glibc/sysdeps/i386/fpu/s_cexpf.S

256 lines
6.1 KiB
ArmAsm

/* ix87 specific implementation of complex exponential function for double.
Copyright (C) 1997 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, write to the Free
Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307 USA. */
#include <sysdep.h>
#ifdef __ELF__
.section .rodata
#else
.text
#endif
.align ALIGNARG(4)
ASM_TYPE_DIRECTIVE(huge_nan_null_null,@object)
huge_nan_null_null:
.byte 0, 0, 0x80, 0x7f
.byte 0, 0, 0xc0, 0x7f
.float 0.0
zero: .float 0.0
infinity:
.byte 0, 0, 0x80, 0x7f
.byte 0, 0, 0xc0, 0x7f
.float 0.0
.byte 0, 0, 0, 0x80
ASM_SIZE_DIRECTIVE(huge_nan_null_null)
ASM_TYPE_DIRECTIVE(twopi,@object)
twopi:
.byte 0x35, 0xc2, 0x68, 0x21, 0xa2, 0xda, 0xf, 0xc9, 0x1, 0x40
.byte 0, 0, 0, 0, 0, 0
ASM_SIZE_DIRECTIVE(twopi)
ASM_TYPE_DIRECTIVE(l2e,@object)
l2e:
.byte 0xbc, 0xf0, 0x17, 0x5c, 0x29, 0x3b, 0xaa, 0xb8, 0xff, 0x3f
.byte 0, 0, 0, 0, 0, 0
ASM_SIZE_DIRECTIVE(l2e)
ASM_TYPE_DIRECTIVE(one,@object)
one: .double 1.0
ASM_SIZE_DIRECTIVE(one)
#ifdef PIC
#define MO(op) op##@GOTOFF(%ecx)
#define MOX(op,x,f) op##@GOTOFF(%ecx,x,f)
#else
#define MO(op) op
#define MOX(op,x,f) op(,x,f)
#endif
.text
ENTRY(__cexpf)
flds 4(%esp) /* x */
fxam
fnstsw
flds 8(%esp) /* y : x */
#ifdef PIC
call 1f
1: popl %ecx
addl $_GLOBAL_OFFSET_TABLE_+[.-1b], %ecx
#endif
movb %ah, %dh
andb $0x45, %ah
cmpb $0x05, %ah
je 1f /* Jump if real part is +-Inf */
cmpb $0x01, %ah
je 2f /* Jump if real part is NaN */
fxam /* y : x */
fnstsw
/* If the imaginary part is not finite we return NaN+i NaN, as
for the case when the real part is NaN. A test for +-Inf and
NaN would be necessary. But since we know the stack register
we applied `fxam' to is not empty we can simply use one test.
Check your FPU manual for more information. */
andb $0x01, %ah
cmpb $0x01, %ah
je 20f
/* We have finite numbers in the real and imaginary part. Do
the real work now. */
fxch /* x : y */
fldt MO(l2e) /* log2(e) : x : y */
fmulp /* x * log2(e) : y */
fld %st /* x * log2(e) : x * log2(e) : y */
frndint /* int(x * log2(e)) : x * log2(e) : y */
fsubr %st, %st(1) /* int(x * log2(e)) : frac(x * log2(e)) : y */
fxch /* frac(x * log2(e)) : int(x * log2(e)) : y */
f2xm1 /* 2^frac(x * log2(e))-1 : int(x * log2(e)) : y */
faddl MO(one) /* 2^frac(x * log2(e)) : int(x * log2(e)) : y */
fscale /* e^x : int(x * log2(e)) : y */
fst %st(1) /* e^x : e^x : y */
fxch %st(2) /* y : e^x : e^x */
fsincos /* cos(y) : sin(y) : e^x : e^x */
fnstsw
testl $0x400, %eax
jnz 7f
fmulp %st, %st(3) /* sin(y) : e^x : e^x * cos(y) */
fmulp %st, %st(1) /* e^x * sin(y) : e^x * cos(y) */
subl $8, %esp
