glibc/benchtests/bench-math-inlines.c
Wilco Dijkstra d064591266 Further improve string bench timing
Further improve the timings of the string benchmarks.  Ensure most take
between 1 and 4 seconds to improve accuracy.  Overall time taken increases
by 35%.  Tested on AArch64.

Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>

	* benchtests/bench-math-inlines.c: Increase iterations.
	* benchtests/bench-memcmp.c: Likewise.
	* benchtests/bench-rawmemchr.c: Likewise.
	* benchtests/bench-strcmp.c: Likewise.
	* benchtests/bench-strcpy_chk.c: Likewise.
	* benchtests/bench-string.h (INNER_LOOP_ITERS8): Add define.
	(INNER_LOOP_ITERS_MEDIUM): Increase iterations.
	(INNER_LOOP_ITERS_SMALL): Likewise.
	* benchtests/bench-strncat.c: Increase iterations.
	* benchtests/bench-strncmp.c: Increase iterations.
	* benchtests/bench-strncpy.c: Reduce iterations for wide strings.
	* benchtests/bench-strrchr.c: Increase iterations.
	* benchtests/bench-strstr.c: Keep iterations unchanged.
	* benchtests/bench-strtod.c: Increase iterations.
2019-06-28 13:42:36 +01:00

286 lines
6.9 KiB
C

/* Measure math inline functions.
Copyright (C) 2015-2019 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
#define SIZE 1024
#define TEST_MAIN
#define TEST_NAME "math-inlines"
#define TEST_FUNCTION test_main ()
#include "bench-timing.h"
#include "json-lib.h"
#include "bench-util.h"
#include <stdlib.h>
#include <math.h>
#include <stdint.h>
#define BOOLTEST(func) \
static int __attribute__((noinline)) \
func ## _f (double d, int i) \
{ \
if (func (d)) \
return (int) d + i; \
else \
return 5; \
} \
static int \
func ## _t (volatile double *p, size_t n, size_t iters) \
{ \
int i, j; \
int res = 0; \
for (j = 0; j < iters; j++) \
for (i = 0; i < n; i++) \
if (func ## _f (p[i] * 2.0, i) != 0) \
res += 5; \
return res; \
}
#define VALUETEST(func) \
static int __attribute__((noinline)) \
func ## _f (double d) \
{ \
return func (d); \
} \
static int \
func ## _t (volatile double *p, size_t n, size_t iters) \
{ \
int i, j; \
int res = 0; \
for (j = 0; j < iters; j++) \
for (i = 0; i < n; i++) \
res += func ## _f (p[i] * 2.0); \
return res; \
}
typedef union
{
double value;
uint64_t word;
} ieee_double_shape_type;
#define EXTRACT_WORDS64(i,d) \
do { \
ieee_double_shape_type gh_u; \
gh_u.value = (d); \
(i) = gh_u.word; \
} while (0)
/* Inlines similar to existing math_private.h versions. */
static __always_inline int
__isnan_inl (double d)
{
uint64_t di;
EXTRACT_WORDS64 (di, d);
return (di & 0x7fffffffffffffffull) > 0x7ff0000000000000ull;
}
static __always_inline int
__isinf_ns2 (double d)
{
uint64_t di;
EXTRACT_WORDS64 (di, d);
return (di & 0x7fffffffffffffffull) == 0x7ff0000000000000ull;
}
static __always_inline int
__finite_inl (double d)
{
uint64_t di;
EXTRACT_WORDS64 (di, d);
return (di & 0x7fffffffffffffffull) < 0x7ff0000000000000ull;
}
#define __isnormal_inl(X) (__fpclassify (X) == FP_NORMAL)
/* Inlines for the builtin functions. */
#define __isnan_builtin(X) __builtin_isnan (X)
#define __isinf_ns_builtin(X) __builtin_isinf (X)
#define __isinf_builtin(X) __builtin_isinf_sign (X)
#define __isfinite_builtin(X) __builtin_isfinite (X)
#define __isnormal_builtin(X) __builtin_isnormal (X)
#define __fpclassify_builtin(X) __builtin_fpclassify (FP_NAN, FP_INFINITE, \
FP_NORMAL, FP_SUBNORMAL, FP_ZERO, (X))
static double __attribute ((noinline))
kernel_standard (double x, double y, int z)
{
return x * y + z;
}
volatile double rem1 = 2.5;
