mirror of
https://sourceware.org/git/glibc.git
synced 2025-01-08 02:10:18 +00:00
30891f35fa
We stopped adding "Contributed by" or similar lines in sources in 2012 in favour of git logs and keeping the Contributors section of the glibc manual up to date. Removing these lines makes the license header a bit more consistent across files and also removes the possibility of error in attribution when license blocks or files are copied across since the contributed-by lines don't actually reflect reality in those cases. Move all "Contributed by" and similar lines (Written by, Test by, etc.) into a new file CONTRIBUTED-BY to retain record of these contributions. These contributors are also mentioned in manual/contrib.texi, so we just maintain this additional record as a courtesy to the earlier developers. The following scripts were used to filter a list of files to edit in place and to clean up the CONTRIBUTED-BY file respectively. These were not added to the glibc sources because they're not expected to be of any use in future given that this is a one time task: https://gist.github.com/siddhesh/b5ecac94eabfd72ed2916d6d8157e7dc https://gist.github.com/siddhesh/15ea1f5e435ace9774f485030695ee02 Reviewed-by: Carlos O'Donell <carlos@redhat.com>
1157 lines
30 KiB
ArmAsm
1157 lines
30 KiB
ArmAsm
.file "atanhl.s"
|
|
|
|
|
|
// Copyright (c) 2001 - 2003, Intel Corporation
|
|
// All rights reserved.
|
|
//
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistributions in binary form must reproduce the above copyright
|
|
// notice, this list of conditions and the following disclaimer in the
|
|
// documentation and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of Intel Corporation may not be used to endorse or promote
|
|
// products derived from this software without specific prior written
|
|
// permission.
|
|
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,INCLUDING,BUT NOT
|
|
// LIMITED TO,THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
|
|
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT,INDIRECT,INCIDENTAL,SPECIAL,
|
|
// EXEMPLARY,OR CONSEQUENTIAL DAMAGES (INCLUDING,BUT NOT LIMITED TO,
|
|
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,DATA,OR
|
|
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
|
|
// OF LIABILITY,WHETHER IN CONTRACT,STRICT LIABILITY OR TORT (INCLUDING
|
|
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
// SOFTWARE,EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
//
|
|
// Intel Corporation is the author of this code,and requests that all
|
|
// problem reports or change requests be submitted to it directly at
|
|
// http://www.intel.com/software/products/opensource/libraries/num.htm.
|
|
//
|
|
//*********************************************************************
|
|
//
|
|
// History:
|
|
// 09/10/01 Initial version
|
|
// 12/11/01 Corrected .restore syntax
|
|
// 05/20/02 Cleaned up namespace and sf0 syntax
|
|
// 02/10/03 Reordered header: .section, .global, .proc, .align;
|
|
// used data8 for long double table values
|
|
//
|
|
//*********************************************************************
|
|
//
|
|
//*********************************************************************
|
|
//
|
|
// Function: atanhl(x) computes the principle value of the inverse
|
|
// hyperbolic tangent of x.
|
|
//
|
|
//*********************************************************************
|
|
//
|
|
// Resources Used:
|
|
//
|
|
// Floating-Point Registers: f8 (Input and Return Value)
|
|
// f33-f73
|
|
//
|
|
// General Purpose Registers:
|
|
// r32-r52
|
|
// r49-r52 (Used to pass arguments to error handling routine)
|
|
//
|
|
// Predicate Registers: p6-p15
|
|
//
|
|
//*********************************************************************
|
|
//
|
|
// IEEE Special Conditions:
|
|
//
|
|
// atanhl(inf) = QNaN
|
|
// atanhl(-inf) = QNaN
|
|
// atanhl(+/-0) = +/-0
|
|
// atanhl(1) = +inf
|
|
// atanhl(-1) = -inf
|
|
// atanhl(|x|>1) = QNaN
|
|
// atanhl(SNaN) = QNaN
|
|
// atanhl(QNaN) = QNaN
|
|
//
|
|
//*********************************************************************
|
|
//
|
|
// Overview
|
|
//
|
|
// The method consists of two cases.
|
|
//
|
|
// If |x| < 1/32 use case atanhl_near_zero;
|
|
// else use case atanhl_regular;
|
|
//
|
|
// Case atanhl_near_zero:
|
|
//
|
|
// atanhl(x) can be approximated by the Taylor series expansion
|
|
// up to order 17.
|
|
//
|
|
// Case atanhl_regular:
|
|
//
|
|
// Here we use formula atanhl(x) = sign(x)*log1pl(2*|x|/(1-|x|))/2 and
|
|
// calculation is subdivided into two stages. The first stage is
|
|
// calculating of X = 2*|x|/(1-|x|). The second one is calculating of
|
|
// sign(x)*log1pl(X)/2. To obtain required accuracy we use precise division
|
|
// algorithm output of which is a pair of two extended precision values those
|
|
// approximate result of division with accuracy higher than working
|
|
// precision. This pair is passed to modified log1pl function.
|
|
//
|
|
//
|
|
// 1. calculating of X = 2*|x|/(1-|x|)
|
|
// ( based on Peter Markstein's "IA-64 and Elementary Functions" book )
|
|
// ********************************************************************
|
|
//
|
|
// a = 2*|x|
|
|
// b = 1 - |x|
|
|
// b_lo = |x| - (1 - b)
|
|
//
|
|
// y = frcpa(b) initial approximation of 1/b
|
|
// q = a*y initial approximation of a/b
|
|
//
|
|
// e = 1 - b*y
|
|
// e2 = e + e^2
|
|
// e1 = e^2
|
|
// y1 = y + y*e2 = y + y*(e+e^2)
|
|
//
|
|
// e3 = e + e1^2
|
|
// y2 = y + y1*e3 = y + y*(e+e^2+..+e^6)
|
|
//
|
|
// r = a - b*q
|
|
// e = 1 - b*y2
|
|
// X = q + r*y2 high part of a/b
|
|
//
|
|
// y3 = y2 + y2*e4
|
|
// r1 = a - b*X
|
|
// r1 = r1 - b_lo*X
|
|
// X_lo = r1*y3 low part of a/b
|
|
//
|
|
// 2. special log1p algorithm overview
|
|
// ***********************************
|
|
//
|
|
// Here we use a table lookup method. The basic idea is that in
|
|
// order to compute logl(Arg) = log1pl (Arg-1) for an argument Arg in [1,2),
|
|
// we construct a value G such that G*Arg is close to 1 and that
|
|
// logl(1/G) is obtainable easily from a table of values calculated
|
|
// beforehand. Thus
|
|
//
|
|
// logl(Arg) = logl(1/G) + logl(G*Arg)
|
|
// = logl(1/G) + logl(1 + (G*Arg - 1))
|
|
//
|
|
// Because |G*Arg - 1| is small, the second term on the right hand
|
|
// side can be approximated by a short polynomial. We elaborate
|
|
// this method in several steps.
