mirror of
https://sourceware.org/git/glibc.git
synced 2024-12-27 05:00:15 +00:00
948e12a238
The csqrt implementations in glibc can miss underflow exceptions when the real or imaginary part of the result becomes tiny in the course of scaling down (in particular, multiplication by 0.5) and that scaling is exact although the relevant part of the mathematical result isn't. This patch forces the exception in a similar way to previous fixes. Tested for x86_64 and x86. [BZ #18370] * math/s_csqrt.c (__csqrt): Force underflow exception for results whose real or imaginary part has small absolute value. * math/s_csqrtf.c (__csqrtf): Likewise. * math/s_csqrtl.c (__csqrtl): Likewise. * math/auto-libm-test-in: Add more tests of csqrt. * math/auto-libm-test-out: Regenerated. * sysdeps/i386/fpu/libm-test-ulps: Update.
174 lines
4.4 KiB
C
174 lines
4.4 KiB
C
/* Complex square root of double value.
|
|
Copyright (C) 1997-2015 Free Software Foundation, Inc.
|
|
This file is part of the GNU C Library.
|
|
Based on an algorithm by Stephen L. Moshier <moshier@world.std.com>.
|
|
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
|
|
|
|
The GNU C Library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Lesser General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
|
|
The GNU C Library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
|
License along with the GNU C Library; if not, see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
#include <complex.h>
|
|
#include <math.h>
|
|
#include <math_private.h>
|
|
#include <float.h>
|
|
|
|
__complex__ double
|
|
__csqrt (__complex__ double x)
|
|
{
|
|
__complex__ double res;
|
|
int rcls = fpclassify (__real__ x);
|
|
int icls = fpclassify (__imag__ x);
|
|
|
|
if (__glibc_unlikely (rcls <= FP_INFINITE || icls <= FP_INFINITE))
|
|
{
|
|
if (icls == FP_INFINITE)
|
|
{
|
|
__real__ res = HUGE_VAL;
|
|
__imag__ res = __imag__ x;
|
|
}
|
|
else if (rcls == FP_INFINITE)
|
|
{
|
|
if (__real__ x < 0.0)
|
|
{
|
|
__real__ res = icls == FP_NAN ? __nan ("") : 0;
|
|
__imag__ res = __copysign (HUGE_VAL, __imag__ x);
|
|
}
|
|
else
|
|
{
|
|
__real__ res = __real__ x;
|
|
__imag__ res = (icls == FP_NAN
|
|
? __nan ("") : __copysign (0.0, __imag__ x));
|
|
}
|
|
}
|
|
else
|
|
{
|
|
__real__ res = __nan ("");
|
|
__imag__ res = __nan ("");
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (__glibc_unlikely (icls == FP_ZERO))
|
|
{
|
|
if (__real__ x < 0.0)
|
|
{
|
|
__real__ res = 0.0;
|
|
__imag__ res = __copysign (__ieee754_sqrt (-__real__ x),
|
|
__imag__ x);
|
|
}
|
|
else
|
|
{
|
|
__real__ res = fabs (__ieee754_sqrt (__real__ x));
|
|
__imag__ res = __copysign (0.0, __imag__ x);
|
|
}
|
|
}
|
|
else if (__glibc_unlikely (rcls == FP_ZERO))
|
|
{
|
|
double r;
|
|
if (fabs (__imag__ x) >= 2.0 * DBL_MIN)
|
|
r = __ieee754_sqrt (0.5 * fabs (__imag__ x));
|
|
else
|
|
r = 0.5 * __ieee754_sqrt (2.0 * fabs (__imag__ x));
|
|
|
|
__real__ res = r;
|
|
__imag__ res = __copysign (r, __imag__ x);
|
|
}
|
|
else
|
|
{
|
|
double d, r, s;
|
|
int scale = 0;
|
|
|
|
if (fabs (__real__ x) > DBL_MAX / 4.0)
|
|
{
|
|
scale = 1;
|
|
__real__ x = __scalbn (__real__ x, -2 * scale);
|
|
__imag__ x = __scalbn (__imag__ x, -2 * scale);
|
|
}
|
|
else if (fabs (__imag__ x) > DBL_MAX / 4.0)
|
|
{
|
|
scale = 1;
|
|
if (fabs (__real__ x) >= 4.0 * DBL_MIN)
|
|
__real__ x = __scalbn (__real__ x, -2 * scale);
|
|
else
|
|
__real__ x = 0.0;
|
|
__imag__ x = __scalbn (__imag__ x, -2 * scale);
|
|
}
|
|
else if (fabs (__real__ x) < 2.0 * DBL_MIN
|
|
&& fabs (__imag__ x) < 2.0 * DBL_MIN)
|
|
{
|
|
scale = -((DBL_MANT_DIG + 1) / 2);
|
|
__real__ x = __scalbn (__real__ x, -2 * scale);
|
|
__imag__ x = __scalbn (__imag__ x, -2 * scale);
|
|
}
|
|
|
|
d = __ieee754_hypot (__real__ x, __imag__ x);
|
|
/* Use the identity 2 Re res Im res = Im x
|
|
to avoid cancellation error in d +/- Re x. */
|
|
if (__real__ x > 0)
|
|
{
|
|
r = __ieee754_sqrt (0.5 * (d + __real__ x));
|
|
if (scale == 1 && fabs (__imag__ x) < 1.0)
|
|
{
|
|
/* Avoid possible intermediate underflow. */
|
|
s = __imag__ x / r;
|
|
r = __scalbn (r, scale);
|
|
scale = 0;
|
|
}
|
|
else
|
|
s = 0.5 * (__imag__ x / r);
|
|
}
|
|
else
|
|
{
|
|
s = __ieee754_sqrt (0.5 * (d - __real__ x));
|
|
if (scale == 1 && fabs (__imag__ x) < 1.0)
|
|
{
|
|
/* Avoid possible intermediate underflow. */
|
|
r = fabs (__imag__ x / s);
|
|
s = __scalbn (s, scale);
|
|
scale = 0;
|
|
}
|
|
else
|
|
r = fabs (0.5 * (__imag__ x / s));
|
|
}
|
|
|
|
if (scale)
|
|
{
|
|
r = __scalbn (r, scale);
|
|
s = __scalbn (s, scale);
|
|
}
|
|
|
|
if (fabs (r) < DBL_MIN)
|
|
{
|
|
double force_underflow = r * r;
|
|
math_force_eval (force_underflow);
|
|
}
|
|
if (fabs (s) < DBL_MIN)
|
|
{
|
|
double force_underflow = s * s;
|
|
math_force_eval (force_underflow);
|
|
}
|
|
|
|
__real__ res = r;
|
|
__imag__ res = __copysign (s, __imag__ x);
|
|
}
|
|
}
|
|
|
|
return res;
|
|
}
|
|
weak_alias (__csqrt, csqrt)
|
|
#ifdef NO_LONG_DOUBLE
|
|
strong_alias (__csqrt, __csqrtl)
|
|
weak_alias (__csqrt, csqrtl)
|
|
#endif
|