mirror of
https://sourceware.org/git/glibc.git
synced 2024-11-30 08:40:07 +00:00
391 lines
14 KiB
C
391 lines
14 KiB
C
/* Inline functions for dynamic linking.
|
|
Copyright (C) 1995-2005,2006,2008,2011 Free Software Foundation, Inc.
|
|
This file is part of the GNU C Library.
|
|
|
|
The GNU C Library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Lesser General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
|
|
The GNU C Library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
|
License along with the GNU C Library; if not, see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
/* This macro is used as a callback from elf_machine_rel{a,} when a
|
|
static TLS reloc is about to be performed. Since (in dl-load.c) we
|
|
permit dynamic loading of objects that might use such relocs, we
|
|
have to check whether each use is actually doable. If the object
|
|
whose TLS segment the reference resolves to was allocated space in
|
|
the static TLS block at startup, then it's ok. Otherwise, we make
|
|
an attempt to allocate it in surplus space on the fly. If that
|
|
can't be done, we fall back to the error that DF_STATIC_TLS is
|
|
intended to produce. */
|
|
#define CHECK_STATIC_TLS(map, sym_map) \
|
|
do { \
|
|
if (__builtin_expect ((sym_map)->l_tls_offset == NO_TLS_OFFSET \
|
|
|| ((sym_map)->l_tls_offset \
|
|
== FORCED_DYNAMIC_TLS_OFFSET), 0)) \
|
|
_dl_allocate_static_tls (sym_map); \
|
|
} while (0)
|
|
|
|
#define TRY_STATIC_TLS(map, sym_map) \
|
|
(__builtin_expect ((sym_map)->l_tls_offset \
|
|
!= FORCED_DYNAMIC_TLS_OFFSET, 1) \
|
|
&& (__builtin_expect ((sym_map)->l_tls_offset != NO_TLS_OFFSET, 1) \
|
|
|| _dl_try_allocate_static_tls (sym_map) == 0))
|
|
|
|
int internal_function _dl_try_allocate_static_tls (struct link_map *map);
|
|
|
|
#include <elf.h>
|
|
#include <assert.h>
|
|
|
|
#ifdef RESOLVE_MAP
|
|
/* We pass reloc_addr as a pointer to void, as opposed to a pointer to
|
|
ElfW(Addr), because not all architectures can assume that the
|
|
relocated address is properly aligned, whereas the compiler is
|
|
entitled to assume that a pointer to a type is properly aligned for
|
|
the type. Even if we cast the pointer back to some other type with
|
|
less strict alignment requirements, the compiler might still
|
|
remember that the pointer was originally more aligned, thereby
|
|
optimizing away alignment tests or using word instructions for
|
|
copying memory, breaking the very code written to handle the
|
|
unaligned cases. */
|
|
# if ! ELF_MACHINE_NO_REL
|
|
auto inline void __attribute__((always_inline))
|
|
elf_machine_rel (struct link_map *map, const ElfW(Rel) *reloc,
|
|
const ElfW(Sym) *sym, const struct r_found_version *version,
|
|
void *const reloc_addr, int skip_ifunc);
|
|
auto inline void __attribute__((always_inline))
|
|
elf_machine_rel_relative (ElfW(Addr) l_addr, const ElfW(Rel) *reloc,