|
|
//
|
|
// Step 0: Initialization
|
|
// ------
|
|
// We need to calculate logl(X + X_lo + 1). Obtain N, S_hi such that
|
|
//
|
|
// X + X_lo + 1 = 2^N * ( S_hi + S_lo ) exactly
|
|
//
|
|
// where S_hi in [1,2) and S_lo is a correction to S_hi in the sense
|
|
// that |S_lo| <= ulp(S_hi).
|
|
//
|
|
// For the special version of log1p we add X_lo to S_lo (S_lo = S_lo + X_lo)
|
|
// !-----------------------------------------------------------------------!
|
|
//
|
|
// Step 1: Argument Reduction
|
|
// ------
|
|
// Based on S_hi, obtain G_1, G_2, G_3 from a table and calculate
|
|
//
|
|
// G := G_1 * G_2 * G_3
|
|
// r := (G * S_hi - 1) + G * S_lo
|
|
//
|
|
// These G_j's have the property that the product is exactly
|
|
// representable and that |r| < 2^(-12) as a result.
|
|
//
|
|
// Step 2: Approximation
|
|
// ------
|
|
// logl(1 + r) is approximated by a short polynomial poly(r).
|
|
//
|
|
// Step 3: Reconstruction
|
|
// ------
|
|
// Finally, log1pl(X + X_lo) = logl(X + X_lo + 1) is given by
|
|
//
|
|
// logl(X + X_lo + 1) = logl(2^N * (S_hi + S_lo))
|
|
// ~=~ N*logl(2) + logl(1/G) + logl(1 + r)
|
|
// ~=~ N*logl(2) + logl(1/G) + poly(r).
|
|
//
|
|
// For detailed description see log1p1 function, regular path.
|
|
//
|
|
//*********************************************************************
|
|
|
|
RODATA
|
|
.align 64
|
|
|
|
// ************* DO NOT CHANGE THE ORDER OF THESE TABLES *************
|
|
|
|
LOCAL_OBJECT_START(Constants_TaylorSeries)
|
|
data8 0xF0F0F0F0F0F0F0F1,0x00003FFA // C17
|
|
data8 0x8888888888888889,0x00003FFB // C15
|
|
data8 0x9D89D89D89D89D8A,0x00003FFB // C13
|
|
data8 0xBA2E8BA2E8BA2E8C,0x00003FFB // C11
|
|
data8 0xE38E38E38E38E38E,0x00003FFB // C9
|
|
data8 0x9249249249249249,0x00003FFC // C7
|
|
data8 0xCCCCCCCCCCCCCCCD,0x00003FFC // C5
|
|
data8 0xAAAAAAAAAAAAAAAA,0x00003FFD // C3
|
|
data4 0x3f000000 // 1/2
|
|
data4 0x00000000 // pad
|
|
data4 0x00000000
|
|
data4 0x00000000
|
|
LOCAL_OBJECT_END(Constants_TaylorSeries)
|
|
|
|
LOCAL_OBJECT_START(Constants_Q)
|
|
data4 0x00000000,0xB1721800,0x00003FFE,0x00000000 // log2_hi
|
|
data4 0x4361C4C6,0x82E30865,0x0000BFE2,0x00000000 // log2_lo
|
|
data4 0x328833CB,0xCCCCCAF2,0x00003FFC,0x00000000 // Q4
|
|
data4 0xA9D4BAFB,0x80000077,0x0000BFFD,0x00000000 // Q3
|
|
data4 0xAAABE3D2,0xAAAAAAAA,0x00003FFD,0x00000000 // Q2
|
|
data4 0xFFFFDAB7,0xFFFFFFFF,0x0000BFFD,0x00000000 // Q1
|
|
LOCAL_OBJECT_END(Constants_Q)
|
|
|
|
|
|
// Z1 - 16 bit fixed
|
|
LOCAL_OBJECT_START(Constants_Z_1)
|
|
data4 0x00008000
|
|
data4 0x00007879
|
|
data4 0x000071C8
|
|
data4 0x00006BCB
|
|
data4 0x00006667
|
|
data4 0x00006187
|
|
data4 0x00005D18
|
|
data4 0x0000590C
|
|
data4 0x00005556
|
|
data4 0x000051EC
|
|
data4 0x00004EC5
|
|
data4 0x00004BDB
|
|
data4 0x00004925
|
|
data4 0x0000469F
|
|
data4 0x00004445
|
|
data4 0x00004211
|
|
LOCAL_OBJECT_END(Constants_Z_1)
|
|
|
|
// G1 and H1 - IEEE single and h1 - IEEE double
|
|
LOCAL_OBJECT_START(Constants_G_H_h1)
|
|
data4 0x3F800000,0x00000000
|
|
data8 0x0000000000000000
|
|
data4 0x3F70F0F0,0x3D785196
|
|
data8 0x3DA163A6617D741C
|
|
data4 0x3F638E38,0x3DF13843
|
|
data8 0x3E2C55E6CBD3D5BB
|
|
data4 0x3F579430,0x3E2FF9A0
|
|
data8 0xBE3EB0BFD86EA5E7
|
|
data4 0x3F4CCCC8,0x3E647FD6
|
|
data8 0x3E2E6A8C86B12760
|
|
data4 0x3F430C30,0x3E8B3AE7
|
|
data8 0x3E47574C5C0739BA
|
|
data4 0x3F3A2E88,0x3EA30C68
|
|
data8 0x3E20E30F13E8AF2F
|
|
data4 0x3F321640,0x3EB9CEC8
|
|
data8 0xBE42885BF2C630BD
|
|
data4 0x3F2AAAA8,0x3ECF9927
|
|
data8 0x3E497F3497E577C6