fstps 4(%esp)
fstps (%esp)
popl %eax
popl %edx
ret
/* We have to reduce the argument to fsincos. */
.align ALIGNARG(4)
7: fldt MO(twopi) /* 2*pi : y : e^x : e^x */
fxch /* y : 2*pi : e^x : e^x */
8: fprem1 /* y%(2*pi) : 2*pi : e^x : e^x */
fnstsw
testl $0x400, %eax
jnz 8b
fstp %st(1) /* y%(2*pi) : e^x : e^x */
fsincos /* cos(y) : sin(y) : e^x : e^x */
fmulp %st, %st(3)
fmulp %st, %st(1)
subl $8, %esp
fstps 4(%esp)
fstps (%esp)
popl %eax
popl %edx
ret
/* The real part is +-inf. We must make further differences. */
.align ALIGNARG(4)
1: fxam /* y : x */
fnstsw
movb %ah, %dl
testb $0x01, %ah /* See above why 0x01 is usable here. */
jne 3f
/* The real part is +-Inf and the imaginary part is finite. */
andl $0x245, %edx
cmpb $0x40, %dl /* Imaginary part == 0? */
je 4f /* Yes -> */
fxch /* x : y */
shrl $6, %edx
fstp %st(0) /* y */ /* Drop the real part. */
andl $8, %edx /* This puts the sign bit of the real part
in bit 3. So we can use it to index a
small array to select 0 or Inf. */
fsincos /* cos(y) : sin(y) */
fnstsw
testl $0x0400, %eax
jnz 5f
fxch
ftst
fnstsw
fstp %st(0)
shll $23, %eax
andl $0x80000000, %eax
orl MOX(huge_nan_null_null,%edx,1), %eax
movl MOX(huge_nan_null_null,%edx,1), %ecx
movl %eax, %edx
ftst
fnstsw
fstp %st(0)
shll $23, %eax
andl $0x80000000, %eax
orl %ecx, %eax
ret
/* We must reduce the argument to fsincos. */
.align ALIGNARG(4)
5: fldt MO(twopi)
fxch
6: fprem1
fnstsw
testl $0x400, %eax
jnz 6b
fstp %st(1)
fsincos
fxch
ftst
fnstsw
fstp %st(0)
shll $23, %eax
andl $0x80000000, %eax
orl MOX(huge_nan_null_null,%edx,1), %eax
movl MOX(huge_nan_null_null,%edx,1), %ecx
movl %eax, %edx
ftst
fnstsw
fstp %st(0)
shll $23, %eax
andl $0x80000000, %eax
orl %ecx, %eax
ret
/* The real part is +-Inf and the imaginary part is +-0. So return
+-Inf+-0i. */
.align ALIGNARG(4)
4: subl $4, %esp
fstps (%esp)
shrl $6, %edx
fstp %st(0)
andl $8, %edx
movl MOX(huge_nan_null_null,%edx,1), %eax
popl %edx
ret
/* The real part is +-Inf, the imaginary is also is not finite. */
.align ALIGNARG(4)
3: fstp %st(0)
fstp %st(0) /* <empty> */
andb $0x45, %ah
andb $0x47, %dh
xorb %dh, %ah
jnz 30f
flds MO(infinity) /* Raise invalid exception. */
fmuls MO(zero)
fstp %st(0)
30: movl %edx, %eax
shrl $6, %edx
shll $3, %eax
andl $8, %edx
andl $16, %eax
orl %eax, %edx
movl MOX(huge_nan_null_null,%edx,1), %eax
movl MOX(huge_nan_null_null+4,%edx,1), %edx
ret
/* The real part is NaN. */
.align ALIGNARG(4)
20: flds MO(infinity) /* Raise invalid exception. */
fmuls MO(zero)
fstp %st(0)
2: fstp %st(0)
fstp %st(0)
movl MO(huge_nan_null_null+4), %eax
movl %eax, %edx
ret
END(__cexpf)
weak_alias (__cexpf, cexpf)