507743896742751483055798411231453733E3L
/* 1.0E0L */
};
/* log gamma(x+3) = log gamma(3) + x P(x)/Q(x)
-0.25 <= x <= 0.5
2.75 <= x+3 <= 3.5
Peak relative error 6.0e-37 */
static const long double lgam3a = 6.93145751953125E-1L;
static const long double lgam3b = 1.4286068203094172321214581765680755001344E-6L;
#define NRN3 9
static const long double RN3[NRN3 + 1] =
{
-4.813901815114776281494823863935820876670E11L,
-8.425592975288250400493910291066881992620E11L,
-6.228685507402467503655405482985516909157E11L,
-2.531972054436786351403749276956707260499E11L,
-6.170200796658926701311867484296426831687E10L,
-9.211477458528156048231908798456365081135E9L,
-8.251806236175037114064561038908691305583E8L,
-4.147886355917831049939930101151160447495E7L,
-1.010851868928346082547075956946476932162E6L,
-8.333374463411801009783402800801201603736E3L
};
#define NRD3 9
static const long double RD3[NRD3 + 1] =
{
-5.216713843111675050627304523368029262450E11L,
-8.014292925418308759369583419234079164391E11L,
-5.180106858220030014546267824392678611990E11L,
-1.830406975497439003897734969120997840011E11L,
-3.845274631904879621945745960119924118925E10L,
-4.891033385370523863288908070309417710903E9L,
-3.670172254411328640353855768698287474282E8L,
-1.505316381525727713026364396635522516989E7L,
-2.856327162923716881454613540575964890347E5L,
-1.622140448015769906847567212766206894547E3L
/* 1.0E0L */
};
/* log gamma(x+2.5) = log gamma(2.5) + x P(x)/Q(x)
-0.125 <= x <= 0.25
2.375 <= x+2.5 <= 2.75 */
static const long double lgam2r5a = 2.8466796875E-1L;
static const long double lgam2r5b = 1.4901722919159632494669682701924320137696E-5L;
#define NRN2r5 8
static const long double RN2r5[NRN2r5 + 1] =
{
-4.676454313888335499356699817678862233205E9L,
-9.361888347911187924389905984624216340639E9L,
-7.695353600835685037920815799526540237703E9L,
-3.364370100981509060441853085968900734521E9L,
-8.449902011848163568670361316804900559863E8L,
-1.225249050950801905108001246436783022179E8L,
-9.732972931077110161639900388121650470926E6L,
-3.695711763932153505623248207576425983573E5L,
-4.717341584067827676530426007495274711306E3L
};
#define NRD2r5 8
static const long double RD2r5[NRD2r5 + 1] =
{
-6.650657966618993679456019224416926875619E9L,
-1.099511409330635807899718829033488771623E10L,
-7.482546968307837168164311101447116903148E9L,
-2.702967190056506495988922973755870557217E9L,
-5.570008176482922704972943389590409280950E8L,
-6.536934032192792470926310043166993233231E7L,
-4.101991193844953082400035444146067511725E6L,
-1.174082735875715802334430481065526664020E5L,
-9.932840389994157592102947657277692978511E2L
/* 1.0E0L */
};
/* log gamma(x+2) = x P(x)/Q(x)
-0.125 <= x <= +0.375
1.875 <= x+2 <= 2.375
Peak relative error 4.6e-36 */
#define NRN2 9
static const long double RN2[NRN2 + 1] =
{
-3.716661929737318153526921358113793421524E9L,
-1.138816715030710406922819131397532331321E10L,
-1.421017419363526524544402598734013569950E10L,