|
|
data4 0x3F23D708,0x3EE47FC5
|
|
data8 0x3E3E6A6EA6B0A5AB
|
|
data4 0x3F1D89D8,0x3EF8947D
|
|
data8 0xBDF43E3CD328D9BE
|
|
data4 0x3F17B420,0x3F05F3A1
|
|
data8 0x3E4094C30ADB090A
|
|
data4 0x3F124920,0x3F0F4303
|
|
data8 0xBE28FBB2FC1FE510
|
|
data4 0x3F0D3DC8,0x3F183EBF
|
|
data8 0x3E3A789510FDE3FA
|
|
data4 0x3F088888,0x3F20EC80
|
|
data8 0x3E508CE57CC8C98F
|
|
data4 0x3F042108,0x3F29516A
|
|
data8 0xBE534874A223106C
|
|
LOCAL_OBJECT_END(Constants_G_H_h1)
|
|
|
|
// Z2 - 16 bit fixed
|
|
LOCAL_OBJECT_START(Constants_Z_2)
|
|
data4 0x00008000
|
|
data4 0x00007F81
|
|
data4 0x00007F02
|
|
data4 0x00007E85
|
|
data4 0x00007E08
|
|
data4 0x00007D8D
|
|
data4 0x00007D12
|
|
data4 0x00007C98
|
|
data4 0x00007C20
|
|
data4 0x00007BA8
|
|
data4 0x00007B31
|
|
data4 0x00007ABB
|
|
data4 0x00007A45
|
|
data4 0x000079D1
|
|
data4 0x0000795D
|
|
data4 0x000078EB
|
|
LOCAL_OBJECT_END(Constants_Z_2)
|
|
|
|
// G2 and H2 - IEEE single and h2 - IEEE double
|
|
LOCAL_OBJECT_START(Constants_G_H_h2)
|
|
data4 0x3F800000,0x00000000
|
|
data8 0x0000000000000000
|
|
data4 0x3F7F00F8,0x3B7F875D
|
|
data8 0x3DB5A11622C42273
|
|
data4 0x3F7E03F8,0x3BFF015B
|
|
data8 0x3DE620CF21F86ED3
|
|
data4 0x3F7D08E0,0x3C3EE393
|
|
data8 0xBDAFA07E484F34ED
|
|
data4 0x3F7C0FC0,0x3C7E0586
|
|
data8 0xBDFE07F03860BCF6
|
|
data4 0x3F7B1880,0x3C9E75D2
|
|
data8 0x3DEA370FA78093D6
|
|
data4 0x3F7A2328,0x3CBDC97A
|
|
data8 0x3DFF579172A753D0
|
|
data4 0x3F792FB0,0x3CDCFE47
|
|
data8 0x3DFEBE6CA7EF896B
|
|
data4 0x3F783E08,0x3CFC15D0
|
|
data8 0x3E0CF156409ECB43
|
|
data4 0x3F774E38,0x3D0D874D
|
|
data8 0xBE0B6F97FFEF71DF
|
|
data4 0x3F766038,0x3D1CF49B
|
|
data8 0xBE0804835D59EEE8
|
|
data4 0x3F757400,0x3D2C531D
|
|
data8 0x3E1F91E9A9192A74
|
|
data4 0x3F748988,0x3D3BA322
|
|
data8 0xBE139A06BF72A8CD
|
|
data4 0x3F73A0D0,0x3D4AE46F
|
|
data8 0x3E1D9202F8FBA6CF
|
|
data4 0x3F72B9D0,0x3D5A1756
|
|
data8 0xBE1DCCC4BA796223
|
|
data4 0x3F71D488,0x3D693B9D
|
|
data8 0xBE049391B6B7C239
|
|
LOCAL_OBJECT_END(Constants_G_H_h2)
|
|
|
|
// G3 and H3 - IEEE single and h3 - IEEE double
|
|
LOCAL_OBJECT_START(Constants_G_H_h3)
|
|
data4 0x3F7FFC00,0x38800100
|
|
data8 0x3D355595562224CD
|
|
data4 0x3F7FF400,0x39400480
|
|
data8 0x3D8200A206136FF6
|
|
data4 0x3F7FEC00,0x39A00640
|
|
data8 0x3DA4D68DE8DE9AF0
|
|
data4 0x3F7FE400,0x39E00C41
|
|
data8 0xBD8B4291B10238DC
|
|
data4 0x3F7FDC00,0x3A100A21
|
|
data8 0xBD89CCB83B1952CA
|
|
data4 0x3F7FD400,0x3A300F22
|
|
data8 0xBDB107071DC46826
|
|
data4 0x3F7FCC08,0x3A4FF51C
|
|
data8 0x3DB6FCB9F43307DB
|
|
data4 0x3F7FC408,0x3A6FFC1D
|
|
data8 0xBD9B7C4762DC7872
|
|
data4 0x3F7FBC10,0x3A87F20B
|
|
data8 0xBDC3725E3F89154A
|
|
data4 0x3F7FB410,0x3A97F68B
|
|
data8 0xBD93519D62B9D392
|
|
data4 0x3F7FAC18,0x3AA7EB86
|
|
data8 0x3DC184410F21BD9D
|
|
data4 0x3F7FA420,0x3AB7E101
|
|
data8 0xBDA64B952245E0A6
|
|
data4 0x3F7F9C20,0x3AC7E701
|
|
data8 0x3DB4B0ECAABB34B8
|
|
data4 0x3F7F9428,0x3AD7DD7B
|
|
data8 0x3D9923376DC40A7E
|
|
data4 0x3F7F8C30,0x3AE7D474
|
|
data8 0x3DC6E17B4F2083D3
|
|
data4 0x3F7F8438,0x3AF7CBED
|
|
data8 0x3DAE314B811D4394
|
|
data4 0x3F7F7C40,0x3B03E1F3
|
|
data8 0xBDD46F21B08F2DB1
|
|
data4 0x3F7F7448,0x3B0BDE2F
|
|
data8 0xBDDC30A46D34522B
|
|
data4 0x3F7F6C50,0x3B13DAAA
|
|
data8 0x3DCB0070B1F473DB
|
|
data4 0x3F7F6458,0x3B1BD766
|
|
data8 0xBDD65DDC6AD282FD
|
|
data4 0x3F7F5C68,0x3B23CC5C
|
|
data8 0xBDCDAB83F153761A
|
|
data4 0x3F7F5470,0x3B2BC997
|
|
data8 0xBDDADA40341D0F8F
|
|
data4 0x3F7F4C78,0x3B33C711
|
|
data8 0x3DCD1BD7EBC394E8
|
