glibc/sysdeps/ieee754/ldbl-128ibm/s_llrintl.c
Joseph Myers 418d99e622 Move fenv.h soft-float inlines from fenv_private.h to include/fenv.h.
<fenv_private.h> has inline versions of various <fenv.h> functions,
and their __fe* variants, for systems (generally soft-float) without
support for floating-point exceptions, rounding modes or both.

Having these inlines in a separate header introduces a risk of a
source file including <fenv.h> and compiling OK on x86_64, but failing
to compile (because the feraiseexcept inline is actually a macro that
discards its argument, to avoid the need for #ifdef FE_INVALID
conditionals), or not being properly optimized, on systems without the
exceptions and rounding modes support (when these inlines were in
math_private.h, we had a few cases where this broke the build because
there was no obvious reason for a file to need math_private.h and it
didn't need that header on x86_64).  By moving those inlines to
include/fenv.h, this risk can be avoided, and fenv_private.h becomes
more clearly defined as specifically the header for the internal
libc_fe* and SET_RESTORE_ROUND* interfaces.

This patch makes that move, removing fenv_private.h includes that are
no longer needed (or replacing them by fenv.h includes in a few cases
that didn't already have such an include).

Tested for x86_64 and x86, and tested with build-many-glibcs.py that
installed stripped shared libraries are unchanged by the patch.

	* sysdeps/generic/fenv_private.h [FE_ALL_EXCEPT == 0]: Move this
	code ....
	[!FE_HAVE_ROUNDING_MODES]: And this code ....
	* include/fenv.h [!_ISOMAC]: ... to here.
	* math/fraiseexcpt.c (__feraiseexcept): Undefine as macro.
	(feraiseexcept): Likewise.
	* math/fromfp.h: Do not include <fenv_private.h>.
	* math/s_cexp_template.c: Likewise.
	* math/s_csin_template.c: Likewise.
	* math/s_csinh_template.c: Likewise.
	* math/s_ctan_template.c: Likewise.
	* math/s_ctanh_template.c: Likewise.
	* math/s_iseqsig_template.c: Likewise.
	* math/w_acos_compat.c: Likewise.
	* math/w_acosf_compat.c: Likewise.
	* math/w_acosl_compat.c: Likewise.
	* math/w_asin_compat.c: Likewise.
	* math/w_asinf_compat.c: Likewise.
	* math/w_asinl_compat.c: Likewise.
	* math/w_j0_compat.c: Likewise.
	* math/w_j0f_compat.c: Likewise.
	* math/w_j0l_compat.c: Likewise.
	* math/w_j1_compat.c: Likewise.
	* math/w_j1f_compat.c: Likewise.
	* math/w_j1l_compat.c: Likewise.
	* math/w_jn_compat.c: Likewise.
	* math/w_jnf_compat.c: Likewise.
	* math/w_log10_compat.c: Likewise.
	* math/w_log10f_compat.c: Likewise.
	* math/w_log10l_compat.c: Likewise.
	* math/w_log2_compat.c: Likewise.
	* math/w_log2f_compat.c: Likewise.
	* math/w_log2l_compat.c: Likewise.
	* math/w_log_compat.c: Likewise.
	* math/w_logf_compat.c: Likewise.
	* math/w_logl_compat.c: Likewise.
	* sysdeps/ieee754/dbl-64/s_llrint.c: Likewise.
	* sysdeps/ieee754/dbl-64/s_llround.c: Likewise.
	* sysdeps/ieee754/dbl-64/s_lrint.c: Likewise.
	* sysdeps/ieee754/dbl-64/s_lround.c: Likewise.
	* sysdeps/ieee754/dbl-64/wordsize-64/s_lround.c: Likewise.
	* sysdeps/ieee754/flt-32/s_llrintf.c: Likewise.
	* sysdeps/ieee754/flt-32/s_llroundf.c: Likewise.
	* sysdeps/ieee754/flt-32/s_lrintf.c: Likewise.
	* sysdeps/ieee754/flt-32/s_lroundf.c: Likewise.
	* sysdeps/ieee754/k_standardl.c: Likewise.
	* sysdeps/ieee754/ldbl-128/e_expl.c: Likewise.
	* sysdeps/ieee754/ldbl-128/s_fmal.c: Likewise.
	* sysdeps/ieee754/ldbl-128/s_llrintl.c: Likewise.
	* sysdeps/ieee754/ldbl-128/s_llroundl.c: Likewise.
	* sysdeps/ieee754/ldbl-128/s_lrintl.c: Likewise.
	* sysdeps/ieee754/ldbl-128/s_lroundl.c: Likewise.
	* sysdeps/ieee754/ldbl-128/s_nearbyintl.c: Likewise.
	* sysdeps/ieee754/ldbl-128ibm/s_llrintl.c: Likewise.
	* sysdeps/ieee754/ldbl-128ibm/s_llroundl.c: Likewise.
	* sysdeps/ieee754/ldbl-128ibm/s_lrintl.c: Likewise.
	* sysdeps/ieee754/ldbl-128ibm/s_lroundl.c: Likewise.
	* sysdeps/ieee754/ldbl-96/s_fma.c: Likewise.
	* sysdeps/ieee754/ldbl-96/s_fmal.c: Likewise.
	* sysdeps/ieee754/ldbl-96/s_llrintl.c: Likewise.
	* sysdeps/ieee754/ldbl-96/s_llroundl.c: Likewise.
	* sysdeps/ieee754/ldbl-96/s_lrintl.c: Likewise.
	* sysdeps/ieee754/ldbl-96/s_lroundl.c: Likewise.
	* math/w_ilogb_template.c: Include <fenv.h> instead of
	<fenv_private.h>.
	* math/w_llogb_template.c: Likewise.
	* sysdeps/powerpc/fpu/e_sqrt.c: Likewise.
	* sysdeps/powerpc/fpu/e_sqrtf.c: Likewise.
2018-09-04 19:52:06 +00:00

