glibc/sysdeps/ia64/fpu/s_log1p.S
Siddhesh Poyarekar 30891f35fa Remove "Contributed by" lines
We stopped adding "Contributed by" or similar lines in sources in 2012
in favour of git logs and keeping the Contributors section of the
glibc manual up to date.  Removing these lines makes the license
header a bit more consistent across files and also removes the
possibility of error in attribution when license blocks or files are
copied across since the contributed-by lines don't actually reflect
reality in those cases.

Move all "Contributed by" and similar lines (Written by, Test by,
etc.) into a new file CONTRIBUTED-BY to retain record of these
contributions.  These contributors are also mentioned in
manual/contrib.texi, so we just maintain this additional record as a
courtesy to the earlier developers.

The following scripts were used to filter a list of files to edit in
place and to clean up the CONTRIBUTED-BY file respectively.  These
were not added to the glibc sources because they're not expected to be
of any use in future given that this is a one time task:

https://gist.github.com/siddhesh/b5ecac94eabfd72ed2916d6d8157e7dc
https://gist.github.com/siddhesh/15ea1f5e435ace9774f485030695ee02

Reviewed-by: Carlos O'Donell <carlos@redhat.com>
2021-09-03 22:06:44 +05:30

1103 lines
30 KiB
ArmAsm

.file "log1p.s"
// Copyright (c) 2000 - 2005, Intel Corporation
// All rights reserved.
//
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote
// products derived from this software without specific prior written
// permission.
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Intel Corporation is the author of this code, and requests that all
// problem reports or change requests be submitted to it directly at
// http://www.intel.com/software/products/opensource/libraries/num.htm.
//
// History
//==============================================================
// 02/02/00 Initial version
// 04/04/00 Unwind support added
// 08/15/00 Bundle added after call to __libm_error_support to properly
// set [the previously overwritten] GR_Parameter_RESULT.
// 06/29/01 Improved speed of all paths
// 05/20/02 Cleaned up namespace and sf0 syntax
// 10/02/02 Improved performance by basing on log algorithm
// 02/10/03 Reordered header: .section, .global, .proc, .align
// 04/18/03 Eliminate possible WAW dependency warning
// 03/31/05 Reformatted delimiters between data tables
//
// API
//==============================================================
// double log1p(double)
//
// log1p(x) = log(x+1)
//
// Overview of operation
//==============================================================
// Background
// ----------
//
// This algorithm is based on fact that
// log1p(x) = log(1+x) and
// log(a b) = log(a) + log(b).
// In our case we have 1+x = 2^N f, where 1 <= f < 2.
// So
// log(1+x) = log(2^N f) = log(2^N) + log(f) = n*log(2) + log(f)
//
// To calculate log(f) we do following
// log(f) = log(f * frcpa(f) / frcpa(f)) =
// = log(f * frcpa(f)) + log(1/frcpa(f))
//
// According to definition of IA-64's frcpa instruction it's a
// floating point that approximates 1/f using a lookup on the
// top of 8 bits of the input number's + 1 significand with relative
// error < 2^(-8.886). So we have following
//
// |(1/f - frcpa(f)) / (1/f))| = |1 - f*frcpa(f)| < 1/256
//
// and
//
// log(f) = log(f * frcpa(f)) + log(1/frcpa(f)) =
// = log(1 + r) + T
//
// The first value can be computed by polynomial P(r) approximating
// log(1 + r) on |r| < 1/256 and the second is precomputed tabular
// value defined by top 8 bit of f.
//
// Finally we have that log(1+x) ~ (N*log(2) + T) + P(r)
//
// Note that if input argument is close to 0.0 (in our case it means
// that |x| < 1/256) we can use just polynomial approximation
// because 1+x = 2^0 * f = f = 1 + r and
// log(1+x) = log(1 + r) ~ P(r)
//
//
// Implementation
// --------------
//
// 1. |x| >= 2^(-8), and x > -1
// InvX = frcpa(x+1)
// r = InvX*(x+1) - 1
// P(r) = r*((r*A3 - A2) + r^4*((A4 + r*A5) + r^2*(A6 + r*A7)),
// all coefficients are calculated in quad and rounded to double
// precision. A7,A6,A5,A4 are stored in memory whereas A3 and A2
// created with setf.
//
// N = float(n) where n is true unbiased exponent of x
//
// T is tabular value of log(1/frcpa(x)) calculated in quad precision
// and represented by two floating-point numbers 64-bit Thi and 32-bit Tlo.
// To load Thi,Tlo we get bits from 55 to 62 of register format significand
// as index and calculate two addresses
// ad_Thi = Thi_table_base_addr + 8 * index
// ad_Tlo = Tlo_table_base_addr + 4 * index
//
// L1 (log(2)) is calculated in quad
// precision and represented by two floating-point 64-bit numbers L1hi,L1lo
// stored in memory.
//
// And final result = ((L1hi*N + Thi) + (N*L1lo + Tlo)) + P(r)
//
//
// 2. 2^(-80) <= |x| < 2^(-8)
// r = x
// P(r) = r*((r*A3 - A2) + r^4*((A4 + r*A5) + r^2*(A6 + r*A7)),
// A7,A6,A5,A4,A3,A2 are the same as in case |x| >= 1/256
//
// And final results
// log(1+x) = P(r)
//
// 3. 0 < |x| < 2^(-80)
// Although log1p(x) is basically x, we would like to preserve the inexactness
// nature as well as consistent behavior under different rounding modes.