|
data4 0x3F7F4488,0x3B3BBCC6
|
|
data8 0xBDC3532B52E3E695
|
|
data4 0x3F7F3C90,0x3B43BAC0
|
|
data8 0xBDA3961EE846B3DE
|
|
data4 0x3F7F34A0,0x3B4BB0F4
|
|
data8 0xBDDADF06785778D4
|
|
data4 0x3F7F2CA8,0x3B53AF6D
|
|
data8 0x3DCC3ED1E55CE212
|
|
data4 0x3F7F24B8,0x3B5BA620
|
|
data8 0xBDBA31039E382C15
|
|
data4 0x3F7F1CC8,0x3B639D12
|
|
data8 0x3D635A0B5C5AF197
|
|
data4 0x3F7F14D8,0x3B6B9444
|
|
data8 0xBDDCCB1971D34EFC
|
|
data4 0x3F7F0CE0,0x3B7393BC
|
|
data8 0x3DC7450252CD7ADA
|
|
data4 0x3F7F04F0,0x3B7B8B6D
|
|
data8 0xBDB68F177D7F2A42
|
|
LOCAL_OBJECT_END(Constants_G_H_h3)
|
|
|
|
|
|
|
|
// Floating Point Registers
|
|
|
|
FR_C17 = f50
|
|
FR_C15 = f51
|
|
FR_C13 = f52
|
|
FR_C11 = f53
|
|
FR_C9 = f54
|
|
FR_C7 = f55
|
|
FR_C5 = f56
|
|
FR_C3 = f57
|
|
FR_x2 = f58
|
|
FR_x3 = f59
|
|
FR_x4 = f60
|
|
FR_x8 = f61
|
|
|
|
FR_Rcp = f61
|
|
|
|
FR_A = f33
|
|
FR_R1 = f33
|
|
|
|
FR_E1 = f34
|
|
FR_E3 = f34
|
|
FR_Y2 = f34
|
|
FR_Y3 = f34
|
|
|
|
FR_E2 = f35
|
|
FR_Y1 = f35
|
|
|
|
FR_B = f36
|
|
FR_Y0 = f37
|
|
FR_E0 = f38
|
|
FR_E4 = f39
|
|
FR_Q0 = f40
|
|
FR_R0 = f41
|
|
FR_B_lo = f42
|
|
|
|
FR_abs_x = f43
|
|
FR_Bp = f44
|
|
FR_Bn = f45
|
|
FR_Yp = f46
|
|
FR_Yn = f47
|
|
|
|
FR_X = f48
|
|
FR_BB = f48
|
|
FR_X_lo = f49
|
|
|
|
FR_G = f50
|
|
FR_Y_hi = f51
|
|
FR_H = f51
|
|
FR_h = f52
|
|
FR_G2 = f53
|
|
FR_H2 = f54
|
|
FR_h2 = f55
|
|
FR_G3 = f56
|
|
FR_H3 = f57
|
|
FR_h3 = f58
|
|
|
|
FR_Q4 = f59
|
|
FR_poly_lo = f59
|
|
FR_Y_lo = f59
|
|
|
|
FR_Q3 = f60
|
|
FR_Q2 = f61
|
|
|
|
FR_Q1 = f62
|
|
FR_poly_hi = f62
|
|
|
|
FR_float_N = f63
|
|
|
|
FR_AA = f64
|
|
FR_S_lo = f64
|
|
|
|
FR_S_hi = f65
|
|
FR_r = f65
|
|
|
|
FR_log2_hi = f66
|
|
FR_log2_lo = f67
|
|
FR_Z = f68
|
|
FR_2_to_minus_N = f69
|
|
FR_rcub = f70
|
|
FR_rsq = f71
|
|
FR_05r = f72
|
|
FR_Half = f73
|
|
|
|
FR_Arg_X = f50
|
|
FR_Arg_Y = f0
|
|
FR_RESULT = f8
|
|
|
|
|
|
|
|
// General Purpose Registers
|
|
|
|
GR_ad_05 = r33
|
|
GR_Index1 = r34
|
|
GR_ArgExp = r34
|
|
GR_Index2 = r35
|
|
GR_ExpMask = r35
|
|
GR_NearZeroBound = r36
|
|
GR_signif = r36
|
|
GR_X_0 = r37
|
|
GR_X_1 = r37
|
|
GR_X_2 = r38
|
|
GR_Index3 = r38
|
|
GR_minus_N = r39
|
|
GR_Z_1 = r40
|
|
GR_Z_2 = r40
|
|
GR_N = r41
|
|
GR_Bias = r42
|
|
GR_M = r43
|
|
GR_ad_taylor = r44
|
|
GR_ad_taylor_2 = r45
|
|
GR_ad2_tbl_3 = r45
|
|
GR_ad_tbl_1 = r46
|
|
GR_ad_tbl_2 = r47
|
|
GR_ad_tbl_3 = r48
|
|
GR_ad_q = r49
|
|
GR_ad_z_1 = r50
|
|
GR_ad_z_2 = r51
|
|
GR_ad_z_3 = r52
|
|
|
|
//
|
|
// Added for unwind support
|
|
//
|
|
GR_SAVE_PFS = r46
|
|
GR_SAVE_B0 = r47
|
|
GR_SAVE_GP = r48
|
|
GR_Parameter_X = r49
|
|
GR_Parameter_Y = r50
|
|
GR_Parameter_RESULT = r51
|
|
GR_Parameter_TAG = r52
|
|
|
|
|
|
|
|
.section .text
|
|
GLOBAL_LIBM_ENTRY(atanhl)
|
|
|
|
{ .mfi
|
|
alloc r32 = ar.pfs,0,17,4,0
|
|
fnma.s1 FR_Bp = f8,f1,f1 // b = 1 - |arg| (for x>0)
|
|
mov GR_ExpMask = 0x1ffff
|
|
}
|
|
{ .mfi
|
|
addl GR_ad_taylor = @ltoff(Constants_TaylorSeries),gp
|
|
fma.s1 FR_Bn = f8,f1,f1 // b = 1 - |arg| (for x<0)
|
|
mov GR_NearZeroBound = 0xfffa // biased exp of 1/32
|
|
};;
|
|
{ .mfi
|
|
getf.exp GR_ArgExp = f8
|
|
fcmp.lt.s1 p6,p7 = f8,f0 // is negative?
|
|
nop.i 0
|
|
}
|
|
{ .mfi
|
|
ld8 GR_ad_taylor = [GR_ad_taylor]
|
|
fmerge.s FR_abs_x = f1,f8
|
|
nop.i 0
|
|
};;
|
|
{ .mfi
|
|
nop.m 0
|
|
fclass.m p8,p0 = f8,0x1C7 // is arg NaT,Q/SNaN or +/-0 ?
|
|
nop.i 0
|
|
}
|
|
{ .mfi
|
|
nop.m 0
|
|
fma.s1 FR_x2 = f8,f8,f0
|
|
nop.i 0
|
|
};;
|
|
{ .mfi
|
|
add GR_ad_z_1 = 0x0F0,GR_ad_taylor
|
|
fclass.m p9,p0 = f8,0x0a // is arg -denormal ?