|
|
void *const reloc_addr);
|
|
# endif
|
|
# if ! ELF_MACHINE_NO_RELA
|
|
auto inline void __attribute__((always_inline))
|
|
elf_machine_rela (struct link_map *map, const ElfW(Rela) *reloc,
|
|
const ElfW(Sym) *sym, const struct r_found_version *version,
|
|
void *const reloc_addr, int skip_ifunc);
|
|
auto inline void __attribute__((always_inline))
|
|
elf_machine_rela_relative (ElfW(Addr) l_addr, const ElfW(Rela) *reloc,
|
|
void *const reloc_addr);
|
|
# endif
|
|
# if ELF_MACHINE_NO_RELA || defined ELF_MACHINE_PLT_REL
|
|
auto inline void __attribute__((always_inline))
|
|
elf_machine_lazy_rel (struct link_map *map,
|
|
ElfW(Addr) l_addr, const ElfW(Rel) *reloc,
|
|
int skip_ifunc);
|
|
# else
|
|
auto inline void __attribute__((always_inline))
|
|
elf_machine_lazy_rel (struct link_map *map,
|
|
ElfW(Addr) l_addr, const ElfW(Rela) *reloc,
|
|
int skip_ifunc);
|
|
# endif
|
|
#endif
|
|
|
|
#include <dl-machine.h>
|
|
|
|
#ifndef VERSYMIDX
|
|
# define VERSYMIDX(sym) (DT_NUM + DT_THISPROCNUM + DT_VERSIONTAGIDX (sym))
|
|
#endif
|
|
|
|
|
|
/* Read the dynamic section at DYN and fill in INFO with indices DT_*. */
|
|
#ifndef RESOLVE_MAP
|
|
static
|
|
#else
|
|
auto
|
|
#endif
|
|
inline void __attribute__ ((unused, always_inline))
|
|
elf_get_dynamic_info (struct link_map *l, ElfW(Dyn) *temp)
|
|
{
|
|
ElfW(Dyn) *dyn = l->l_ld;
|
|
ElfW(Dyn) **info;
|
|
#if __ELF_NATIVE_CLASS == 32
|
|
typedef Elf32_Word d_tag_utype;
|
|
#elif __ELF_NATIVE_CLASS == 64
|
|
typedef Elf64_Xword d_tag_utype;
|
|
#endif
|
|
|
|
#ifndef RTLD_BOOTSTRAP
|
|
if (dyn == NULL)
|
|
return;
|
|
#endif
|
|
|
|
info = l->l_info;
|
|
|
|
while (dyn->d_tag != DT_NULL)
|
|
{
|
|
if ((d_tag_utype) dyn->d_tag < DT_NUM)
|
|
info[dyn->d_tag] = dyn;
|
|
else if (dyn->d_tag >= DT_LOPROC &&
|
|
dyn->d_tag < DT_LOPROC + DT_THISPROCNUM)
|
|
info[dyn->d_tag - DT_LOPROC + DT_NUM] = dyn;
|
|
else if ((d_tag_utype) DT_VERSIONTAGIDX (dyn->d_tag) < DT_VERSIONTAGNUM)
|
|
info[VERSYMIDX (dyn->d_tag)] = dyn;
|
|
else if ((d_tag_utype) DT_EXTRATAGIDX (dyn->d_tag) < DT_EXTRANUM)
|
|
info[DT_EXTRATAGIDX (dyn->d_tag) + DT_NUM + DT_THISPROCNUM
|
|
+ DT_VERSIONTAGNUM] = dyn;
|
|
else if ((d_tag_utype) DT_VALTAGIDX (dyn->d_tag) < DT_VALNUM)
|
|
info[DT_VALTAGIDX (dyn->d_tag) + DT_NUM + DT_THISPROCNUM
|
|
+ DT_VERSIONTAGNUM + DT_EXTRANUM] = dyn;
|
|
else if ((d_tag_utype) DT_ADDRTAGIDX (dyn->d_tag) < DT_ADDRNUM)
|
|
info[DT_ADDRTAGIDX (dyn->d_tag) + DT_NUM + DT_THISPROCNUM
|
|
+ DT_VERSIONTAGNUM + DT_EXTRANUM + DT_VALNUM] = dyn;
|
|
++dyn;
|
|
}
|
|
|
|
#define DL_RO_DYN_TEMP_CNT 8
|
|
|
|
#ifndef DL_RO_DYN_SECTION
|
|
/* Don't adjust .dynamic unnecessarily. */
|
|
if (l->l_addr != 0)
|
|
{
|
|
ElfW(Addr) l_addr = l->l_addr;
|
|
int cnt = 0;
|
|
|
|
# define ADJUST_DYN_INFO(tag) \
|
|
do \
|
|
if (info[tag] != NULL) \
|
|
{ \
|
|
if (temp) \
|
|
{ \
|
|