// We can do this by computing the result as
//
// log1p(x) = x - x*x
//
//
// Note: NaT, any NaNs, +/-INF, +/-0, negatives and unnormalized numbers are
// filtered and processed on special branches.
//
//
// Special values
//==============================================================
//
// log1p(-1) = -inf // Call error support
//
// log1p(+qnan) = +qnan
// log1p(-qnan) = -qnan
// log1p(+snan) = +qnan
// log1p(-snan) = -qnan
//
// log1p(x),x<-1= QNAN Indefinite // Call error support
// log1p(-inf) = QNAN Indefinite
// log1p(+inf) = +inf
// log1p(+/-0) = +/-0
//
//
// Registers used
//==============================================================
// Floating Point registers used:
// f8, input
// f7 -> f15, f32 -> f40
//
// General registers used:
// r8 -> r11
// r14 -> r20
//
// Predicate registers used:
// p6 -> p12
// Assembly macros
//==============================================================
GR_TAG = r8
GR_ad_1 = r8
GR_ad_2 = r9
GR_Exp = r10
GR_N = r11
GR_signexp_x = r14
GR_exp_mask = r15
GR_exp_bias = r16
GR_05 = r17
GR_A3 = r18
GR_Sig = r19
GR_Ind = r19
GR_exp_x = r20
GR_SAVE_B0 = r33
GR_SAVE_PFS = r34
GR_SAVE_GP = r35
GR_SAVE_SP = r36
GR_Parameter_X = r37
GR_Parameter_Y = r38
GR_Parameter_RESULT = r39
GR_Parameter_TAG = r40
FR_NormX = f7
FR_RcpX = f9
FR_r = f10
FR_r2 = f11
FR_r4 = f12
FR_N = f13
FR_Ln2hi = f14
FR_Ln2lo = f15
FR_A7 = f32
FR_A6 = f33
FR_A5 = f34
FR_A4 = f35
FR_A3 = f36
FR_A2 = f37
FR_Thi = f38
FR_NxLn2hipThi = f38
FR_NxLn2pT = f38
FR_Tlo = f39
FR_NxLn2lopTlo = f39
FR_Xp1 = f40
FR_Y = f1
FR_X = f10
FR_RESULT = f8
// Data
//==============================================================
RODATA
.align 16
LOCAL_OBJECT_START(log_data)
// coefficients of polynomial approximation
data8 0x3FC2494104381A8E // A7
data8 0xBFC5556D556BBB69 // A6
data8 0x3FC999999988B5E9 // A5
data8 0xBFCFFFFFFFF6FFF5 // A4
//
// hi parts of ln(1/frcpa(1+i/256)), i=0...255
data8 0x3F60040155D5889D // 0
data8 0x3F78121214586B54 // 1
data8 0x3F841929F96832EF // 2
data8 0x3F8C317384C75F06 // 3
data8 0x3F91A6B91AC73386 // 4
data8 0x3F95BA9A5D9AC039 // 5
data8 0x3F99D2A8074325F3 // 6
data8 0x3F9D6B2725979802 // 7
data8 0x3FA0C58FA19DFAA9 // 8
data8 0x3FA2954C78CBCE1A // 9
data8 0x3FA4A94D2DA96C56 // 10
data8 0x3FA67C94F2D4BB58 // 11
data8 0x3FA85188B630F068 // 12
data8 0x3FAA6B8ABE73AF4C // 13
data8 0x3FAC441E06F72A9E // 14
data8 0x3FAE1E6713606D06 // 15
data8 0x3FAFFA6911AB9300 // 16
data8 0x3FB0EC139C5DA600 // 17
data8 0x3FB1DBD2643D190B // 18
data8 0x3FB2CC7284FE5F1C // 19
data8 0x3FB3BDF5A7D1EE64 // 20
data8 0x3FB4B05D7AA012E0 // 21
data8 0x3FB580DB7CEB5701 // 22
data8 0x3FB674F089365A79 // 23
data8 0x3FB769EF2C6B568D // 24
data8 0x3FB85FD927506A47 // 25
data8 0x3FB9335E5D594988 // 26
data8 0x3FBA2B0220C8E5F4 // 27
data8 0x3FBB0004AC1A86AB // 28
data8 0x3FBBF968769FCA10 // 29
data8 0x3FBCCFEDBFEE13A8 // 30
data8 0x3FBDA727638446A2 // 31
data8 0x3FBEA3257FE10F79 // 32
data8 0x3FBF7BE9FEDBFDE5 // 33
data8 0x3FC02AB352FF25F3 // 34
data8 0x3FC097CE579D204C // 35
data8 0x3FC1178E8227E47B // 36
data8 0x3FC185747DBECF33 // 37
data8 0x3FC1F3B925F25D41 // 38
data8 0x3FC2625D1E6DDF56 // 39
data8 0x3FC2D1610C868139 // 40
data8 0x3FC340C59741142E // 41
data8 0x3FC3B08B6757F2A9 // 42
data8 0x3FC40DFB08378003 // 43
data8 0x3FC47E74E8CA5F7C // 44
data8 0x3FC4EF51F6466DE4 // 45