|
|
add GR_ad_taylor_2 = 0x010,GR_ad_taylor
|
|
}
|
|
{ .mfi
|
|
add GR_ad_05 = 0x080,GR_ad_taylor
|
|
nop.f 0
|
|
nop.i 0
|
|
};;
|
|
{ .mfi
|
|
ldfe FR_C17 = [GR_ad_taylor],32
|
|
fclass.m p10,p0 = f8,0x09 // is arg +denormal ?
|
|
add GR_ad_tbl_1 = 0x040,GR_ad_z_1 // point to Constants_G_H_h1
|
|
}
|
|
{ .mfb
|
|
add GR_ad_z_2 = 0x140,GR_ad_z_1 // point to Constants_Z_2
|
|
(p8) fma.s0 f8 = f8,f1,f0 // NaN or +/-0
|
|
(p8) br.ret.spnt b0 // exit for Nan or +/-0
|
|
};;
|
|
{ .mfi
|
|
ldfe FR_C15 = [GR_ad_taylor_2],32
|
|
fclass.m p15,p0 = f8,0x23 // is +/-INF ?
|
|
add GR_ad_tbl_2 = 0x180,GR_ad_z_1 // point to Constants_G_H_h2
|
|
}
|
|
{ .mfb
|
|
ldfe FR_C13 = [GR_ad_taylor],32
|
|
(p9) fnma.s0 f8 = f8,f8,f8 // -denormal
|
|
(p9) br.ret.spnt b0 // exit for -denormal
|
|
};;
|
|
{ .mfi
|
|
ldfe FR_C11 = [GR_ad_taylor_2],32
|
|
fcmp.eq.s0 p13,p0 = FR_abs_x,f1 // is |arg| = 1?
|
|
nop.i 0
|
|
}
|
|
{ .mfb
|
|
ldfe FR_C9 = [GR_ad_taylor],32
|
|
(p10) fma.s0 f8 = f8,f8,f8 // +denormal
|
|
(p10) br.ret.spnt b0 // exit for +denormal
|
|
};;
|
|
{ .mfi
|
|
ldfe FR_C7 = [GR_ad_taylor_2],32
|
|
(p6) frcpa.s1 FR_Yn,p11 = f1,FR_Bn // y = frcpa(b)
|
|
and GR_ArgExp = GR_ArgExp,GR_ExpMask // biased exponent
|
|
}
|
|
{ .mfb
|
|
ldfe FR_C5 = [GR_ad_taylor],32
|
|
fnma.s1 FR_B = FR_abs_x,f1,f1 // b = 1 - |arg|
|
|
(p15) br.cond.spnt atanhl_gt_one // |arg| > 1
|
|
};;
|
|
{ .mfb
|
|
cmp.gt p14,p0 = GR_NearZeroBound,GR_ArgExp
|
|
(p7) frcpa.s1 FR_Yp,p12 = f1,FR_Bp // y = frcpa(b)
|
|
(p13) br.cond.spnt atanhl_eq_one // |arg| = 1/32
|
|
}
|
|
{ .mfb
|
|
ldfe FR_C3 = [GR_ad_taylor_2],32
|
|
fma.s1 FR_A = FR_abs_x,f1,FR_abs_x // a = 2 * |arg|
|
|
(p14) br.cond.spnt atanhl_near_zero // |arg| < 1/32
|
|
};;
|
|
{ .mfi
|
|
nop.m 0
|
|
fcmp.gt.s0 p8,p0 = FR_abs_x,f1 // is |arg| > 1 ?
|
|
nop.i 0
|
|
};;
|
|
.pred.rel "mutex",p6,p7
|
|
{ .mfi
|
|
nop.m 0
|
|
(p6) fnma.s1 FR_B_lo = FR_Bn,f1,f1 // argt = 1 - (1 - |arg|)
|
|
nop.i 0
|
|
}
|
|
{ .mfi
|
|
ldfs FR_Half = [GR_ad_05]
|
|
(p7) fnma.s1 FR_B_lo = FR_Bp,f1,f1
|
|
nop.i 0
|
|
};;
|
|
{ .mfi
|
|
nop.m 0
|
|
(p6) fnma.s1 FR_E0 = FR_Yn,FR_Bn,f1 // e = 1-b*y
|
|
nop.i 0
|
|
}
|
|
{ .mfb
|
|
nop.m 0
|
|
(p6) fma.s1 FR_Y0 = FR_Yn,f1,f0
|
|
(p8) br.cond.spnt atanhl_gt_one // |arg| > 1
|
|
};;
|
|
{ .mfi
|
|
nop.m 0
|
|
(p7) fnma.s1 FR_E0 = FR_Yp,FR_Bp,f1
|
|
nop.i 0
|
|
}
|
|
{ .mfi
|
|
nop.m 0
|
|
(p6) fma.s1 FR_Q0 = FR_A,FR_Yn,f0 // q = a*y
|
|
nop.i 0
|
|
};;
|
|
{ .mfi
|
|
nop.m 0
|
|
(p7) fma.s1 FR_Q0 = FR_A,FR_Yp,f0
|
|
nop.i 0
|
|
}
|
|
{ .mfi
|
|
nop.m 0
|
|
(p7) fma.s1 FR_Y0 = FR_Yp,f1,f0
|
|
nop.i 0
|
|
};;
|
|
{ .mfi
|
|
nop.m 0
|
|
fclass.nm p10,p0 = f8,0x1FF // test for unsupported
|
|
nop.i 0
|
|
};;
|
|
{ .mfi
|
|
nop.m 0
|
|
fma.s1 FR_E2 = FR_E0,FR_E0,FR_E0 // e2 = e+e^2
|
|
nop.i 0
|
|
}
|
|
{ .mfi
|
|
nop.m 0
|
|
fma.s1 FR_E1 = FR_E0,FR_E0,f0 // e1 = e^2
|
|
nop.i 0
|
|
};;
|
|
{ .mfb
|
|
nop.m 0
|
|
// Return generated NaN or other value for unsupported values.
