mirror of
https://sourceware.org/git/glibc.git
synced 2024-11-23 05:20:06 +00:00
2064087b5f
* manual/Makefile (glibc-targets): Variable and targets removed. Sat Jul 13 23:50:17 1996 Roland McGrath <roland@delasyd.gnu.ai.mit.edu> * manual/Makefile (lib): New phony target. Depend on stamp files. ($(objpfx)stamp%-$(subdir)): New rule to create them when necessary. 1996-07-13 Paul Eggert <eggert@twinsun.com> * time/strftime.c (strftime): Use space padding for %e, %k, %l, to match Emacs format-time-string specification. (DO_NUMBER_SPACEPAD): Renamed from DO_NUMBER_NOPAD. Sat Jul 13 20:17:38 1996 Roland McGrath <roland@delasyd.gnu.ai.mit.edu> * elf/dl-deps.c (_dl_map_object_deps): Take new args PRELOADS and NPRELOADS, vector of `struct link_map *'s; add them to the searchlist between MAP and its deps. * elf/link.h: Fix decl. * elf/rtld.c (dl_main): If not secure, parse LD_PRELOAD for colon-separated list of names, map those and pass vector of ptrs as PRELOADS list to _dl_map_object_deps. * elf/dl-runtime.c (_dl_object_relocation_scope): Pass new args to _dl_map_object_deps with empty preload list. * elf/dl-open.c (_dl_open): Likewise. * sysdeps/mach/hurd/dl-sysdep.c (_dl_sysdep_open_zero_fill): Function removed. (__mmap): Pass MACH_PORT_NULL for memobj port when (flags & MAP_ANON). * sysdeps/generic/dl-sysdep.c (_dl_sysdep_open_zero_fill): Conditionalize defn on [! MAP_ANON]. * elf/dl-minimal.c (malloc): Conditionalize use of _dl_zerofd on [! MAP_ANON]. * elf/rtld.c (dl_main): Likewise. * elf/dl-load.c (_dl_zerofd): Conditionalize defn on [! MAP_ANON]. (_dl_map_object_from_fd): Conditionalize initialization of _dl_zerofd. * elf/dl-fini.c (_dl_fini): Skip finalizer for executable itself. Sat Jul 13 02:47:53 1996 David Mosberger-Tang <davidm@azstarnet.com> * stdlib/random.c (__random): Declare as int32_t to be in sync with declaration. * socket/Makefile (headers): Add socketbits.h. * misc/mntent.c (endmntent): Allow for NULL stream. SunOS does it that way. * grp/initgroups.c (initgroups): Add groups that user is a member of, not the ones he is _not_ a member of. * nss/nsswitch.c (known_compare): Make known_compare() a static instead of a local function. The latter are difficult to debug and slow to execute on certain platforms. * sysdeps/posix/ttyname_r.c (ttyname_r): Use sizeof (dev) - 1 in place of sizeof (dev). The size of a literal string includes the NUL byte. * sysdeps/unix/getlogin.c (getlogin): Initialize ut_fd with -1. Thu Jul 11 16:59:10 1996 David Mosberger-Tang <davidm@azstarnet.com> * misc/mntent.c (addmntent): Seek to end of file before writing entry. Return 1 on error, not -1. Tue Jul 9 19:08:05 1996 David Mosberger-Tang <davidm@azstarnet.com> * sysdeps/unix/sysv/linux/syscalls.list: Mark bdflush as EXTRA syscall. Fri Jul 5 18:44:55 1996 David Mosberger-Tang <davidm@azstarnet.com> * sysdeps/unix/sysv/linux/alpha/ioperm.c (port_to_cpu_addr): Size shift amount for Jensen must be 5 not 4. Sat Jul 13 20:04:28 1996 Roland McGrath <roland@delasyd.gnu.ai.mit.edu> * socket/sys/socket.h (struct osockaddr): New type. Sat Jul 13 03:50:53 1996 Ulrich Drepper <drepper@cygnus.com> * misc/Makefile (routines): Add qefgcvt and qefgcvt_r. * misc/efgcvt.c, misc/efgcvt_r.c: Change code so that the `double' and `long double' versions can be generated. * misc/qefgcvt.c, misc/qefgcvt_r.c: New files. Define macros so that included efgcvt{,_r}.c file generate `long double' versions. * stdlib/stdlib.h: Add prototypes for q[efg]cvt() and q[ef]cvt_r() functions. * manual/startup.texi: Document new getsubopt function. * manual/examples/subopt.c: New example program for documenting getsubopt function. Fri Jul 12 23:58:37 1996 Ulrich Drepper <drepper@cygnus.com> * stdlib/Makefile (routines): Add getsubopt. * stdlib/stdlib.h: Add prototype for getsubopt. * stdlib/getsubopt.c: New file. Implement getsubopt function to handle suboption parsing.