data8 0x3FC56092E02BA516 // 46
data8 0x3FC5D23857CD74D4 // 47
data8 0x3FC6313A37335D76 // 48
data8 0x3FC6A399DABBD383 // 49
data8 0x3FC70337DD3CE41A // 50
data8 0x3FC77654128F6127 // 51
data8 0x3FC7E9D82A0B022D // 52
data8 0x3FC84A6B759F512E // 53
data8 0x3FC8AB47D5F5A30F // 54
data8 0x3FC91FE49096581B // 55
data8 0x3FC981634011AA75 // 56
data8 0x3FC9F6C407089664 // 57
data8 0x3FCA58E729348F43 // 58
data8 0x3FCABB55C31693AC // 59
data8 0x3FCB1E104919EFD0 // 60
data8 0x3FCB94EE93E367CA // 61
data8 0x3FCBF851C067555E // 62
data8 0x3FCC5C0254BF23A5 // 63
data8 0x3FCCC000C9DB3C52 // 64
data8 0x3FCD244D99C85673 // 65
data8 0x3FCD88E93FB2F450 // 66
data8 0x3FCDEDD437EAEF00 // 67
data8 0x3FCE530EFFE71012 // 68
data8 0x3FCEB89A1648B971 // 69
data8 0x3FCF1E75FADF9BDE // 70
data8 0x3FCF84A32EAD7C35 // 71
data8 0x3FCFEB2233EA07CD // 72
data8 0x3FD028F9C7035C1C // 73
data8 0x3FD05C8BE0D9635A // 74
data8 0x3FD085EB8F8AE797 // 75
data8 0x3FD0B9C8E32D1911 // 76
data8 0x3FD0EDD060B78080 // 77
data8 0x3FD122024CF0063F // 78
data8 0x3FD14BE2927AECD4 // 79
data8 0x3FD180618EF18ADF // 80
data8 0x3FD1B50BBE2FC63B // 81
data8 0x3FD1DF4CC7CF242D // 82
data8 0x3FD214456D0EB8D4 // 83
data8 0x3FD23EC5991EBA49 // 84
data8 0x3FD2740D9F870AFB // 85
data8 0x3FD29ECDABCDFA03 // 86
data8 0x3FD2D46602ADCCEE // 87
data8 0x3FD2FF66B04EA9D4 // 88
data8 0x3FD335504B355A37 // 89
data8 0x3FD360925EC44F5C // 90
data8 0x3FD38BF1C3337E74 // 91
data8 0x3FD3C25277333183 // 92
data8 0x3FD3EDF463C1683E // 93
data8 0x3FD419B423D5E8C7 // 94
data8 0x3FD44591E0539F48 // 95
data8 0x3FD47C9175B6F0AD // 96
data8 0x3FD4A8B341552B09 // 97
data8 0x3FD4D4F39089019F // 98
data8 0x3FD501528DA1F967 // 99
data8 0x3FD52DD06347D4F6 // 100
data8 0x3FD55A6D3C7B8A89 // 101
data8 0x3FD5925D2B112A59 // 102
data8 0x3FD5BF406B543DB1 // 103
data8 0x3FD5EC433D5C35AD // 104
data8 0x3FD61965CDB02C1E // 105
data8 0x3FD646A84935B2A1 // 106
data8 0x3FD6740ADD31DE94 // 107
data8 0x3FD6A18DB74A58C5 // 108
data8 0x3FD6CF31058670EC // 109
data8 0x3FD6F180E852F0B9 // 110
data8 0x3FD71F5D71B894EF // 111
data8 0x3FD74D5AEFD66D5C // 112
data8 0x3FD77B79922BD37D // 113
data8 0x3FD7A9B9889F19E2 // 114
data8 0x3FD7D81B037EB6A6 // 115
data8 0x3FD8069E33827230 // 116
data8 0x3FD82996D3EF8BCA // 117
data8 0x3FD85855776DCBFA // 118
data8 0x3FD8873658327CCE // 119
data8 0x3FD8AA75973AB8CE // 120
data8 0x3FD8D992DC8824E4 // 121
data8 0x3FD908D2EA7D9511 // 122
data8 0x3FD92C59E79C0E56 // 123
data8 0x3FD95BD750EE3ED2 // 124
data8 0x3FD98B7811A3EE5B // 125
data8 0x3FD9AF47F33D406B // 126
data8 0x3FD9DF270C1914A7 // 127
data8 0x3FDA0325ED14FDA4 // 128
data8 0x3FDA33440224FA78 // 129
data8 0x3FDA57725E80C382 // 130
data8 0x3FDA87D0165DD199 // 131
data8 0x3FDAAC2E6C03F895 // 132
data8 0x3FDADCCC6FDF6A81 // 133
data8 0x3FDB015B3EB1E790 // 134
data8 0x3FDB323A3A635948 // 135
data8 0x3FDB56FA04462909 // 136
data8 0x3FDB881AA659BC93 // 137
data8 0x3FDBAD0BEF3DB164 // 138
data8 0x3FDBD21297781C2F // 139
data8 0x3FDC039236F08818 // 140
data8 0x3FDC28CB1E4D32FC // 141
data8 0x3FDC4E19B84723C1 // 142
data8 0x3FDC7FF9C74554C9 // 143
data8 0x3FDCA57B64E9DB05 // 144
data8 0x3FDCCB130A5CEBAF // 145
data8 0x3FDCF0C0D18F326F // 146
data8 0x3FDD232075B5A201 // 147
data8 0x3FDD490246DEFA6B // 148
data8 0x3FDD6EFA918D25CD // 149
data8 0x3FDD9509707AE52F // 150
data8 0x3FDDBB2EFE92C554 // 151