|
|
(p10) fma.s0 f8 = f8, f0, f0
|
|
(p10) br.ret.spnt b0
|
|
};;
|
|
{ .mfi
|
|
nop.m 0
|
|
fma.s1 FR_Y1 = FR_Y0,FR_E2,FR_Y0 // y1 = y+y*e2
|
|
nop.i 0
|
|
}
|
|
{ .mfi
|
|
nop.m 0
|
|
fma.s1 FR_E3 = FR_E1,FR_E1,FR_E0 // e3 = e+e1^2
|
|
nop.i 0
|
|
};;
|
|
{ .mfi
|
|
nop.m 0
|
|
fnma.s1 FR_B_lo = FR_abs_x,f1,FR_B_lo // b_lo = argt-|arg|
|
|
nop.i 0
|
|
};;
|
|
{ .mfi
|
|
nop.m 0
|
|
fma.s1 FR_Y2 = FR_Y1,FR_E3,FR_Y0 // y2 = y+y1*e3
|
|
nop.i 0
|
|
}
|
|
{ .mfi
|
|
nop.m 0
|
|
fnma.s1 FR_R0 = FR_B,FR_Q0,FR_A // r = a-b*q
|
|
nop.i 0
|
|
};;
|
|
{ .mfi
|
|
nop.m 0
|
|
fnma.s1 FR_E4 = FR_B,FR_Y2,f1 // e4 = 1-b*y2
|
|
nop.i 0
|
|
}
|
|
{ .mfi
|
|
nop.m 0
|
|
fma.s1 FR_X = FR_R0,FR_Y2,FR_Q0 // x = q+r*y2
|
|
nop.i 0
|
|
};;
|
|
{ .mfi
|
|
nop.m 0
|
|
fma.s1 FR_Z = FR_X,f1,f1 // x+1
|
|
nop.i 0
|
|
};;
|
|
{ .mfi
|
|
nop.m 0
|
|
(p6) fnma.s1 FR_Half = FR_Half,f1,f0 // sign(arg)/2
|
|
nop.i 0
|
|
};;
|
|
{ .mfi
|
|
nop.m 0
|
|
fma.s1 FR_Y3 = FR_Y2,FR_E4,FR_Y2 // y3 = y2+y2*e4
|
|
nop.i 0
|
|
}
|
|
{ .mfi
|
|
nop.m 0
|
|
fnma.s1 FR_R1 = FR_B,FR_X,FR_A // r1 = a-b*x
|
|
nop.i 0
|
|
};;
|
|
{ .mfi
|
|
getf.sig GR_signif = FR_Z // get significand of x+1
|
|
nop.f 0
|
|
nop.i 0
|
|
};;
|
|
|
|
|
|
{ .mfi
|
|
add GR_ad_q = -0x060,GR_ad_z_1
|
|
nop.f 0
|
|
extr.u GR_Index1 = GR_signif,59,4 // get high 4 bits of signif
|
|
}
|
|
{ .mfi
|
|
add GR_ad_tbl_3 = 0x280,GR_ad_z_1 // point to Constants_G_H_h3
|
|
nop.f 0
|
|
nop.i 0
|
|
};;
|
|
{ .mfi
|
|
shladd GR_ad_z_1 = GR_Index1,2,GR_ad_z_1 // point to Z_1
|
|
nop.f 0
|
|
extr.u GR_X_0 = GR_signif,49,15 // get high 15 bits of significand
|
|
};;
|
|
{ .mfi
|
|
ld4 GR_Z_1 = [GR_ad_z_1] // load Z_1
|
|
fmax.s1 FR_AA = FR_X,f1 // for S_lo,form AA = max(X,1.0)
|
|
nop.i 0
|
|
}
|
|
{ .mfi
|
|
shladd GR_ad_tbl_1 = GR_Index1,4,GR_ad_tbl_1 // point to G_1
|
|
nop.f 0
|
|
mov GR_Bias = 0x0FFFF // exponent bias
|
|
};;
|
|
{ .mfi
|
|
ldfps FR_G,FR_H = [GR_ad_tbl_1],8 // load G_1,H_1
|
|
fmerge.se FR_S_hi = f1,FR_Z // form |x+1|
|
|
nop.i 0
|
|
};;
|
|
{ .mfi
|
|
getf.exp GR_N = FR_Z // get N = exponent of x+1
|
|
nop.f 0
|
|
nop.i 0
|
|
}
|
|
{ .mfi
|
|
ldfd FR_h = [GR_ad_tbl_1] // load h_1
|
|
fnma.s1 FR_R1 = FR_B_lo,FR_X,FR_R1 // r1 = r1-b_lo*x
|
|
nop.i 0
|
|
};;
|
|
{ .mfi
|
|
ldfe FR_log2_hi = [GR_ad_q],16 // load log2_hi
|
|
nop.f 0
|
|
pmpyshr2.u GR_X_1 = GR_X_0,GR_Z_1,15 // get bits 30-15 of X_0 * Z_1
|
|
};;
|
|
//
|
|
// For performance,don't use result of pmpyshr2.u for 4 cycles.
|
|
//
|
|
{ .mfi
|
|
ldfe FR_log2_lo = [GR_ad_q],16 // load log2_lo
|
|
nop.f 0
|
|
sub GR_N = GR_N,GR_Bias
|
|
};;
|
|
{ .mfi
|
|
ldfe FR_Q4 = [GR_ad_q],16 // load Q4
|
|
fms.s1 FR_S_lo = FR_AA,f1,FR_Z // form S_lo = AA - Z
|
|
sub GR_minus_N = GR_Bias,GR_N // form exponent of 2^(-N)
|
|
};;
|
|
{ .mmf
|
|
ldfe FR_Q3 = [GR_ad_q],16 // load Q3
|
|
// put integer N into rightmost significand
|
|
setf.sig FR_float_N = GR_N
|
|
fmin.s1 FR_BB = FR_X,f1 // for S_lo,form BB = min(X,1.0)
|
|
};;
|
|
{ .mfi
|
|
ldfe FR_Q2 = [GR_ad_q],16 // load Q2
|
|
nop.f 0
|
|
extr.u GR_Index2 = GR_X_1,6,4 // extract bits 6-9 of X_1
|
|
};;
|
|
{ .mmi
|
|
ldfe FR_Q1 = [GR_ad_q] // load Q1
|
|
shladd GR_ad_z_2 = GR_Index2,2,GR_ad_z_2 // point to Z_2
|
|
nop.i 0
|
|
};;
|
|
{ .mmi
|
|
ld4 GR_Z_2 = [GR_ad_z_2] // load Z_2
|
|
shladd GR_ad_tbl_2 = GR_Index2,4,GR_ad_tbl_2 // point to G_2
|
|
nop.i 0
|
|
};;
