glibc/sysdeps/ieee754/dbl-64/e_exp2.c
Wilco Dijkstra 220622dde5 Add libm_alias_finite for _finite symbols
This patch adds a new macro, libm_alias_finite, to define all _finite
symbol.  It sets all _finite symbol as compat symbol based on its first
version (obtained from the definition at built generated first-versions.h).

The <fn>f128_finite symbols were introduced in GLIBC 2.26 and so need
special treatment in code that is shared between long double and float128.
It is done by adding a list, similar to internal symbol redifinition,
on sysdeps/ieee754/float128/float128_private.h.

Alpha also needs some tricky changes to ensure we still emit 2 compat
symbols for sqrt(f).

Passes buildmanyglibc.

Co-authored-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
Reviewed-by: Siddhesh Poyarekar <siddhesh@sourceware.org>
2020-01-03 10:02:04 -03:00

156 lines
5.3 KiB
C

/* Double-precision 2^x function.
Copyright (C) 2018-2020 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<https://www.gnu.org/licenses/>. */
#include <math.h>
#include <stdint.h>
#include <math-barriers.h>
#include <math-narrow-eval.h>
#include <math-svid-compat.h>
#include <libm-alias-finite.h>
#include <libm-alias-double.h>
#include "math_config.h"
#define N (1 << EXP_TABLE_BITS)
#define Shift __exp_data.exp2_shift
#define T __exp_data.tab
#define C1 __exp_data.exp2_poly[0]
#define C2 __exp_data.exp2_poly[1]
#define C3 __exp_data.exp2_poly[2]
#define C4 __exp_data.exp2_poly[3]
#define C5 __exp_data.exp2_poly[4]
/* Handle cases that may overflow or underflow when computing the result that
is scale*(1+TMP) without intermediate rounding. The bit representation of
scale is in SBITS, however it has a computed exponent that may have
overflown into the sign bit so that needs to be adjusted before using it as
a double. (int32_t)KI is the k used in the argument reduction and exponent
adjustment of scale, positive k here means the result may overflow and
negative k means the result may underflow. */
static inline double
specialcase (double_t tmp, uint64_t sbits, uint64_t ki)
{
double_t scale, y;
if ((ki & 0x80000000) == 0)
{
/* k > 0, the exponent of scale might have overflowed by 1. */
sbits -= 1ull << 52;
scale = asdouble (sbits);
y = 2 * (scale + scale * tmp);
return check_oflow (y);
}
/* k < 0, need special care in the subnormal range. */
sbits += 1022ull << 52;
scale = asdouble (sbits);
y = scale + scale * tmp;
if (y < 1.0)
{
/* Round y to the right precision before scaling it into the subnormal
range to avoid double rounding that can cause 0.5+E/2 ulp error where
E is the worst-case ulp error outside the subnormal range. So this
is only useful if the goal is better than 1 ulp worst-case error. */
double_t hi, lo;
lo = scale - y + scale * tmp;
hi = 1.0 + y;
lo = 1.0 - hi + y + lo;
y = math_narrow_eval (hi + lo) - 1.0;
/* Avoid -0.0 with downward rounding. */
if (WANT_ROUNDING && y == 0.0)
y = 0.0;
/* The underflow exception needs to be signaled explicitly. */
math_force_eval (math_opt_barrier (0x1p-1022) * 0x1p-1022);
}
y = 0x1p-1022 * y;
return check_uflow (y);
}
/* Top 12 bits of a double (sign and exponent bits). */
static inline uint32_t
top12 (double x)
{
return asuint64 (x) >> 52;
}
double
__exp2 (double x)
{
uint32_t abstop;
uint64_t ki, idx, top, sbits;
/* double_t for better performance on targets with FLT_EVAL_METHOD==2. */
double_t kd, r, r2, scale, tail, tmp;
abstop = top12 (x) & 0x7ff;
if (__glibc_unlikely (abstop - top12 (0x1p-54)
>= top12 (512.0) - top12 (0x1p-54)))
{
if (abstop - top12 (0x1p-54) >= 0x80000000)
/* Avoid spurious underflow for tiny x. */
/* Note: 0 is common input. */
return WANT_ROUNDING ? 1.0 + x : 1.0;
if (abstop >= top12 (1024.0))
{
if (asuint64 (x) == asuint64 (-INFINITY))
return 0.0;
if (abstop >= top12 (INFINITY))
return 1.0 + x;
if (!(asuint64 (x) >> 63))
return __math_oflow (0);
else if (asuint64 (x) >= asuint64 (-1075.0))
return __math_uflow (0);
}
if (2 * asuint64 (x) > 2 * asuint64 (928.0))
/* Large x is special cased below. */
abstop = 0;
}
/* exp2(x) = 2^(k/N) * 2^r, with 2^r in [2^(-1/2N),2^(1/2N)]. */
/* x = k/N + r, with int k and r in [-1/2N, 1/2N]. */
kd = math_narrow_eval (x + Shift);
ki = asuint64 (kd); /* k. */
kd -= Shift; /* k/N for int k. */
r = x - kd;
/* 2^(k/N) ~= scale * (1 + tail). */
idx = 2 * (ki % N);
top = ki << (52 - EXP_TABLE_BITS);
tail = asdouble (T[idx]);
/* This is only a valid scale when -1023*N < k < 1024*N. */
sbits = T[idx + 1] + top;
/* exp2(x) = 2^(k/N) * 2^r ~= scale + scale * (tail + 2^r - 1). */
/* Evaluation is optimized assuming superscalar pipelined execution. */
r2 = r * r;
/* Without fma the worst case error is 0.5/N ulp larger. */
/* Worst case error is less than 0.5+0.86/N+(abs poly error * 2^53) ulp. */
tmp = tail + r * C1 + r2 * (C2 + r * C3) + r2 * r2 * (C4 + r * C5);
if (__glibc_unlikely (abstop == 0))
return specialcase (tmp, sbits, ki);
scale = asdouble (sbits);
/* Note: tmp == 0 or |tmp| > 2^-65 and scale > 2^-928, so there
is no spurious underflow here even without fma. */
return scale + scale * tmp;
}
#ifndef __exp2
strong_alias (__exp2, __ieee754_exp2)
libm_alias_finite (__ieee754_exp2, __exp2)
# if LIBM_SVID_COMPAT
versioned_symbol (libm, __exp2, exp2, GLIBC_2_29);
libm_alias_double_other (__exp2, exp2)
# else
libm_alias_double (__exp2, exp2)
# endif
#endif