data8 0x3FDDEE2F3445E4AE // 152
data8 0x3FDE148A1A2726CD // 153
data8 0x3FDE3AFC0A49FF3F // 154
data8 0x3FDE6185206D516D // 155
data8 0x3FDE882578823D51 // 156
data8 0x3FDEAEDD2EAC990C // 157
data8 0x3FDED5AC5F436BE2 // 158
data8 0x3FDEFC9326D16AB8 // 159
data8 0x3FDF2391A21575FF // 160
data8 0x3FDF4AA7EE03192C // 161
data8 0x3FDF71D627C30BB0 // 162
data8 0x3FDF991C6CB3B379 // 163
data8 0x3FDFC07ADA69A90F // 164
data8 0x3FDFE7F18EB03D3E // 165
data8 0x3FE007C053C5002E // 166
data8 0x3FE01B942198A5A0 // 167
data8 0x3FE02F74400C64EA // 168
data8 0x3FE04360BE7603AC // 169
data8 0x3FE05759AC47FE33 // 170
data8 0x3FE06B5F1911CF51 // 171
data8 0x3FE078BF0533C568 // 172
data8 0x3FE08CD9687E7B0E // 173
data8 0x3FE0A10074CF9019 // 174
data8 0x3FE0B5343A234476 // 175
data8 0x3FE0C974C89431CD // 176
data8 0x3FE0DDC2305B9886 // 177
data8 0x3FE0EB524BAFC918 // 178
data8 0x3FE0FFB54213A475 // 179
data8 0x3FE114253DA97D9F // 180
data8 0x3FE128A24F1D9AFF // 181
data8 0x3FE1365252BF0864 // 182
data8 0x3FE14AE558B4A92D // 183
data8 0x3FE15F85A19C765B // 184
data8 0x3FE16D4D38C119FA // 185
data8 0x3FE18203C20DD133 // 186
data8 0x3FE196C7BC4B1F3A // 187
data8 0x3FE1A4A738B7A33C // 188
data8 0x3FE1B981C0C9653C // 189
data8 0x3FE1CE69E8BB106A // 190
data8 0x3FE1DC619DE06944 // 191
data8 0x3FE1F160A2AD0DA3 // 192
data8 0x3FE2066D7740737E // 193
data8 0x3FE2147DBA47A393 // 194
data8 0x3FE229A1BC5EBAC3 // 195
data8 0x3FE237C1841A502E // 196
data8 0x3FE24CFCE6F80D9A // 197
data8 0x3FE25B2C55CD5762 // 198
data8 0x3FE2707F4D5F7C40 // 199
data8 0x3FE285E0842CA383 // 200
data8 0x3FE294294708B773 // 201
data8 0x3FE2A9A2670AFF0C // 202
data8 0x3FE2B7FB2C8D1CC0 // 203
data8 0x3FE2C65A6395F5F5 // 204
data8 0x3FE2DBF557B0DF42 // 205
data8 0x3FE2EA64C3F97654 // 206
data8 0x3FE3001823684D73 // 207
data8 0x3FE30E97E9A8B5CC // 208
data8 0x3FE32463EBDD34E9 // 209
data8 0x3FE332F4314AD795 // 210
data8 0x3FE348D90E7464CF // 211
data8 0x3FE35779F8C43D6D // 212
data8 0x3FE36621961A6A99 // 213
data8 0x3FE37C299F3C366A // 214
data8 0x3FE38AE2171976E7 // 215
data8 0x3FE399A157A603E7 // 216
data8 0x3FE3AFCCFE77B9D1 // 217
data8 0x3FE3BE9D503533B5 // 218
data8 0x3FE3CD7480B4A8A2 // 219
data8 0x3FE3E3C43918F76C // 220
data8 0x3FE3F2ACB27ED6C6 // 221
data8 0x3FE4019C2125CA93 // 222
data8 0x3FE4181061389722 // 223
data8 0x3FE42711518DF545 // 224
data8 0x3FE436194E12B6BF // 225
data8 0x3FE445285D68EA69 // 226
data8 0x3FE45BCC464C893A // 227
data8 0x3FE46AED21F117FC // 228
data8 0x3FE47A1527E8A2D3 // 229
data8 0x3FE489445EFFFCCB // 230
data8 0x3FE4A018BCB69835 // 231
data8 0x3FE4AF5A0C9D65D7 // 232
data8 0x3FE4BEA2A5BDBE87 // 233
data8 0x3FE4CDF28F10AC46 // 234
data8 0x3FE4DD49CF994058 // 235
data8 0x3FE4ECA86E64A683 // 236
data8 0x3FE503C43CD8EB68 // 237
data8 0x3FE513356667FC57 // 238
data8 0x3FE522AE0738A3D7 // 239
data8 0x3FE5322E26867857 // 240
data8 0x3FE541B5CB979809 // 241
data8 0x3FE55144FDBCBD62 // 242
data8 0x3FE560DBC45153C6 // 243
data8 0x3FE5707A26BB8C66 // 244
data8 0x3FE587F60ED5B8FF // 245
data8 0x3FE597A7977C8F31 // 246
data8 0x3FE5A760D634BB8A // 247
data8 0x3FE5B721D295F10E // 248
data8 0x3FE5C6EA94431EF9 // 249
data8 0x3FE5D6BB22EA86F5 // 250
data8 0x3FE5E6938645D38F // 251
data8 0x3FE5F673C61A2ED1 // 252
data8 0x3FE6065BEA385926 // 253
data8 0x3FE6164BFA7CC06B // 254