253 lines
10 KiB
C
253 lines
10 KiB
C
/*
|
||
* Copyright (c) 1983 Regents of the University of California.
|
||
* All rights reserved.
|
||
*
|
||
* Redistribution and use in source and binary forms are permitted
|
||
* provided that the above copyright notice and this paragraph are
|
||
* duplicated in all such forms and that any documentation,
|
||
* advertising materials, and other materials related to such
|
||
* distribution and use acknowledge that the software was developed
|
||
* by the University of California, Berkeley. The name of the
|
||
* University may not be used to endorse or promote products derived
|
||
* from this software without specific prior written permission.
|
||
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
|
||
* IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
|
||
* WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.
|
||
*/
|
||
|
||
/*
|
||
* This is derived from the Berkeley source:
|
||
* @(#)random.c 5.5 (Berkeley) 7/6/88
|
||
* It was reworked for the GNU C Library by Roland McGrath.
|
||
* Rewritten to use reentrent functions by Ulrich Drepper, 1995.
|
||
*/
|
||
|
||
#include <limits.h>
|
||
#include <stddef.h>
|
||
#include <stdlib.h>
|
||
|
||
|
||
/* An improved random number generation package. In addition to the standard
|
||
rand()/srand() like interface, this package also has a special state info
|
||
interface. The initstate() routine is called with a seed, an array of
|
||
bytes, and a count of how many bytes are being passed in; this array is
|
||
then initialized to contain information for random number generation with
|
||
that much state information. Good sizes for the amount of state
|
||
information are 32, 64, 128, and 256 bytes. The state can be switched by
|
||
calling the setstate() function with the same array as was initiallized
|
||
with initstate(). By default, the package runs with 128 bytes of state
|
||
information and generates far better random numbers than a linear
|
||
congruential generator. If the amount of state information is less than
|
||
32 bytes, a simple linear congruential R.N.G. is used. Internally, the
|
||
state information is treated as an array of longs; the zeroeth element of
|
||
the array is the type of R.N.G. being used (small integer); the remainder
|
||
of the array is the state information for the R.N.G. Thus, 32 bytes of
|
||
state information will give 7 longs worth of state information, which will
|
||
allow a degree seven polynomial. (Note: The zeroeth word of state
|
||
information also has some other information stored in it; see setstate
|
||
for details). The random number generation technique is a linear feedback
|
||
shift register approach, employing trinomials (since there are fewer terms
|
||
to sum up that way). In this approach, the least significant bit of all
|
||
the numbers in the state table will act as a linear feedback shift register,
|
||
and will have period 2^deg - 1 (where deg is the degree of the polynomial
|
||
being used, assuming that the polynomial is irreducible and primitive).