142 lines
3.6 KiB
C

/* Round to long long int long double floating-point values.
IBM extended format long double version.
Copyright (C) 2006-2018 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
#include <math.h>
#include <fenv.h>
#include <math_private.h>
#include <math_ldbl_opt.h>
#include <float.h>
#include <ieee754.h>
long long
__llrintl (long double x)
{
double xh, xl;
long long res, hi, lo;
int save_round;
ldbl_unpack (x, &xh, &xl);
/* Limit the range of values handled by the conversion to long long.
We do this because we aren't sure whether that conversion properly
raises FE_INVALID. */
if (__builtin_expect
((__builtin_fabs (xh) <= -(double) (-__LONG_LONG_MAX__ - 1)), 1)
#if !defined (FE_INVALID)
|| 1
#endif
)
{
save_round = fegetround ();
if (__glibc_unlikely ((xh == -(double) (-__LONG_LONG_MAX__ - 1))))
{
/* When XH is 9223372036854775808.0, converting to long long will
overflow, resulting in an invalid operation. However, XL might
be negative and of sufficient magnitude that the overall long
double is in fact in range. Avoid raising an exception. In any
case we need to convert this value specially, because
the converted value is not exactly represented as a double
thus subtracting HI from XH suffers rounding error. */
hi = __LONG_LONG_MAX__;
xh = 1.0;
}
else
{
hi = (long long) xh;
xh -= hi;
}
ldbl_canonicalize (&xh, &xl);
lo = (long long) xh;
/* Peg at max/min values, assuming that the above conversions do so.
Strictly speaking, we can return anything for values that overflow,
but this is more useful. */
res = hi + lo;
/* This is just sign(hi) == sign(lo) && sign(res) != sign(hi). */
if (__glibc_unlikely (((~(hi ^ lo) & (res ^ hi)) < 0)))
goto overflow;
xh -= lo;
ldbl_canonicalize (&xh, &xl);
hi = res;
switch (save_round)
{
case FE_TONEAREST:
if (fabs (xh) < 0.5
|| (fabs (xh) == 0.5
&& ((xh > 0.0 && xl < 0.0)
|| (xh < 0.0 && xl > 0.0)
|| (xl == 0.0 && (res & 1) == 0))))
return res;
if (xh < 0.0)
res -= 1;
else
res += 1;
break;
case FE_TOWARDZERO:
if (res > 0 && (xh < 0.0 || (xh == 0.0 && xl < 0.0)))
res -= 1;
else if (res < 0 && (xh > 0.0 || (xh == 0.0 && xl > 0.0)))
res += 1;
return res;
break;
case FE_UPWARD:
if (xh > 0.0 || (xh == 0.0 && xl > 0.0))
res += 1;
break;
case FE_DOWNWARD:
if (xh < 0.0 || (xh == 0.0 && xl < 0.0))
res -= 1;
break;
}
if (__glibc_unlikely (((~(hi ^ (res - hi)) & (res ^ hi)) < 0)))
goto overflow;
return res;
}
else
{
if (xh > 0.0)
hi = __LONG_LONG_MAX__;
else if (xh < 0.0)
hi = -__LONG_LONG_MAX__ - 1;
else
/* Nan */
hi = 0;
}
overflow:
#ifdef FE_INVALID
feraiseexcept (FE_INVALID);
#endif
return hi;
}
long_double_symbol (libm, __llrintl, llrintl);