data8 0x3FE62643FECF9742 // 255
//
// two parts of ln(2)
data8 0x3FE62E42FEF00000,0x3DD473DE6AF278ED
//
// lo parts of ln(1/frcpa(1+i/256)), i=0...255
data4 0x20E70672 // 0
data4 0x1F60A5D0 // 1
data4 0x218EABA0 // 2
data4 0x21403104 // 3
data4 0x20E9B54E // 4
data4 0x21EE1382 // 5
data4 0x226014E3 // 6
data4 0x2095E5C9 // 7
data4 0x228BA9D4 // 8
data4 0x22932B86 // 9
data4 0x22608A57 // 10
data4 0x220209F3 // 11
data4 0x212882CC // 12
data4 0x220D46E2 // 13
data4 0x21FA4C28 // 14
data4 0x229E5BD9 // 15
data4 0x228C9838 // 16
data4 0x2311F954 // 17
data4 0x221365DF // 18
data4 0x22BD0CB3 // 19
data4 0x223D4BB7 // 20
data4 0x22A71BBE // 21
data4 0x237DB2FA // 22
data4 0x23194C9D // 23
data4 0x22EC639E // 24
data4 0x2367E669 // 25
data4 0x232E1D5F // 26
data4 0x234A639B // 27
data4 0x2365C0E0 // 28
data4 0x234646C1 // 29
data4 0x220CBF9C // 30
data4 0x22A00FD4 // 31
data4 0x2306A3F2 // 32
data4 0x23745A9B // 33
data4 0x2398D756 // 34
data4 0x23DD0B6A // 35
data4 0x23DE338B // 36
data4 0x23A222DF // 37
data4 0x223164F8 // 38
data4 0x23B4E87B // 39
data4 0x23D6CCB8 // 40
data4 0x220C2099 // 41
data4 0x21B86B67 // 42
data4 0x236D14F1 // 43
data4 0x225A923F // 44
data4 0x22748723 // 45
data4 0x22200D13 // 46
data4 0x23C296EA // 47
data4 0x2302AC38 // 48
data4 0x234B1996 // 49
data4 0x2385E298 // 50
data4 0x23175BE5 // 51
data4 0x2193F482 // 52
data4 0x23BFEA90 // 53
data4 0x23D70A0C // 54
data4 0x231CF30A // 55
data4 0x235D9E90 // 56
data4 0x221AD0CB // 57
data4 0x22FAA08B // 58
data4 0x23D29A87 // 59
data4 0x20C4B2FE // 60
data4 0x2381B8B7 // 61
data4 0x23F8D9FC // 62
data4 0x23EAAE7B // 63
data4 0x2329E8AA // 64
data4 0x23EC0322 // 65
data4 0x2357FDCB // 66
data4 0x2392A9AD // 67
data4 0x22113B02 // 68
data4 0x22DEE901 // 69
data4 0x236A6D14 // 70
data4 0x2371D33E // 71
data4 0x2146F005 // 72
data4 0x23230B06 // 73
data4 0x22F1C77D // 74
data4 0x23A89FA3 // 75
data4 0x231D1241 // 76
data4 0x244DA96C // 77
data4 0x23ECBB7D // 78
data4 0x223E42B4 // 79
data4 0x23801BC9 // 80
data4 0x23573263 // 81
data4 0x227C1158 // 82
data4 0x237BD749 // 83
data4 0x21DDBAE9 // 84
data4 0x23401735 // 85
data4 0x241D9DEE // 86
data4 0x23BC88CB // 87
data4 0x2396D5F1 // 88
data4 0x23FC89CF // 89
data4 0x2414F9A2 // 90
data4 0x2474A0F5 // 91
data4 0x24354B60 // 92
data4 0x23C1EB40 // 93
data4 0x2306DD92 // 94
data4 0x24353B6B // 95
data4 0x23CD1701 // 96
data4 0x237C7A1C // 97
data4 0x245793AA // 98
data4 0x24563695 // 99
data4 0x23C51467 // 100
data4 0x24476B68 // 101
data4 0x212585A9 // 102
data4 0x247B8293 // 103
data4 0x2446848A // 104
data4 0x246A53F8 // 105
data4 0x246E496D // 106
data4 0x23ED1D36 // 107
data4 0x2314C258 // 108
data4 0x233244A7 // 109
data4 0x245B7AF0 // 110
data4 0x24247130 // 111
data4 0x22D67B38 // 112
data4 0x2449F620 // 113
data4 0x23BBC8B8 // 114
data4 0x237D3BA0 // 115
data4 0x245E8F13 // 116
data4 0x2435573F // 117
data4 0x242DE666 // 118
data4 0x2463BC10 // 119
data4 0x2466587D // 120
data4 0x2408144B // 121
data4 0x2405F0E5 // 122
data4 0x22381CFF // 123
data4 0x24154F9B // 124
data4 0x23A4E96E // 125
data4 0x24052967 // 126
data4 0x2406963F // 127
data4 0x23F7D3CB // 128
data4 0x2448AFF4 // 129
data4 0x24657A21 // 130
data4 0x22FBC230 // 131
data4 0x243C8DEA // 132
data4 0x225DC4B7 // 133
data4 0x23496EBF // 134
data4 0x237C2B2B // 135
data4 0x23A4A5B1 // 136