-9.510432842542519665483662502132010331451E9L,
-3.747528562099410197957514973274474767329E9L,
-8.923565763363912474488712255317033616626E8L,
-1.261396653700237624185350402781338231697E8L,
-9.918402520255661797735331317081425749014E6L,
-3.753996255897143855113273724233104768831E5L,
-4.778761333044147141559311805999540765612E3L
};
#define NRD2 9
static const long double RD2[NRD2 + 1] =
{
-8.790916836764308497770359421351673950111E9L,
-2.023108608053212516399197678553737477486E10L,
-1.958067901852022239294231785363504458367E10L,
-1.035515043621003101254252481625188704529E10L,
-3.253884432621336737640841276619272224476E9L,
-6.186383531162456814954947669274235815544E8L,
-6.932557847749518463038934953605969951466E7L,
-4.240731768287359608773351626528479703758E6L,
-1.197343995089189188078944689846348116630E5L,
-1.004622911670588064824904487064114090920E3L
/* 1.0E0 */
};
/* log gamma(x+1.75) = log gamma(1.75) + x P(x)/Q(x)
-0.125 <= x <= +0.125
1.625 <= x+1.75 <= 1.875
Peak relative error 9.2e-37 */
static const long double lgam1r75a = -8.441162109375E-2L;
static const long double lgam1r75b = 1.0500073264444042213965868602268256157604E-5L;
#define NRN1r75 8
static const long double RN1r75[NRN1r75 + 1] =
{
-5.221061693929833937710891646275798251513E7L,
-2.052466337474314812817883030472496436993E8L,
-2.952718275974940270675670705084125640069E8L,
-2.132294039648116684922965964126389017840E8L,
-8.554103077186505960591321962207519908489E7L,
-1.940250901348870867323943119132071960050E7L,
-2.379394147112756860769336400290402208435E6L,
-1.384060879999526222029386539622255797389E5L,
-2.698453601378319296159355612094598695530E3L
};
#define NRD1r75 8
static const long double RD1r75[NRD1r75 + 1] =
{
-2.109754689501705828789976311354395393605E8L,
-5.036651829232895725959911504899241062286E8L,
-4.954234699418689764943486770327295098084E8L,
-2.589558042412676610775157783898195339410E8L,
-7.731476117252958268044969614034776883031E7L,
-1.316721702252481296030801191240867486965E7L,
-1.201296501404876774861190604303728810836E6L,
-5.007966406976106636109459072523610273928E4L,
-6.155817990560743422008969155276229018209E2L
/* 1.0E0L */
};
/* log gamma(x+x0) = y0 + x^2 P(x)/Q(x)
-0.0867 <= x <= +0.1634
1.374932... <= x+x0 <= 1.625032...
Peak relative error 4.0e-36 */
static const long double x0a = 1.4616241455078125L;
static const long double x0b = 7.9994605498412626595423257213002588621246E-6L;
static const long double y0a = -1.21490478515625E-1L;
static const long double y0b = 4.1879797753919044854428223084178486438269E-6L;
#define NRN1r5 8
static const long double RN1r5[NRN1r5 + 1] =
{
6.827103657233705798067415468881313128066E5L,
1.910041815932269464714909706705242148108E6L,
2.194344176925978377083808566251427771951E6L,
1.332921400100891472195055269688876427962E6L,
4.589080973377307211815655093824787123508E5L,
8.900334161263456942727083580232613796141E4L,
9.053840838306019753209127312097612455236E3L,
4.053367147553353374151852319743594873771E2L,
