glibc/sysdeps/ieee754/ldbl-128ibm/e_fmodl.c
Joseph Myers e2c631384a Fix ldbl-128ibm fmodl handling of subnormal results (bug 19595).
The ldbl-128ibm implementation of fmodl has completely bogus logic for
subnormal results (in this context, that means results for which the
result is in the subnormal range for double, not results with absolute
value below LDBL_MIN), based on code used for ldbl-128 that is correct
in that case but incorrect in the ldbl-128ibm use.  This patch fixes
it to convert the mantissa into the correct form expected by
ldbl_insert_mantissa, removing the other cases of the code that were
incorrect and in one case unreachable for ldbl-128ibm.  A correct
exponent value is then passed to ldbl_insert_mantissa to reflect the
shifted result.

Tested for powerpc.

	[BZ #19595]
	* sysdeps/ieee754/ldbl-128ibm/e_fmodl.c (__ieee754_fmodl): Use
	common logic for all cases of shifting subnormal results.  Do not
	insert sign bit in shifted mantissa.  Always pass -1023 as biased
	exponent to ldbl_insert_mantissa in subnormal case.
2016-02-18 22:42:06 +00:00

143 lines
4.3 KiB
C

/* e_fmodl.c -- long double version of e_fmod.c.
* Conversion to IEEE quad long double by Jakub Jelinek, jj@ultra.linux.cz.
*/
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/*
* __ieee754_fmodl(x,y)
* Return x mod y in exact arithmetic
* Method: shift and subtract
*/
#include <math.h>
#include <math_private.h>
#include <ieee754.h>
static const long double one = 1.0, Zero[] = {0.0, -0.0,};
long double
__ieee754_fmodl (long double x, long double y)
{
int64_t hx, hy, hz, sx, sy;
uint64_t lx, ly, lz;
int n, ix, iy;
double xhi, xlo, yhi, ylo;
ldbl_unpack (x, &xhi, &xlo);
EXTRACT_WORDS64 (hx, xhi);
EXTRACT_WORDS64 (lx, xlo);
ldbl_unpack (y, &yhi, &ylo);
EXTRACT_WORDS64 (hy, yhi);
EXTRACT_WORDS64 (ly, ylo);
sx = hx&0x8000000000000000ULL; /* sign of x */
hx ^= sx; /* |x| */
sy = hy&0x8000000000000000ULL; /* sign of y */
hy ^= sy; /* |y| */
/* purge off exception values */
if(__builtin_expect(hy==0 ||
(hx>=0x7ff0000000000000LL)|| /* y=0,or x not finite */
(hy>0x7ff0000000000000LL),0)) /* or y is NaN */
return (x*y)/(x*y);
if (__glibc_unlikely (hx <= hy))
{
/* If |x| < |y| return x. */
if (hx < hy)
return x;
/* At this point the absolute value of the high doubles of
x and y must be equal. */
/* If the low double of y is the same sign as the high
double of y (ie. the low double increases |y|)... */
if (((ly ^ sy) & 0x8000000000000000LL) == 0
/* ... then a different sign low double to high double
for x or same sign but lower magnitude... */
&& (int64_t) (lx ^ sx) < (int64_t) (ly ^ sy))
/* ... means |x| < |y|. */
return x;
/* If the low double of x differs in sign to the high
double of x (ie. the low double decreases |x|)... */
if (((lx ^ sx) & 0x8000000000000000LL) != 0
/* ... then a different sign low double to high double
for y with lower magnitude (we've already caught
the same sign for y case above)... */
&& (int64_t) (lx ^ sx) > (int64_t) (ly ^ sy))
/* ... means |x| < |y|. */
return x;
/* If |x| == |y| return x*0. */
if ((lx ^ sx) == (ly ^ sy))
return Zero[(uint64_t) sx >> 63];
}
/* Make the IBM extended format 105 bit mantissa look like the ieee854 112
bit mantissa so the following operations will give the correct
result. */
ldbl_extract_mantissa(&hx, &lx, &ix, x);
ldbl_extract_mantissa(&hy, &ly, &iy, y);
if (__glibc_unlikely (ix == -IEEE754_DOUBLE_BIAS))
{
/* subnormal x, shift x to normal. */
while ((hx & (1LL << 48)) == 0)
{
hx = (hx << 1) | (lx >> 63);
lx = lx << 1;
ix -= 1;
}
}
if (__glibc_unlikely (iy == -IEEE754_DOUBLE_BIAS))
{
/* subnormal y, shift y to normal. */
while ((hy & (1LL << 48)) == 0)
{
hy = (hy << 1) | (ly >> 63);
ly = ly << 1;
iy -= 1;
}
}
/* fix point fmod */
n = ix - iy;
while(n--) {
hz=hx-hy;lz=lx-ly; if(lx<ly) hz -= 1;
if(hz<0){hx = hx+hx+(lx>>63); lx = lx+lx;}
else {
if((hz|lz)==0) /* return sign(x)*0 */
return Zero[(u_int64_t)sx>>63];
hx = hz+hz+(lz>>63); lx = lz+lz;
}
}
hz=hx-hy;lz=lx-ly; if(lx<ly) hz -= 1;
if(hz>=0) {hx=hz;lx=lz;}
/* convert back to floating value and restore the sign */
if((hx|lx)==0) /* return sign(x)*0 */
return Zero[(u_int64_t)sx>>63];
while(hx<0x0001000000000000LL) { /* normalize x */
hx = hx+hx+(lx>>63); lx = lx+lx;
iy -= 1;
}
if(__builtin_expect(iy>= -1022,0)) { /* normalize output */
x = ldbl_insert_mantissa((sx>>63), iy, hx, lx);
} else { /* subnormal output */
n = -1022 - iy;
/* We know 1 <= N <= 52, and that there are no nonzero
bits in places below 2^-1074. */
lx = (lx >> n) | ((u_int64_t) hx << (64 - n));
hx >>= n;
x = ldbl_insert_mantissa((sx>>63), -1023, hx, lx);
x *= one; /* create necessary signal */
}
return x; /* exact output */
}
strong_alias (__ieee754_fmodl, __fmodl_finite)