data4 0x2394E9D1 // 137
data4 0x244BC950 // 138
data4 0x23C7448F // 139
data4 0x2404A1AD // 140
data4 0x246511D5 // 141
data4 0x24246526 // 142
data4 0x23111F57 // 143
data4 0x22868951 // 144
data4 0x243EB77F // 145
data4 0x239F3DFF // 146
data4 0x23089666 // 147
data4 0x23EBFA6A // 148
data4 0x23C51312 // 149
data4 0x23E1DD5E // 150
data4 0x232C0944 // 151
data4 0x246A741F // 152
data4 0x2414DF8D // 153
data4 0x247B5546 // 154
data4 0x2415C980 // 155
data4 0x24324ABD // 156
data4 0x234EB5E5 // 157
data4 0x2465E43E // 158
data4 0x242840D1 // 159
data4 0x24444057 // 160
data4 0x245E56F0 // 161
data4 0x21AE30F8 // 162
data4 0x23FB3283 // 163
data4 0x247A4D07 // 164
data4 0x22AE314D // 165
data4 0x246B7727 // 166
data4 0x24EAD526 // 167
data4 0x24B41DC9 // 168
data4 0x24EE8062 // 169
data4 0x24A0C7C4 // 170
data4 0x24E8DA67 // 171
data4 0x231120F7 // 172
data4 0x24401FFB // 173
data4 0x2412DD09 // 174
data4 0x248C131A // 175
data4 0x24C0A7CE // 176
data4 0x243DD4C8 // 177
data4 0x24457FEB // 178
data4 0x24DEEFBB // 179
data4 0x243C70AE // 180
data4 0x23E7A6FA // 181
data4 0x24C2D311 // 182
data4 0x23026255 // 183
data4 0x2437C9B9 // 184
data4 0x246BA847 // 185
data4 0x2420B448 // 186
data4 0x24C4CF5A // 187
data4 0x242C4981 // 188
data4 0x24DE1525 // 189
data4 0x24F5CC33 // 190
data4 0x235A85DA // 191
data4 0x24A0B64F // 192
data4 0x244BA0A4 // 193
data4 0x24AAF30A // 194
data4 0x244C86F9 // 195
data4 0x246D5B82 // 196
data4 0x24529347 // 197
data4 0x240DD008 // 198
data4 0x24E98790 // 199
data4 0x2489B0CE // 200
data4 0x22BC29AC // 201
data4 0x23F37C7A // 202
data4 0x24987FE8 // 203
data4 0x22AFE20B // 204
data4 0x24C8D7C2 // 205
data4 0x24B28B7D // 206
data4 0x23B6B271 // 207
data4 0x24C77CB6 // 208
data4 0x24EF1DCA // 209
data4 0x24A4F0AC // 210
data4 0x24CF113E // 211
data4 0x2496BBAB // 212
data4 0x23C7CC8A // 213
data4 0x23AE3961 // 214
data4 0x2410A895 // 215
data4 0x23CE3114 // 216
data4 0x2308247D // 217
data4 0x240045E9 // 218
data4 0x24974F60 // 219
data4 0x242CB39F // 220
data4 0x24AB8D69 // 221
data4 0x23436788 // 222
data4 0x24305E9E // 223
data4 0x243E71A9 // 224
data4 0x23C2A6B3 // 225
data4 0x23FFE6CF // 226
data4 0x2322D801 // 227
data4 0x24515F21 // 228
data4 0x2412A0D6 // 229
data4 0x24E60D44 // 230
data4 0x240D9251 // 231
data4 0x247076E2 // 232
data4 0x229B101B // 233
data4 0x247B12DE // 234
data4 0x244B9127 // 235
data4 0x2499EC42 // 236
data4 0x21FC3963 // 237
data4 0x23E53266 // 238
data4 0x24CE102D // 239
data4 0x23CC45D2 // 240
data4 0x2333171D // 241
data4 0x246B3533 // 242
data4 0x24931129 // 243
data4 0x24405FFA // 244
data4 0x24CF464D // 245
data4 0x237095CD // 246
data4 0x24F86CBD // 247
data4 0x24E2D84B // 248
data4 0x21ACBB44 // 249
data4 0x24F43A8C // 250
data4 0x249DB931 // 251
data4 0x24A385EF // 252
data4 0x238B1279 // 253
data4 0x2436213E // 254
data4 0x24F18A3B // 255
LOCAL_OBJECT_END(log_data)
// Code
//==============================================================
.section .text
GLOBAL_IEEE754_ENTRY(log1p)
{ .mfi
getf.exp GR_signexp_x = f8 // if x is unorm then must recompute
fadd.s1 FR_Xp1 = f8, f1 // Form 1+x
mov GR_05 = 0xfffe
}
{ .mlx
addl GR_ad_1 = @ltoff(log_data),gp
movl GR_A3 = 0x3fd5555555555557 // double precision memory
// representation of A3
}
;;
{ .mfi
ld8 GR_ad_1 = [GR_ad_1]
fclass.m p8,p0 = f8,0xb // Is x unorm?