temp[cnt].d_tag = info[tag]->d_tag; \
|
|
temp[cnt].d_un.d_ptr = info[tag]->d_un.d_ptr + l_addr; \
|
|
info[tag] = temp + cnt++; \
|
|
} \
|
|
else \
|
|
info[tag]->d_un.d_ptr += l_addr; \
|
|
} \
|
|
while (0)
|
|
|
|
ADJUST_DYN_INFO (DT_HASH);
|
|
ADJUST_DYN_INFO (DT_PLTGOT);
|
|
ADJUST_DYN_INFO (DT_STRTAB);
|
|
ADJUST_DYN_INFO (DT_SYMTAB);
|
|
# if ! ELF_MACHINE_NO_RELA
|
|
ADJUST_DYN_INFO (DT_RELA);
|
|
# endif
|
|
# if ! ELF_MACHINE_NO_REL
|
|
ADJUST_DYN_INFO (DT_REL);
|
|
# endif
|
|
ADJUST_DYN_INFO (DT_JMPREL);
|
|
ADJUST_DYN_INFO (VERSYMIDX (DT_VERSYM));
|
|
ADJUST_DYN_INFO (DT_ADDRTAGIDX (DT_GNU_HASH) + DT_NUM + DT_THISPROCNUM
|
|
+ DT_VERSIONTAGNUM + DT_EXTRANUM + DT_VALNUM);
|
|
# undef ADJUST_DYN_INFO
|
|
assert (cnt <= DL_RO_DYN_TEMP_CNT);
|
|
}
|
|
#endif
|
|
if (info[DT_PLTREL] != NULL)
|
|
{
|
|
#if ELF_MACHINE_NO_RELA
|
|
assert (info[DT_PLTREL]->d_un.d_val == DT_REL);
|
|
#elif ELF_MACHINE_NO_REL
|
|
assert (info[DT_PLTREL]->d_un.d_val == DT_RELA);
|
|
#else
|
|
assert (info[DT_PLTREL]->d_un.d_val == DT_REL
|
|
|| info[DT_PLTREL]->d_un.d_val == DT_RELA);
|
|
#endif
|
|
}
|
|
#if ! ELF_MACHINE_NO_RELA
|
|
if (info[DT_RELA] != NULL)
|
|
assert (info[DT_RELAENT]->d_un.d_val == sizeof (ElfW(Rela)));
|
|
# endif
|
|
# if ! ELF_MACHINE_NO_REL
|
|
if (info[DT_REL] != NULL)
|
|
assert (info[DT_RELENT]->d_un.d_val == sizeof (ElfW(Rel)));
|
|
#endif
|
|
#ifdef RTLD_BOOTSTRAP
|
|
/* Only the bind now flags are allowed. */
|
|
assert (info[VERSYMIDX (DT_FLAGS_1)] == NULL
|
|
|| (info[VERSYMIDX (DT_FLAGS_1)]->d_un.d_val & ~DF_1_NOW) == 0);
|
|
assert (info[DT_FLAGS] == NULL
|
|
|| (info[DT_FLAGS]->d_un.d_val & ~DF_BIND_NOW) == 0);
|
|
/* Flags must not be set for ld.so. */
|
|
assert (info[DT_RUNPATH] == NULL);
|
|
assert (info[DT_RPATH] == NULL);
|
|
#else
|
|
if (info[DT_FLAGS] != NULL)
|
|
{
|
|
/* Flags are used. Translate to the old form where available.
|
|
Since these l_info entries are only tested for NULL pointers it
|
|
is ok if they point to the DT_FLAGS entry. */
|
|
l->l_flags = info[DT_FLAGS]->d_un.d_val;
|
|
|
|
if (l->l_flags & DF_SYMBOLIC)
|
|
info[DT_SYMBOLIC] = info[DT_FLAGS];
|
|
if (l->l_flags & DF_TEXTREL)
|
|
info[DT_TEXTREL] = info[DT_FLAGS];
|
|
if (l->l_flags & DF_BIND_NOW)
|
|
info[DT_BIND_NOW] = info[DT_FLAGS];
|
|
}
|
|
if (info[VERSYMIDX (DT_FLAGS_1)] != NULL)
|
|
{
|
|
l->l_flags_1 = info[VERSYMIDX (DT_FLAGS_1)]->d_un.d_val;
|
|
|
|
if (l->l_flags_1 & DF_1_NOW)
|
|
info[DT_BIND_NOW] = info[VERSYMIDX (DT_FLAGS_1)];
|
|
}
|
|
if (info[DT_RUNPATH] != NULL)
|
|
/* If both RUNPATH and RPATH are given, the latter is ignored. */
|
|
info[DT_RPATH] = NULL;
|
|
#endif
|
|
}
|
|
|
|
#ifdef RESOLVE_MAP
|
|
|
|
# ifdef RTLD_BOOTSTRAP
|
|
# define ELF_DURING_STARTUP (1)
|
|
# else
|
|
# define ELF_DURING_STARTUP (0)
|
|
# endif
|
|
|
|
/* Get the definitions of `elf_dynamic_do_rel' and `elf_dynamic_do_rela'.