|
|
{ .mfi
|
|
ldfps FR_G2,FR_H2 = [GR_ad_tbl_2],8 // load G_2,H_2
|
|
nop.f 0
|
|
nop.i 0
|
|
};;
|
|
{ .mfi
|
|
ldfd FR_h2 = [GR_ad_tbl_2] // load h_2
|
|
fma.s1 FR_S_lo = FR_S_lo,f1,FR_BB // S_lo = S_lo + BB
|
|
nop.i 0
|
|
}
|
|
{ .mfi
|
|
setf.exp FR_2_to_minus_N = GR_minus_N // form 2^(-N)
|
|
fma.s1 FR_X_lo = FR_R1,FR_Y3,f0 // x_lo = r1*y3
|
|
nop.i 0
|
|
};;
|
|
{ .mfi
|
|
nop.m 0
|
|
nop.f 0
|
|
pmpyshr2.u GR_X_2 = GR_X_1,GR_Z_2,15 // get bits 30-15 of X_1 * Z_2
|
|
};;
|
|
//
|
|
// For performance,don't use result of pmpyshr2.u for 4 cycles
|
|
//
|
|
{ .mfi
|
|
add GR_ad2_tbl_3 = 8,GR_ad_tbl_3
|
|
nop.f 0
|
|
nop.i 0
|
|
}
|
|
{ .mfi
|
|
nop.m 0
|
|
nop.f 0
|
|
nop.i 0
|
|
};;
|
|
{ .mfi
|
|
nop.m 0
|
|
nop.f 0
|
|
nop.i 0
|
|
};;
|
|
{ .mfi
|
|
nop.m 0
|
|
nop.f 0
|
|
nop.i 0
|
|
};;
|
|
|
|
//
|
|
// Now GR_X_2 can be used
|
|
//
|
|
{ .mfi
|
|
nop.m 0
|
|
nop.f 0
|
|
extr.u GR_Index3 = GR_X_2,1,5 // extract bits 1-5 of X_2
|
|
}
|
|
{ .mfi
|
|
nop.m 0
|
|
fma.s1 FR_S_lo = FR_S_lo,f1,FR_X_lo // S_lo = S_lo + Arg_lo
|
|
nop.i 0
|
|
};;
|
|
|
|
{ .mfi
|
|
shladd GR_ad_tbl_3 = GR_Index3,4,GR_ad_tbl_3 // point to G_3
|
|
fcvt.xf FR_float_N = FR_float_N
|
|
nop.i 0
|
|
}
|
|
{ .mfi
|
|
shladd GR_ad2_tbl_3 = GR_Index3,4,GR_ad2_tbl_3 // point to h_3
|
|
fma.s1 FR_Q1 = FR_Q1,FR_Half,f0 // sign(arg)*Q1/2
|
|
nop.i 0
|
|
};;
|
|
{ .mmi
|
|
ldfps FR_G3,FR_H3 = [GR_ad_tbl_3],8 // load G_3,H_3
|
|
ldfd FR_h3 = [GR_ad2_tbl_3] // load h_3
|
|
nop.i 0
|
|
};;
|
|
{ .mfi
|
|
nop.m 0
|
|
fmpy.s1 FR_G = FR_G,FR_G2 // G = G_1 * G_2
|
|
nop.i 0
|
|
}
|
|
{ .mfi
|
|
nop.m 0
|
|
fadd.s1 FR_H = FR_H,FR_H2 // H = H_1 + H_2
|
|
nop.i 0
|
|
};;
|
|
{ .mfi
|
|
nop.m 0
|
|
fadd.s1 FR_h = FR_h,FR_h2 // h = h_1 + h_2
|
|
nop.i 0
|
|
};;
|
|
{ .mfi
|
|
nop.m 0
|
|
// S_lo = S_lo * 2^(-N)
|
|
fma.s1 FR_S_lo = FR_S_lo,FR_2_to_minus_N,f0
|
|
nop.i 0
|
|
};;
|
|
{ .mfi
|
|
nop.m 0
|
|
fmpy.s1 FR_G = FR_G,FR_G3 // G = (G_1 * G_2) * G_3
|
|
nop.i 0
|
|
}
|
|
{ .mfi
|
|
nop.m 0
|
|
fadd.s1 FR_H = FR_H,FR_H3 // H = (H_1 + H_2) + H_3
|
|
nop.i 0
|
|
};;
|
|
{ .mfi
|
|
nop.m 0
|
|
fadd.s1 FR_h = FR_h,FR_h3 // h = (h_1 + h_2) + h_3
|
|
nop.i 0
|
|
};;
|
|
{ .mfi
|
|
nop.m 0
|
|
fms.s1 FR_r = FR_G,FR_S_hi,f1 // r = G * S_hi - 1
|
|
nop.i 0
|
|
}
|
|
{ .mfi
|
|
nop.m 0
|
|
// Y_hi = N * log2_hi + H
|
|
fma.s1 FR_Y_hi = FR_float_N,FR_log2_hi,FR_H
|
|
nop.i 0
|
|
};;
|
|
{ .mfi
|
|
nop.m 0
|
|
fma.s1 FR_h = FR_float_N,FR_log2_lo,FR_h // h = N * log2_lo + h
|
|
nop.i 0
|
|
};;
|
|
{ .mfi
|
|
nop.m 0
|
|
fma.s1 FR_r = FR_G,FR_S_lo,FR_r // r = G * S_lo + (G * S_hi - 1)
|
|
nop.i 0
|
|
};;
|
|
{ .mfi
|
|
nop.m 0
|
|
fma.s1 FR_poly_lo = FR_r,FR_Q4,FR_Q3 // poly_lo = r * Q4 + Q3
|
|
nop.i 0
|
|
}
|
|
{ .mfi
|
|
nop.m 0
|
|
fmpy.s1 FR_rsq = FR_r,FR_r // rsq = r * r
|
|
nop.i 0
|
|
};;
|
|
{ .mfi
|
|
nop.m 0
|
|
fma.s1 FR_05r = FR_r,FR_Half,f0 // sign(arg)*r/2
|
|
nop.i 0
|
|
};;
|
|
{ .mfi
|
|
nop.m 0
|
|
// poly_lo = poly_lo * r + Q2
|
|
fma.s1 FR_poly_lo = FR_poly_lo,FR_r,FR_Q2
|
|
nop.i 0
|
|
}
|
|
{ .mfi
|
|
nop.m 0
|
|
fma.s1 FR_rcub = FR_rsq,FR_r,f0 // rcub = r^3
|
|
nop.i 0
|
|
};;
|
|
{ .mfi
|
|
nop.m 0
|
|
// poly_hi = sing(arg)*(Q1*r^2 + r)/2
|
|
fma.s1 FR_poly_hi = FR_Q1,FR_rsq,FR_05r
|
|
nop.i 0
|
|
};;
|
|
{ .mfi
|
|
nop.m 0
|
|
// poly_lo = poly_lo*r^3 + h
|
|
fma.s1 FR_poly_lo = FR_poly_lo,FR_rcub,FR_h
|
|
nop.i 0