|
||
The higher order bits will have longer periods, since their values are
|
||
also influenced by pseudo-random carries out of the lower bits. The
|
||
total period of the generator is approximately deg*(2**deg - 1); thus
|
||
doubling the amount of state information has a vast influence on the
|
||
period of the generator. Note: The deg*(2**deg - 1) is an approximation
|
||
only good for large deg, when the period of the shift register is the
|
||
dominant factor. With deg equal to seven, the period is actually much
|
||
longer than the 7*(2**7 - 1) predicted by this formula. */
|
||
|
||
|
||
|
||
/* For each of the currently supported random number generators, we have a
|
||
break value on the amount of state information (you need at least thi
|
||
bytes of state info to support this random number generator), a degree for
|
||
the polynomial (actually a trinomial) that the R.N.G. is based on, and
|
||
separation between the two lower order coefficients of the trinomial. */
|
||
|
||
/* Linear congruential. */
|
||
#define TYPE_0 0
|
||
#define BREAK_0 8
|
||
#define DEG_0 0
|
||
#define SEP_0 0
|
||
|
||
/* x**7 + x**3 + 1. */
|
||
#define TYPE_1 1
|
||
#define BREAK_1 32
|
||
#define DEG_1 7
|
||
#define SEP_1 3
|
||
|
||
/* x**15 + x + 1. */
|
||
#define TYPE_2 2
|
||
#define BREAK_2 64
|
||
#define DEG_2 15
|
||
#define SEP_2 1
|
||
|
||
/* x**31 + x**3 + 1. */
|
||
#define TYPE_3 3
|
||
#define BREAK_3 128
|
||
#define DEG_3 31
|
||
#define SEP_3 3
|
||
|
||
/* x**63 + x + 1. */
|
||
#define TYPE_4 4
|
||
#define BREAK_4 256
|
||
#define DEG_4 63
|
||
#define SEP_4 1
|
||
|
||
|
||
/* Array versions of the above information to make code run faster.
|
||
Relies on fact that TYPE_i == i. */
|
||
|
||
#define MAX_TYPES 5 /* Max number of types above. */
|
||
|
||
|
||
/* Initially, everything is set up as if from:
|
||
initstate(1, randtbl, 128);
|
||
Note that this initialization takes advantage of the fact that srandom
|
||
advances the front and rear pointers 10*rand_deg times, and hence the
|
||
rear pointer which starts at 0 will also end up at zero; thus the zeroeth
|
||
element of the state information, which contains info about the current
|
||
position of the rear pointer is just
|
||
(MAX_TYPES * (rptr - state)) + TYPE_3 == TYPE_3. */
|
||
|
||
static int32_t randtbl[DEG_3 + 1] =
|
||
{
|
||
TYPE_3,
|
||
|
||
-1726662223, 379960547, 1735697613, 1040273694, 1313901226,
|
||
1627687941, -179304937, -2073333483, 1780058412, -1989503057,
|
||
-615974602, 344556628, 939512070, -1249116260, 1507946756,
|
||
-812545463, 154635395, 1388815473, -1926676823, 525320961,
|
||
-1009028674, 968117788, -123449607, 1284210865, 435012392,
|
||
-2017506339, -911064859, -370259173, 1132637927, 1398500161,
|
||
-205601318,
|
||
};
|
||
|
||
|
||
static struct random_data unsafe_state =
|
||
{
|
||
/* FPTR and RPTR are two pointers into the state info, a front and a rear
|
||
pointer. These two pointers are always rand_sep places aparts, as they
|
||
cycle through the state information. (Yes, this does mean we could get
|
||
away with just one pointer, but the code for random is more efficient
|
||
this way). The pointers are left positioned as they would be from the call:
|
||
initstate(1, randtbl, 128);
|
||
(The position of the rear pointer, rptr, is really 0 (as explained above
|
||
in the initialization of randtbl) because the state table pointer is set
|
||
to point to randtbl[1] (as explained below).) */
|
||
|
||
fptr : &randtbl[SEP_3 + 1],
|
||
rptr : &randtbl[1],
|
||
|
||
/* The following things are the pointer to the state information table,
|
||
the type of the current generator, the degree of the current polynomial
|
||
being used, and the separation between the two pointers.
|
||
Note that for efficiency of random, we remember the first location of
|
||
the state information, not the zeroeth. Hence it is valid to access
|
||
state[-1], which is used to store the type of the R.N.G.