|
|
These functions are almost identical, so we use cpp magic to avoid
|
|
duplicating their code. It cannot be done in a more general function
|
|
because we must be able to completely inline. */
|
|
|
|
/* On some machines, notably SPARC, DT_REL* includes DT_JMPREL in its
|
|
range. Note that according to the ELF spec, this is completely legal!
|
|
But conditionally define things so that on machines we know this will
|
|
not happen we do something more optimal. */
|
|
|
|
# ifdef ELF_MACHINE_PLTREL_OVERLAP
|
|
# define _ELF_DYNAMIC_DO_RELOC(RELOC, reloc, map, do_lazy, skip_ifunc, test_rel) \
|
|
do { \
|
|
struct { ElfW(Addr) start, size; \
|
|
__typeof (((ElfW(Dyn) *) 0)->d_un.d_val) nrelative; int lazy; } \
|
|
ranges[3]; \
|
|
int ranges_index; \
|
|
\
|
|
ranges[0].lazy = ranges[2].lazy = 0; \
|
|
ranges[1].lazy = 1; \
|
|
ranges[0].size = ranges[1].size = ranges[2].size = 0; \
|
|
ranges[0].nrelative = ranges[1].nrelative = ranges[2].nrelative = 0; \
|
|
\
|
|
if ((map)->l_info[DT_##RELOC]) \
|
|
{ \
|
|
ranges[0].start = D_PTR ((map), l_info[DT_##RELOC]); \
|
|
ranges[0].size = (map)->l_info[DT_##RELOC##SZ]->d_un.d_val; \
|
|
if (map->l_info[VERSYMIDX (DT_##RELOC##COUNT)] != NULL) \
|
|
ranges[0].nrelative \
|
|
= MIN (map->l_info[VERSYMIDX (DT_##RELOC##COUNT)]->d_un.d_val, \
|
|
ranges[0].size / sizeof (ElfW(reloc))); \
|
|
} \
|
|
\
|
|
if ((do_lazy) \
|
|
&& (map)->l_info[DT_PLTREL] \
|
|
&& (!test_rel || (map)->l_info[DT_PLTREL]->d_un.d_val == DT_##RELOC)) \
|
|
{ \
|
|
ranges[1].start = D_PTR ((map), l_info[DT_JMPREL]); \
|
|
ranges[1].size = (map)->l_info[DT_PLTRELSZ]->d_un.d_val; \
|
|
ranges[2].start = ranges[1].start + ranges[1].size; \
|
|
ranges[2].size = ranges[0].start + ranges[0].size - ranges[2].start; \
|
|
ranges[0].size = ranges[1].start - ranges[0].start; \
|
|
} \
|
|
\
|
|
for (ranges_index = 0; ranges_index < 3; ++ranges_index) \
|
|
elf_dynamic_do_##reloc ((map), \
|
|
ranges[ranges_index].start, \
|
|
ranges[ranges_index].size, \
|
|
ranges[ranges_index].nrelative, \
|
|
ranges[ranges_index].lazy, \
|
|
skip_ifunc); \
|
|
} while (0)
|
|
# else
|
|
# define _ELF_DYNAMIC_DO_RELOC(RELOC, reloc, map, do_lazy, skip_ifunc, test_rel) \
|
|
do { \
|
|
struct { ElfW(Addr) start, size; \
|
|
__typeof (((ElfW(Dyn) *) 0)->d_un.d_val) nrelative; int lazy; } \
|
|
ranges[2] = { { 0, 0, 0, 0 }, { 0, 0, 0, 0 } }; \
|
|
\
|
|
if ((map)->l_info[DT_##RELOC]) \
|
|
{ \
|
|
ranges[0].start = D_PTR ((map), l_info[DT_##RELOC]); \
|
|
ranges[0].size = (map)->l_info[DT_##RELOC##SZ]->d_un.d_val; \
|
|
if (map->l_info[VERSYMIDX (DT_##RELOC##COUNT)] != NULL) \
|
|
ranges[0].nrelative \