static __always_inline double
remainder_test1 (double x)
{
double y = rem1;
if (((__builtin_expect (y == 0.0, 0) && !__isnan_inl (x))
|| (__builtin_expect (__isinf_ns2 (x), 0) && !__isnan_inl (y))))
return kernel_standard (x, y, 10);
return remainder (x, y);
}
static __always_inline double
remainder_test2 (double x)
{
double y = rem1;
if (((__builtin_expect (y == 0.0, 0) && !__builtin_isnan (x))
|| (__builtin_expect (__builtin_isinf (x), 0) && !__builtin_isnan (y))))
return kernel_standard (x, y, 10);
return remainder (x, y);
}
/* Create test functions for each possibility. */
BOOLTEST (__isnan)
BOOLTEST (__isnan_inl)
BOOLTEST (__isnan_builtin)
BOOLTEST (isnan)
BOOLTEST (__isinf)
BOOLTEST (__isinf_builtin)
BOOLTEST (__isinf_ns2)
BOOLTEST (__isinf_ns_builtin)
BOOLTEST (isinf)
BOOLTEST (__finite)
BOOLTEST (__finite_inl)
BOOLTEST (__isfinite_builtin)
BOOLTEST (isfinite)
BOOLTEST (__isnormal_inl)
BOOLTEST (__isnormal_builtin)
BOOLTEST (isnormal)
VALUETEST (__fpclassify)
VALUETEST (__fpclassify_builtin)
VALUETEST (fpclassify)
VALUETEST (remainder_test1)
VALUETEST (remainder_test2)
typedef int (*proto_t) (volatile double *p, size_t n, size_t iters);
typedef struct
{
const char *name;
proto_t fn;
} impl_t;
#define IMPL(name) { #name, name ## _t }
static impl_t test_list[] =
{
IMPL (__isnan),
IMPL (__isnan_inl),
IMPL (__isnan_builtin),
IMPL (isnan),
IMPL (__isinf),
IMPL (__isinf_ns2),
IMPL (__isinf_ns_builtin),
IMPL (__isinf_builtin),
IMPL (isinf),
IMPL (__finite),
IMPL (__finite_inl),
IMPL (__isfinite_builtin),
IMPL (isfinite),
IMPL (__isnormal_inl),
IMPL (__isnormal_builtin),
IMPL (isnormal),
IMPL (__fpclassify),
IMPL (__fpclassify_builtin),
IMPL (fpclassify),
IMPL (remainder_test1),
IMPL (remainder_test2)
};
static void
do_one_test (json_ctx_t *json_ctx, proto_t test_fn, volatile double *arr,
size_t len, const char *testname)
{
size_t iters = 2048;
timing_t start, stop, cur;
json_attr_object_begin (json_ctx, testname);
TIMING_NOW (start);
test_fn (arr, len, iters);
TIMING_NOW (stop);
TIMING_DIFF (cur, start, stop);
json_attr_double (json_ctx, "duration", cur);
json_attr_double (json_ctx, "iterations", iters);
json_attr_double (json_ctx, "mean", cur / iters);
json_attr_object_end (json_ctx);
}
static volatile double arr1[SIZE];
static volatile double arr2[SIZE];
int
test_main (void)
{
json_ctx_t json_ctx;
size_t i;
bench_start ();
json_init (&json_ctx, 2, stdout);
json_attr_object_begin (&json_ctx, TEST_NAME);
/* Create 2 test arrays, one with 10% zeroes, 10% negative values,
79% positive values and 1% infinity/NaN. The other contains
50% inf, 50% NaN. This relies on rand behaving correctly. */
for (i = 0; i < SIZE; i++)
{
int x = rand () & 255;
arr1[i] = (x < 25) ? 0.0 : ((x < 50) ? -1 : 100);
if (x == 255) arr1[i] = __builtin_inf ();
if (x == 254) arr1[i] = __builtin_nan ("0");
arr2[i] = (x < 128) ? __builtin_inf () : __builtin_nan ("0");
}
for (i = 0; i < sizeof (test_list) / sizeof (test_list[0]); i++)
{
json_attr_object_begin (&json_ctx, test_list[i].name);
do_one_test (&json_ctx, test_list[i].fn, arr2, SIZE, "inf/nan");
json_attr_object_end (&json_ctx);
}
for (i = 0; i < sizeof (test_list) / sizeof (test_list[0]); i++)
{
json_attr_object_begin (&json_ctx, test_list[i].name);
do_one_test (&json_ctx, test_list[i].fn, arr1, SIZE, "normal");
json_attr_object_end (&json_ctx);
}
json_attr_object_end (&json_ctx);
return 0;
}
#include "bench-util.c"
#include "../test-skeleton.c"