5.040631576303952022968949605613514584950E0L
};
#define NRD1r5 8
static const long double RD1r5[NRD1r5 + 1] =
{
1.411036368843183477558773688484699813355E6L,
4.378121767236251950226362443134306184849E6L,
5.682322855631723455425929877581697918168E6L,
3.999065731556977782435009349967042222375E6L,
1.653651390456781293163585493620758410333E6L,
4.067774359067489605179546964969435858311E5L,
5.741463295366557346748361781768833633256E4L,
4.226404539738182992856094681115746692030E3L,
1.316980975410327975566999780608618774469E2L,
/* 1.0E0L */
};
/* log gamma(x+1.25) = log gamma(1.25) + x P(x)/Q(x)
-.125 <= x <= +.125
1.125 <= x+1.25 <= 1.375
Peak relative error = 4.9e-36 */
static const long double lgam1r25a = -9.82818603515625E-2L;
static const long double lgam1r25b = 1.0023929749338536146197303364159774377296E-5L;
#define NRN1r25 9
static const long double RN1r25[NRN1r25 + 1] =
{
-9.054787275312026472896002240379580536760E4L,
-8.685076892989927640126560802094680794471E4L,
2.797898965448019916967849727279076547109E5L,
6.175520827134342734546868356396008898299E5L,
5.179626599589134831538516906517372619641E5L,
2.253076616239043944538380039205558242161E5L,
5.312653119599957228630544772499197307195E4L,
6.434329437514083776052669599834938898255E3L,
3.385414416983114598582554037612347549220E2L,
4.907821957946273805080625052510832015792E0L
};
#define NRD1r25 8
static const long double RD1r25[NRD1r25 + 1] =
{
3.980939377333448005389084785896660309000E5L,
1.429634893085231519692365775184490465542E6L,
2.145438946455476062850151428438668234336E6L,
1.743786661358280837020848127465970357893E6L,
8.316364251289743923178092656080441655273E5L,
2.355732939106812496699621491135458324294E5L,
3.822267399625696880571810137601310855419E4L,
3.228463206479133236028576845538387620856E3L,
1.152133170470059555646301189220117965514E2L
/* 1.0E0L */
};
/* log gamma(x + 1) = x P(x)/Q(x)
0.0 <= x <= +0.125
1.0 <= x+1 <= 1.125
Peak relative error 1.1e-35 */
#define NRN1 8
static const long double RN1[NRN1 + 1] =
{
-9.987560186094800756471055681088744738818E3L,
-2.506039379419574361949680225279376329742E4L,
-1.386770737662176516403363873617457652991E4L,
1.439445846078103202928677244188837130744E4L,
2.159612048879650471489449668295139990693E4L,
1.047439813638144485276023138173676047079E4L,
2.250316398054332592560412486630769139961E3L,
1.958510425467720733041971651126443864041E2L,
4.516830313569454663374271993200291219855E0L
};
#define NRD1 7
static const long double RD1[NRD1 + 1] =
{
1.730299573175751778863269333703788214547E4L,
6.807080914851328611903744668028014678148E4L,
1.090071629101496938655806063184092302439E5L,
9.124354356415154289343303999616003884080E4L,
4.262071638655772404431164427024003253954E4L,
1.096981664067373953673982635805821283581E4L,
1.431229503796575892151252708527595787588E3L,
7.734110684303689320830401788262295992921E1L
/* 1.0E0 */
};
/* log gamma(x + 1) = x P(x)/Q(x)
-0.125 <= x <= 0
0.875 <= x+1 <= 1.0