|
||
Also, we remember the last location, since this is more efficient than
|
||
indexing every time to find the address of the last element to see if
|
||
the front and rear pointers have wrapped. */
|
||
|
||
state : &randtbl[1],
|
||
|
||
rand_type : TYPE_3,
|
||
rand_deg : DEG_3,
|
||
rand_sep : SEP_3,
|
||
|
||
end_ptr : &randtbl[sizeof (randtbl) / sizeof (randtbl[0])]
|
||
};
|
||
|
||
/* Initialize the random number generator based on the given seed. If the
|
||
type is the trivial no-state-information type, just remember the seed.
|
||
Otherwise, initializes state[] based on the given "seed" via a linear
|
||
congruential generator. Then, the pointers are set to known locations
|
||
that are exactly rand_sep places apart. Lastly, it cycles the state
|
||
information a given number of times to get rid of any initial dependencies
|
||
introduced by the L.C.R.N.G. Note that the initialization of randtbl[]
|
||
for default usage relies on values produced by this routine. */
|
||
void
|
||
__srandom (x)
|
||
unsigned int x;
|
||
{
|
||
(void) __srandom_r (x, &unsafe_state);
|
||
}
|
||
|
||
weak_alias (__srandom, srandom)
|
||
weak_alias (__srandom, srand)
|
||
|
||
/* Initialize the state information in the given array of N bytes for
|
||
future random number generation. Based on the number of bytes we
|
||
are given, and the break values for the different R.N.G.'s, we choose
|
||
the best (largest) one we can and set things up for it. srandom is
|
||
then called to initialize the state information. Note that on return
|
||
from srandom, we set state[-1] to be the type multiplexed with the current
|
||
value of the rear pointer; this is so successive calls to initstate won't
|
||
lose this information and will be able to restart with setstate.
|
||
Note: The first thing we do is save the current state, if any, just like
|
||
setstate so that it doesn't matter when initstate is called.
|
||
Returns a pointer to the old state. */
|
||
void *
|
||
__initstate (seed, arg_state, n)
|
||
unsigned int seed;
|
||
void *arg_state;
|
||
size_t n;
|
||
{
|
||
void *ostate = (void *) &unsafe_state.state[-1];
|
||
|
||
__initstate_r (seed, arg_state, n, &unsafe_state);
|
||
|
||
return ostate;
|
||
}
|
||
|
||
weak_alias (__initstate, initstate)
|
||
|
||
/* Restore the state from the given state array.
|
||
Note: It is important that we also remember the locations of the pointers
|
||
in the current state information, and restore the locations of the pointers
|
||
from the old state information. This is done by multiplexing the pointer
|
||
location into the zeroeth word of the state information. Note that due
|
||
to the order in which things are done, it is OK to call setstate with the
|
||
same state as the current state
|
||
Returns a pointer to the old state information. */
|
||
void *
|
||
__setstate (arg_state)
|
||
void *arg_state;
|
||
{
|
||
void *ostate = (void *) &unsafe_state.state[-1];
|
||
|
||
if (__setstate_r (arg_state, &unsafe_state) < 0)
|
||
return NULL;
|
||
|
||
return ostate;
|
||
}
|
||
|
||
weak_alias (__setstate, setstate)
|
||
|
||
/* If we are using the trivial TYPE_0 R.N.G., just do the old linear
|
||
congruential bit. Otherwise, we do our fancy trinomial stuff, which is the
|
||
same in all ther other cases due to all the global variables that have been
|
||
set up. The basic operation is to add the number at the rear pointer into
|
||
the one at the front pointer. Then both pointers are advanced to the next
|
||
location cyclically in the table. The value returned is the sum generated,
|
||
reduced to 31 bits by throwing away the "least random" low bit.
|
||
Note: The code takes advantage of the fact that both the front and
|
||
rear pointers can't wrap on the same call by not testing the rear
|
||
pointer if the front one has wrapped. Returns a 31-bit random number. */
|
||
|
||
int32_t
|
||
__random ()
|
||
{
|
||
int32_t retval;
|
||
|
||
(void) __random_r (&unsafe_state, &retval);
|
||
|
||
return retval;
|
||
}
|
||
|
||
weak_alias (__random, random)
|