mov GR_exp_mask = 0x1ffff
}
{ .mfi
nop.m 0
fnorm.s1 FR_NormX = f8 // Normalize x
mov GR_exp_bias = 0xffff
}
;;
{ .mfi
setf.exp FR_A2 = GR_05 // create A2 = 0.5
fclass.m p9,p0 = f8,0x1E1 // is x NaN, NaT or +Inf?
nop.i 0
}
{ .mib
setf.d FR_A3 = GR_A3 // create A3
add GR_ad_2 = 16,GR_ad_1 // address of A5,A4
(p8) br.cond.spnt log1p_unorm // Branch if x=unorm
}
;;
log1p_common:
{ .mfi
nop.m 0
frcpa.s1 FR_RcpX,p0 = f1,FR_Xp1
nop.i 0
}
{ .mfb
nop.m 0
(p9) fma.d.s0 f8 = f8,f1,f0 // set V-flag
(p9) br.ret.spnt b0 // exit for NaN, NaT and +Inf
}
;;
{ .mfi
getf.exp GR_Exp = FR_Xp1 // signexp of x+1
fclass.m p10,p0 = FR_Xp1,0x3A // is 1+x < 0?
and GR_exp_x = GR_exp_mask, GR_signexp_x // biased exponent of x
}
{ .mfi
ldfpd FR_A7,FR_A6 = [GR_ad_1]
nop.f 0
nop.i 0
}
;;
{ .mfi
getf.sig GR_Sig = FR_Xp1 // get significand to calculate index
// for Thi,Tlo if |x| >= 2^-8
fcmp.eq.s1 p12,p0 = f8,f0 // is x equal to 0?
sub GR_exp_x = GR_exp_x, GR_exp_bias // true exponent of x
}
;;
{ .mfi
sub GR_N = GR_Exp,GR_exp_bias // true exponent of x+1
fcmp.eq.s1 p11,p0 = FR_Xp1,f0 // is x = -1?
cmp.gt p6,p7 = -8, GR_exp_x // Is |x| < 2^-8
}
{ .mfb
ldfpd FR_A5,FR_A4 = [GR_ad_2],16
nop.f 0
(p10) br.cond.spnt log1p_lt_minus_1 // jump if x < -1
}
;;
// p6 is true if |x| < 1/256
// p7 is true if |x| >= 1/256
.pred.rel "mutex",p6,p7
{ .mfi
(p7) add GR_ad_1 = 0x820,GR_ad_1 // address of log(2) parts
(p6) fms.s1 FR_r = f8,f1,f0 // range reduction for |x|<1/256
(p6) cmp.gt.unc p10,p0 = -80, GR_exp_x // Is |x| < 2^-80
}
{ .mfb
(p7) setf.sig FR_N = GR_N // copy unbiased exponent of x to the
// significand field of FR_N
(p7) fms.s1 FR_r = FR_RcpX,FR_Xp1,f1 // range reduction for |x|>=1/256
(p12) br.ret.spnt b0 // exit for x=0, return x
}
;;
{ .mib
(p7) ldfpd FR_Ln2hi,FR_Ln2lo = [GR_ad_1],16
(p7) extr.u GR_Ind = GR_Sig,55,8 // get bits from 55 to 62 as index
(p11) br.cond.spnt log1p_eq_minus_1 // jump if x = -1
}
;;
{ .mmf
(p7) shladd GR_ad_2 = GR_Ind,3,GR_ad_2 // address of Thi
(p7) shladd GR_ad_1 = GR_Ind,2,GR_ad_1 // address of Tlo
(p10) fnma.d.s0 f8 = f8,f8,f8 // If |x| very small, result=x-x*x
}
;;
{ .mmb
(p7) ldfd FR_Thi = [GR_ad_2]
(p7) ldfs FR_Tlo = [GR_ad_1]
(p10) br.ret.spnt b0 // Exit if |x| < 2^(-80)
}
;;
{ .mfi
nop.m 0
fma.s1 FR_r2 = FR_r,FR_r,f0 // r^2
nop.i 0
}
{ .mfi
nop.m 0
fms.s1 FR_A2 = FR_A3,FR_r,FR_A2 // A3*r+A2
nop.i 0
}
;;
{ .mfi
nop.m 0
fma.s1 FR_A6 = FR_A7,FR_r,FR_A6 // A7*r+A6
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_A4 = FR_A5,FR_r,FR_A4 // A5*r+A4
nop.i 0
}
;;
{ .mfi
nop.m 0
(p7) fcvt.xf FR_N = FR_N
nop.i 0
}
;;
{ .mfi
nop.m 0
fma.s1 FR_r4 = FR_r2,FR_r2,f0 // r^4
nop.i 0
}
{ .mfi
nop.m 0
// (A3*r+A2)*r^2+r
fma.s1 FR_A2 = FR_A2,FR_r2,FR_r
nop.i 0
}
;;
{ .mfi
nop.m 0
// (A7*r+A6)*r^2+(A5*r+A4)
fma.s1 FR_A4 = FR_A6,FR_r2,FR_A4
nop.i 0
}
;;
{ .mfi
nop.m 0
// N*Ln2hi+Thi
(p7) fma.s1 FR_NxLn2hipThi = FR_N,FR_Ln2hi,FR_Thi
nop.i 0
}
{ .mfi
nop.m 0