Peak relative error 7.0e-37 */
#define NRNr9 8
static const long double RNr9[NRNr9 + 1] =
{
4.441379198241760069548832023257571176884E5L,
1.273072988367176540909122090089580368732E6L,
9.732422305818501557502584486510048387724E5L,
-5.040539994443998275271644292272870348684E5L,
-1.208719055525609446357448132109723786736E6L,
-7.434275365370936547146540554419058907156E5L,
-2.075642969983377738209203358199008185741E5L,
-2.565534860781128618589288075109372218042E4L,
-1.032901669542994124131223797515913955938E3L,
};
#define NRDr9 8
static const long double RDr9[NRDr9 + 1] =
{
-7.694488331323118759486182246005193998007E5L,
-3.301918855321234414232308938454112213751E6L,
-5.856830900232338906742924836032279404702E6L,
-5.540672519616151584486240871424021377540E6L,
-3.006530901041386626148342989181721176919E6L,
-9.350378280513062139466966374330795935163E5L,
-1.566179100031063346901755685375732739511E5L,
-1.205016539620260779274902967231510804992E4L,
-2.724583156305709733221564484006088794284E2L
/* 1.0E0 */
};
/* Evaluate P[n] x^n + P[n-1] x^(n-1) + ... + P[0] */
static long double
neval (long double x, const long double *p, int n)
{
long double y;
p += n;
y = *p--;
do
{
y = y * x + *p--;
}
while (--n > 0);
return y;
}
/* Evaluate x^n+1 + P[n] x^(n) + P[n-1] x^(n-1) + ... + P[0] */
static long double
deval (long double x, const long double *p, int n)
{
long double y;
p += n;
y = x + *p--;
do
{
y = y * x + *p--;
}
while (--n > 0);
return y;
}
long double
__ieee754_lgammal_r (long double x, int *signgamp)
{
long double p, q, w, z, nx;
int i, nn;
*signgamp = 1;
if (! isfinite (x))
return x * x;
if (x == 0)
{
if (signbit (x))
*signgamp = -1;
}
if (x < 0)
{
if (x < -2 && x > -48)
return __lgamma_negl (x, signgamp);
q = -x;
p = floorl (q);
if (p == q)
return (one / fabsl (p - p));
long double halfp = p * 0.5L;
if (halfp == floorl (halfp))
*signgamp = -1;
else
*signgamp = 1;
if (q < 0x1p-120L)
return -__logl (q);
z = q - p;
if (z > 0.5L)
{
p += 1;
z = p - q;
}
z = q * __sinl (PIL * z);
w = __ieee754_lgammal_r (q, &i);
z = __logl (PIL / z) - w;
return (z);
}
if (x < 13.5L)
{
p = 0;
nx = floorl (x + 0.5L);
nn = nx;
switch (nn)
{
case 0:
/* log gamma (x + 1) = log(x) + log gamma(x) */
if (x < 0x1p-120L)
return -__logl (x);
else if (x <= 0.125)
{
p = x * neval (x, RN1, NRN1) / deval (x, RD1, NRD1);
}
else if (x <= 0.375)
{
z = x - 0.25L;
p = z * neval (z, RN1r25, NRN1r25) / deval (z, RD1r25, NRD1r25);
p += lgam1r25b;
p += lgam1r25a;
}
else if (x <= 0.625)
{
z = x + (1 - x0a);
z = z - x0b;
p = neval (z, RN1r5, NRN1r5) / deval (z, RD1r5, NRD1r5);
p = p * z * z;
p = p + y0b;
p = p + y0a;
}
else if (x <= 0.875)
{
z = x - 0.75L;
p = z * neval (z, RN1r75, NRN1r75) / deval (z, RD1r75, NRD1r75);
p += lgam1r75b;
p += lgam1r75a;
}
else
{
z = x - 1;
p = z * neval (z, RN2, NRN2) / deval (z, RD2, NRD2);
}
p = p - __logl (x);
break;
case 1:
if (x < 0.875L)
{
if (x <= 0.625)
{
z = x + (1 - x0a);
z = z - x0b;
p = neval (z, RN1r5, NRN1r5) / deval (z, RD1r5, NRD1r5);