|
|
= MIN (map->l_info[VERSYMIDX (DT_##RELOC##COUNT)]->d_un.d_val, \
|
|
ranges[0].size / sizeof (ElfW(reloc))); \
|
|
} \
|
|
if ((map)->l_info[DT_PLTREL] \
|
|
&& (!test_rel || (map)->l_info[DT_PLTREL]->d_un.d_val == DT_##RELOC)) \
|
|
{ \
|
|
ElfW(Addr) start = D_PTR ((map), l_info[DT_JMPREL]); \
|
|
\
|
|
if (! ELF_DURING_STARTUP \
|
|
&& ((do_lazy) \
|
|
/* This test does not only detect whether the relocation \
|
|
sections are in the right order, it also checks whether \
|
|
there is a DT_REL/DT_RELA section. */ \
|
|
|| __builtin_expect (ranges[0].start + ranges[0].size \
|
|
!= start, 0))) \
|
|
{ \
|
|
ranges[1].start = start; \
|
|
ranges[1].size = (map)->l_info[DT_PLTRELSZ]->d_un.d_val; \
|
|
ranges[1].lazy = (do_lazy); \
|
|
} \
|
|
else \
|
|
{ \
|
|
/* Combine processing the sections. */ \
|
|
assert (ranges[0].start + ranges[0].size == start); \
|
|
ranges[0].size += (map)->l_info[DT_PLTRELSZ]->d_un.d_val; \
|
|
} \
|
|
} \
|
|
\
|
|
if (ELF_DURING_STARTUP) \
|
|
elf_dynamic_do_##reloc ((map), ranges[0].start, ranges[0].size, \
|
|
ranges[0].nrelative, 0, skip_ifunc); \
|
|
else \
|
|
{ \
|
|
int ranges_index; \
|
|
for (ranges_index = 0; ranges_index < 2; ++ranges_index) \
|
|
elf_dynamic_do_##reloc ((map), \
|
|
ranges[ranges_index].start, \
|
|
ranges[ranges_index].size, \
|
|
ranges[ranges_index].nrelative, \
|
|
ranges[ranges_index].lazy, \
|
|
skip_ifunc); \
|
|
} \
|
|
} while (0)
|
|
# endif
|
|
|
|
# if ELF_MACHINE_NO_REL || ELF_MACHINE_NO_RELA
|
|
# define _ELF_CHECK_REL 0
|
|
# else
|
|
# define _ELF_CHECK_REL 1
|
|
# endif
|
|
|
|
# if ! ELF_MACHINE_NO_REL
|
|
# include "do-rel.h"
|
|
# define ELF_DYNAMIC_DO_REL(map, lazy, skip_ifunc) \
|
|
_ELF_DYNAMIC_DO_RELOC (REL, Rel, map, lazy, skip_ifunc, _ELF_CHECK_REL)
|
|
# else
|
|
# define ELF_DYNAMIC_DO_REL(map, lazy, skip_ifunc) /* Nothing to do. */
|
|
# endif
|
|
|
|
# if ! ELF_MACHINE_NO_RELA
|
|
# define DO_RELA
|
|
# include "do-rel.h"
|
|
# define ELF_DYNAMIC_DO_RELA(map, lazy, skip_ifunc) \
|
|
_ELF_DYNAMIC_DO_RELOC (RELA, Rela, map, lazy, skip_ifunc, _ELF_CHECK_REL)
|
|
# else
|
|
# define ELF_DYNAMIC_DO_RELA(map, lazy, skip_ifunc) /* Nothing to do. */
|
|
# endif
|
|
|
|
/* This can't just be an inline function because GCC is too dumb
|
|
to inline functions containing inlines themselves. */
|
|
# define ELF_DYNAMIC_RELOCATE(map, lazy, consider_profile, skip_ifunc) \
|
|
do { \
|
|
int edr_lazy = elf_machine_runtime_setup ((map), (lazy), \
|
|
(consider_profile)); \
|
|
ELF_DYNAMIC_DO_REL ((map), edr_lazy, skip_ifunc); \
|
|
ELF_DYNAMIC_DO_RELA ((map), edr_lazy, skip_ifunc); \
|
|
} while (0)
|
|
|
|
#endif
|