// N*Ln2lo+Tlo
(p7) fma.s1 FR_NxLn2lopTlo = FR_N,FR_Ln2lo,FR_Tlo
nop.i 0
}
;;
{ .mfi
nop.m 0
(p7) fma.s1 f8 = FR_A4,FR_r4,FR_A2 // P(r) if |x| >= 1/256
nop.i 0
}
{ .mfi
nop.m 0
// (N*Ln2hi+Thi) + (N*Ln2lo+Tlo)
(p7) fma.s1 FR_NxLn2pT = FR_NxLn2hipThi,f1,FR_NxLn2lopTlo
nop.i 0
}
;;
.pred.rel "mutex",p6,p7
{ .mfi
nop.m 0
(p6) fma.d.s0 f8 = FR_A4,FR_r4,FR_A2 // result if 2^(-80) <= |x| < 1/256
nop.i 0
}
{ .mfb
nop.m 0
(p7) fma.d.s0 f8 = f8,f1,FR_NxLn2pT // result if |x| >= 1/256
br.ret.sptk b0 // Exit if |x| >= 2^(-80)
}
;;
.align 32
log1p_unorm:
// Here if x=unorm
{ .mfb
getf.exp GR_signexp_x = FR_NormX // recompute biased exponent
nop.f 0
br.cond.sptk log1p_common
}
;;
.align 32
log1p_eq_minus_1:
// Here if x=-1
{ .mfi
nop.m 0
fmerge.s FR_X = f8,f8 // keep input argument for subsequent
// call of __libm_error_support#
nop.i 0
}
;;
{ .mfi
mov GR_TAG = 140 // set libm error in case of log1p(-1).
frcpa.s0 f8,p0 = f8,f0 // log1p(-1) should be equal to -INF.
// We can get it using frcpa because it
// sets result to the IEEE-754 mandated
// quotient of f8/f0.
nop.i 0
}
{ .mib
nop.m 0
nop.i 0
br.cond.sptk log_libm_err
}
;;
.align 32
log1p_lt_minus_1:
// Here if x < -1
{ .mfi
nop.m 0
fmerge.s FR_X = f8,f8
nop.i 0
}
;;
{ .mfi
mov GR_TAG = 141 // set libm error in case of x < -1.
frcpa.s0 f8,p0 = f0,f0 // log1p(x) x < -1 should be equal to NaN.
// We can get it using frcpa because it
// sets result to the IEEE-754 mandated
// quotient of f0/f0 i.e. NaN.
nop.i 0
}
;;
.align 32
log_libm_err:
{ .mmi
alloc r32 = ar.pfs,1,4,4,0
mov GR_Parameter_TAG = GR_TAG
nop.i 0
}
;;
GLOBAL_IEEE754_END(log1p)
libm_alias_double_other (__log1p, log1p)
LOCAL_LIBM_ENTRY(__libm_error_region)
.prologue
{ .mfi
add GR_Parameter_Y = -32,sp // Parameter 2 value
nop.f 0
.save ar.pfs,GR_SAVE_PFS
mov GR_SAVE_PFS = ar.pfs // Save ar.pfs
}
{ .mfi
.fframe 64
add sp = -64,sp // Create new stack
nop.f 0
mov GR_SAVE_GP = gp // Save gp
};;
{ .mmi
stfd [GR_Parameter_Y] = FR_Y,16 // STORE Parameter 2 on stack
add GR_Parameter_X = 16,sp // Parameter 1 address
.save b0, GR_SAVE_B0
mov GR_SAVE_B0 = b0 // Save b0
};;
.body
{ .mib
stfd [GR_Parameter_X] = FR_X // STORE Parameter 1 on stack
add GR_Parameter_RESULT = 0,GR_Parameter_Y // Parameter 3 address
nop.b 0
}
{ .mib
stfd [GR_Parameter_Y] = FR_RESULT // STORE Parameter 3 on stack
add GR_Parameter_Y = -16,GR_Parameter_Y
br.call.sptk b0=__libm_error_support# // Call error handling function
};;
{ .mmi
add GR_Parameter_RESULT = 48,sp
nop.m 0
nop.i 0
};;
{ .mmi
ldfd f8 = [GR_Parameter_RESULT] // Get return result off stack
.restore sp
add sp = 64,sp // Restore stack pointer
mov b0 = GR_SAVE_B0 // Restore return address
};;
{ .mib
mov gp = GR_SAVE_GP // Restore gp
mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs
br.ret.sptk b0 // Return
};;
LOCAL_LIBM_END(__libm_error_region)
.type __libm_error_support#,@function
.global __libm_error_support#