p = p * z * z;
p = p + y0b;
p = p + y0a;
}
else if (x <= 0.875)
{
z = x - 0.75L;
p = z * neval (z, RN1r75, NRN1r75)
/ deval (z, RD1r75, NRD1r75);
p += lgam1r75b;
p += lgam1r75a;
}
else
{
z = x - 1;
p = z * neval (z, RN2, NRN2) / deval (z, RD2, NRD2);
}
p = p - __logl (x);
}
else if (x < 1)
{
z = x - 1;
p = z * neval (z, RNr9, NRNr9) / deval (z, RDr9, NRDr9);
}
else if (x == 1)
p = 0;
else if (x <= 1.125L)
{
z = x - 1;
p = z * neval (z, RN1, NRN1) / deval (z, RD1, NRD1);
}
else if (x <= 1.375)
{
z = x - 1.25L;
p = z * neval (z, RN1r25, NRN1r25) / deval (z, RD1r25, NRD1r25);
p += lgam1r25b;
p += lgam1r25a;
}
else
{
/* 1.375 <= x+x0 <= 1.625 */
z = x - x0a;
z = z - x0b;
p = neval (z, RN1r5, NRN1r5) / deval (z, RD1r5, NRD1r5);
p = p * z * z;
p = p + y0b;
p = p + y0a;
}
break;
case 2:
if (x < 1.625L)
{
z = x - x0a;
z = z - x0b;
p = neval (z, RN1r5, NRN1r5) / deval (z, RD1r5, NRD1r5);
p = p * z * z;
p = p + y0b;
p = p + y0a;
}
else if (x < 1.875L)
{
z = x - 1.75L;
p = z * neval (z, RN1r75, NRN1r75) / deval (z, RD1r75, NRD1r75);
p += lgam1r75b;
p += lgam1r75a;
}
else if (x == 2)
p = 0;
else if (x < 2.375L)
{
z = x - 2;
p = z * neval (z, RN2, NRN2) / deval (z, RD2, NRD2);
}
else
{
z = x - 2.5L;
p = z * neval (z, RN2r5, NRN2r5) / deval (z, RD2r5, NRD2r5);
p += lgam2r5b;
p += lgam2r5a;
}
break;
case 3:
if (x < 2.75)
{
z = x - 2.5L;
p = z * neval (z, RN2r5, NRN2r5) / deval (z, RD2r5, NRD2r5);
p += lgam2r5b;
p += lgam2r5a;
}
else
{
z = x - 3;
p = z * neval (z, RN3, NRN3) / deval (z, RD3, NRD3);
p += lgam3b;
p += lgam3a;
}
break;
case 4:
z = x - 4;
p = z * neval (z, RN4, NRN4) / deval (z, RD4, NRD4);
p += lgam4b;
p += lgam4a;
break;
case 5:
z = x - 5;
p = z * neval (z, RN5, NRN5) / deval (z, RD5, NRD5);
p += lgam5b;
p += lgam5a;
break;
case 6:
z = x - 6;
p = z * neval (z, RN6, NRN6) / deval (z, RD6, NRD6);
p += lgam6b;
p += lgam6a;
break;
case 7:
z = x - 7;
p = z * neval (z, RN7, NRN7) / deval (z, RD7, NRD7);
p += lgam7b;
p += lgam7a;
break;
case 8:
z = x - 8;
p = z * neval (z, RN8, NRN8) / deval (z, RD8, NRD8);
p += lgam8b;
p += lgam8a;
break;
case 9:
z = x - 9;
p = z * neval (z, RN9, NRN9) / deval (z, RD9, NRD9);
p += lgam9b;
p += lgam9a;
break;
case 10:
z = x - 10;
p = z * neval (z, RN10, NRN10) / deval (z, RD10, NRD10);
p += lgam10b;
p += lgam10a;
break;
case 11:
z = x - 11;
p = z * neval (z, RN11, NRN11) / deval (z, RD11, NRD11);
p += lgam11b;
p += lgam11a;
break;
case 12:
z = x - 12;
p = z * neval (z, RN12, NRN12) / deval (z, RD12, NRD12);
p += lgam12b;
p += lgam12a;
break;
case 13:
z = x - 13;
p = z * neval (z, RN13, NRN13) / deval (z, RD13, NRD13);
p += lgam13b;
p += lgam13a;
break;
}
return p;
}
if (x > MAXLGM)
return (*signgamp * huge * huge);
if (x > 0x1p120L)
return x * (__logl (x) - 1);
q = ls2pi - x;
q = (x - 0.5L) * __logl (x) + q;
if (x > 1.0e18L)
return (q);
p = 1 / (x * x);
q += neval (p, RASY, NRASY) / x;
return (q);
}
strong_alias (__ieee754_lgammal_r, __lgammal_r_finite)