glibc/sysdeps/unix/sysv/linux/timer_routines.c
Adhemerval Zanella 27d83441a2 Block all signals on timer_create thread (BZ#10815)
The behavior of the signal mask on threads created by timer_create
for SIGEV_THREAD timers are implementation-defined and glibc explicit
unblocks all signals before calling the user-defined function.

This behavior, although not incorrect standard-wise, opens a race if a
program using a blocked rt-signal plus sigwaitinfo (and without an
installed signal handler for the rt-signal) receives a signal while
executing the used-defined function for SIGEV_THREAD.

A better alternative discussed in bug report is to rather block all
signals (besides the internal ones not available to application
usage).

This patch fixes this issue by only unblocking SIGSETXID (used on
set*uid function) and SIGCANCEL (used for thread cancellation).

Checked on x86_64-linux-gnu and i686-linux-gnu.
2020-02-19 13:46:31 -03:00

163 lines
4.4 KiB
C

/* Copyright (C) 2003-2020 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Ulrich Drepper <drepper@redhat.com>, 2003.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public License as
published by the Free Software Foundation; either version 2.1 of the
License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; see the file COPYING.LIB. If
not, see <https://www.gnu.org/licenses/>. */
#include <errno.h>
#include <setjmp.h>
#include <signal.h>
#include <stdbool.h>
#include <sysdep-cancel.h>
#include <nptl/pthreadP.h>
#include "kernel-posix-timers.h"
/* List of active SIGEV_THREAD timers. */
struct timer *__active_timer_sigev_thread;
/* Lock for the __active_timer_sigev_thread. */
pthread_mutex_t __active_timer_sigev_thread_lock = PTHREAD_MUTEX_INITIALIZER;
struct thread_start_data
{
void (*thrfunc) (sigval_t);
sigval_t sival;
};
/* Helper thread to call the user-provided function. */
static void *
timer_sigev_thread (void *arg)
{
__libc_signal_unblock_sigtimer (NULL);
struct thread_start_data *td = (struct thread_start_data *) arg;
void (*thrfunc) (sigval_t) = td->thrfunc;
sigval_t sival = td->sival;
/* The TD object was allocated in timer_helper_thread. */
free (td);
/* Call the user-provided function. */
thrfunc (sival);
return NULL;
}
/* Helper function to support starting threads for SIGEV_THREAD. */
static void *
timer_helper_thread (void *arg)
{
/* Endless loop of waiting for signals. The loop is only ended when
the thread is canceled. */
while (1)
{
siginfo_t si;
while (sigwaitinfo (&sigtimer_set, &si) < 0);
if (si.si_code == SI_TIMER)
{
struct timer *tk = (struct timer *) si.si_ptr;
/* Check the timer is still used and will not go away
while we are reading the values here. */
pthread_mutex_lock (&__active_timer_sigev_thread_lock);
struct timer *runp = __active_timer_sigev_thread;
while (runp != NULL)
if (runp == tk)
break;
else
runp = runp->next;
if (runp != NULL)
{
struct thread_start_data *td = malloc (sizeof (*td));
/* There is not much we can do if the allocation fails. */
if (td != NULL)
{
/* This is the signal we are waiting for. */
td->thrfunc = tk->thrfunc;
td->sival = tk->sival;
pthread_t th;
pthread_create (&th, &tk->attr, timer_sigev_thread, td);
}
}
pthread_mutex_unlock (&__active_timer_sigev_thread_lock);
}
else if (si.si_code == SI_TKILL)
/* The thread is canceled. */
pthread_exit (NULL);
}
}
/* Control variable for helper thread creation. */
pthread_once_t __helper_once attribute_hidden;
/* TID of the helper thread. */
pid_t __helper_tid attribute_hidden;
/* Reset variables so that after a fork a new helper thread gets started. */
static void
reset_helper_control (void)
{
__helper_once = PTHREAD_ONCE_INIT;
__helper_tid = 0;
}
void
attribute_hidden
__start_helper_thread (void)
{
/* The helper thread needs only very little resources
and should go away automatically when canceled. */
pthread_attr_t attr;
(void) pthread_attr_init (&attr);
(void) pthread_attr_setstacksize (&attr, __pthread_get_minstack (&attr));
/* Block all signals in the helper thread but SIGSETXID. To do this
thoroughly we temporarily have to block all signals here. The
helper can lose wakeups if SIGTIMER is not blocked throughout. */
sigset_t ss;
__libc_signal_block_app (&ss);
__libc_signal_block_sigtimer (NULL);
/* Create the helper thread for this timer. */
pthread_t th;
int res = pthread_create (&th, &attr, timer_helper_thread, NULL);
if (res == 0)
/* We managed to start the helper thread. */
__helper_tid = ((struct pthread *) th)->tid;
/* Restore the signal mask. */
__libc_signal_restore_set (&ss);
/* No need for the attribute anymore. */
(void) pthread_attr_destroy (&attr);
/* We have to make sure that after fork()ing a new helper thread can
be created. */
pthread_atfork (NULL, NULL, reset_helper_control);
}