|
|
};;
|
|
{ .mfi
|
|
nop.m 0
|
|
// Y_lo = poly_hi + poly_lo/2
|
|
fma.s0 FR_Y_lo = FR_poly_lo,FR_Half,FR_poly_hi
|
|
nop.i 0
|
|
};;
|
|
{ .mfb
|
|
nop.m 0
|
|
// Result = arctanh(x) = Y_hi/2 + Y_lo
|
|
fma.s0 f8 = FR_Y_hi,FR_Half,FR_Y_lo
|
|
br.ret.sptk b0
|
|
};;
|
|
|
|
// Taylor's series
|
|
atanhl_near_zero:
|
|
{ .mfi
|
|
nop.m 0
|
|
fma.s1 FR_x3 = FR_x2,f8,f0
|
|
nop.i 0
|
|
}
|
|
{ .mfi
|
|
nop.m 0
|
|
fma.s1 FR_x4 = FR_x2,FR_x2,f0
|
|
nop.i 0
|
|
};;
|
|
{ .mfi
|
|
nop.m 0
|
|
fma.s1 FR_C17 = FR_C17,FR_x2,FR_C15
|
|
nop.i 0
|
|
}
|
|
{ .mfi
|
|
nop.m 0
|
|
fma.s1 FR_C13 = FR_C13,FR_x2,FR_C11
|
|
nop.i 0
|
|
};;
|
|
{ .mfi
|
|
nop.m 0
|
|
fma.s1 FR_C9 = FR_C9,FR_x2,FR_C7
|
|
nop.i 0
|
|
}
|
|
{ .mfi
|
|
nop.m 0
|
|
fma.s1 FR_C5 = FR_C5,FR_x2,FR_C3
|
|
nop.i 0
|
|
};;
|
|
{ .mfi
|
|
nop.m 0
|
|
fma.s1 FR_x8 = FR_x4,FR_x4,f0
|
|
nop.i 0
|
|
};;
|
|
{ .mfi
|
|
nop.m 0
|
|
fma.s1 FR_C17 = FR_C17,FR_x4,FR_C13
|
|
nop.i 0
|
|
};;
|
|
{ .mfi
|
|
nop.m 0
|
|
fma.s1 FR_C9 = FR_C9,FR_x4,FR_C5
|
|
nop.i 0
|
|
};;
|
|
{ .mfi
|
|
nop.m 0
|
|
fma.s1 FR_C17 = FR_C17,FR_x8,FR_C9
|
|
nop.i 0
|
|
};;
|
|
{ .mfb
|
|
nop.m 0
|
|
fma.s0 f8 = FR_C17,FR_x3,f8
|
|
br.ret.sptk b0
|
|
};;
|
|
|
|
atanhl_eq_one:
|
|
{ .mfi
|
|
nop.m 0
|
|
frcpa.s0 FR_Rcp,p0 = f1,f0 // get inf,and raise Z flag
|
|
nop.i 0
|
|
}
|
|
{ .mfi
|
|
nop.m 0
|
|
fmerge.s FR_Arg_X = f8, f8
|
|
nop.i 0
|
|
};;
|
|
{ .mfb
|
|
mov GR_Parameter_TAG = 130
|
|
fmerge.s FR_RESULT = f8,FR_Rcp // result is +-inf
|
|
br.cond.sptk __libm_error_region // exit if |x| = 1.0
|
|
};;
|
|
|
|
atanhl_gt_one:
|
|
{ .mfi
|
|
nop.m 0
|
|
fmerge.s FR_Arg_X = f8, f8
|
|
nop.i 0
|
|
};;
|
|
{ .mfb
|
|
mov GR_Parameter_TAG = 129
|
|
frcpa.s0 FR_RESULT,p0 = f0,f0 // get QNaN,and raise invalid
|
|
br.cond.sptk __libm_error_region // exit if |x| > 1.0
|
|
};;
|
|
|
|
GLOBAL_LIBM_END(atanhl)
|
|
libm_alias_ldouble_other (atanh, atanh)
|
|
|
|
LOCAL_LIBM_ENTRY(__libm_error_region)
|
|
.prologue
|
|
{ .mfi
|
|
add GR_Parameter_Y=-32,sp // Parameter 2 value
|
|
nop.f 0
|
|
.save ar.pfs,GR_SAVE_PFS
|
|
mov GR_SAVE_PFS=ar.pfs // Save ar.pfs
|
|
}
|
|
{ .mfi
|
|
.fframe 64
|
|
add sp=-64,sp // Create new stack
|
|
nop.f 0
|
|
mov GR_SAVE_GP=gp // Save gp
|
|
};;
|
|
{ .mmi
|
|
stfe [GR_Parameter_Y] = FR_Arg_Y,16 // Save Parameter 2 on stack
|
|
add GR_Parameter_X = 16,sp // Parameter 1 address
|
|
.save b0,GR_SAVE_B0
|
|
mov GR_SAVE_B0=b0 // Save b0
|
|
};;
|
|
.body
|
|
{ .mib
|
|
stfe [GR_Parameter_X] = FR_Arg_X // Store Parameter 1 on stack
|
|
add GR_Parameter_RESULT = 0,GR_Parameter_Y
|
|
nop.b 0 // Parameter 3 address
|
|
}
|
|
{ .mib
|
|
stfe [GR_Parameter_Y] = FR_RESULT // Store Parameter 3 on stack
|
|
add GR_Parameter_Y = -16,GR_Parameter_Y
|
|
br.call.sptk b0=__libm_error_support# // Call error handling function
|
|
};;
|
|
{ .mmi
|
|
nop.m 0
|
|
nop.m 0
|
|
add GR_Parameter_RESULT = 48,sp
|
|
};;
|
|
{ .mmi
|
|
ldfe f8 = [GR_Parameter_RESULT] // Get return result off stack
|
|
.restore sp
|
|
add sp = 64,sp // Restore stack pointer
|
|
mov b0 = GR_SAVE_B0 // Restore return address
|
|
};;
|
|
{ .mib
|
|
mov gp = GR_SAVE_GP // Restore gp
|
|
mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs
|
|
br.ret.sptk b0 // Return
|
|
};;
|
|
|
|
LOCAL_LIBM_END(__libm_error_region#)
|
|
|
|
.type __libm_error_support#,@function
|
|
.global __libm_error_support#
|