mirror of
https://sourceware.org/git/glibc.git
synced 2024-12-29 05:51:10 +00:00
220622dde5
This patch adds a new macro, libm_alias_finite, to define all _finite symbol. It sets all _finite symbol as compat symbol based on its first version (obtained from the definition at built generated first-versions.h). The <fn>f128_finite symbols were introduced in GLIBC 2.26 and so need special treatment in code that is shared between long double and float128. It is done by adding a list, similar to internal symbol redifinition, on sysdeps/ieee754/float128/float128_private.h. Alpha also needs some tricky changes to ensure we still emit 2 compat symbols for sqrt(f). Passes buildmanyglibc. Co-authored-by: Adhemerval Zanella <adhemerval.zanella@linaro.org> Reviewed-by: Siddhesh Poyarekar <siddhesh@sourceware.org>
156 lines
5.3 KiB
C
156 lines
5.3 KiB
C
/* Double-precision 2^x function.
|
|
Copyright (C) 2018-2020 Free Software Foundation, Inc.
|
|
This file is part of the GNU C Library.
|
|
|
|
The GNU C Library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Lesser General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
|
|
The GNU C Library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
|
License along with the GNU C Library; if not, see
|
|
<https://www.gnu.org/licenses/>. */
|
|
|
|
#include <math.h>
|
|
#include <stdint.h>
|
|
#include <math-barriers.h>
|
|
#include <math-narrow-eval.h>
|
|
#include <math-svid-compat.h>
|
|
#include <libm-alias-finite.h>
|
|
#include <libm-alias-double.h>
|
|
#include "math_config.h"
|
|
|
|
#define N (1 << EXP_TABLE_BITS)
|
|
#define Shift __exp_data.exp2_shift
|
|
#define T __exp_data.tab
|
|
#define C1 __exp_data.exp2_poly[0]
|
|
#define C2 __exp_data.exp2_poly[1]
|
|
#define C3 __exp_data.exp2_poly[2]
|
|
#define C4 __exp_data.exp2_poly[3]
|
|
#define C5 __exp_data.exp2_poly[4]
|
|
|
|
/* Handle cases that may overflow or underflow when computing the result that
|
|
is scale*(1+TMP) without intermediate rounding. The bit representation of
|
|
scale is in SBITS, however it has a computed exponent that may have
|
|
overflown into the sign bit so that needs to be adjusted before using it as
|
|
a double. (int32_t)KI is the k used in the argument reduction and exponent
|
|
adjustment of scale, positive k here means the result may overflow and
|
|
negative k means the result may underflow. */
|
|
static inline double
|
|
specialcase (double_t tmp, uint64_t sbits, uint64_t ki)
|
|
{
|
|
double_t scale, y;
|
|
|
|
if ((ki & 0x80000000) == 0)
|
|
{
|
|
/* k > 0, the exponent of scale might have overflowed by 1. */
|
|
sbits -= 1ull << 52;
|
|
scale = asdouble (sbits);
|
|
y = 2 * (scale + scale * tmp);
|
|
return check_oflow (y);
|
|
}
|
|
/* k < 0, need special care in the subnormal range. */
|
|
sbits += 1022ull << 52;
|
|
scale = asdouble (sbits);
|
|
y = scale + scale * tmp;
|
|
if (y < 1.0)
|
|
{
|
|
/* Round y to the right precision before scaling it into the subnormal
|
|
range to avoid double rounding that can cause 0.5+E/2 ulp error where
|
|
E is the worst-case ulp error outside the subnormal range. So this
|
|
is only useful if the goal is better than 1 ulp worst-case error. */
|
|
double_t hi, lo;
|
|
lo = scale - y + scale * tmp;
|
|
hi = 1.0 + y;
|
|
lo = 1.0 - hi + y + lo;
|
|
y = math_narrow_eval (hi + lo) - 1.0;
|
|
/* Avoid -0.0 with downward rounding. */
|
|
if (WANT_ROUNDING && y == 0.0)
|
|
y = 0.0;
|
|
/* The underflow exception needs to be signaled explicitly. */
|
|
math_force_eval (math_opt_barrier (0x1p-1022) * 0x1p-1022);
|
|
}
|
|
y = 0x1p-1022 * y;
|
|
return check_uflow (y);
|
|
}
|
|
|
|
/* Top 12 bits of a double (sign and exponent bits). */
|
|
static inline uint32_t
|
|
top12 (double x)
|
|
{
|
|
return asuint64 (x) >> 52;
|
|
}
|
|
|
|
double
|
|
__exp2 (double x)
|
|
{
|
|
uint32_t abstop;
|
|
uint64_t ki, idx, top, sbits;
|
|
/* double_t for better performance on targets with FLT_EVAL_METHOD==2. */
|
|
double_t kd, r, r2, scale, tail, tmp;
|
|
|
|
abstop = top12 (x) & 0x7ff;
|
|
if (__glibc_unlikely (abstop - top12 (0x1p-54)
|
|
>= top12 (512.0) - top12 (0x1p-54)))
|
|
{
|
|
if (abstop - top12 (0x1p-54) >= 0x80000000)
|
|
/* Avoid spurious underflow for tiny x. */
|
|
/* Note: 0 is common input. */
|
|
return WANT_ROUNDING ? 1.0 + x : 1.0;
|
|
if (abstop >= top12 (1024.0))
|
|
{
|
|
if (asuint64 (x) == asuint64 (-INFINITY))
|
|
return 0.0;
|
|
if (abstop >= top12 (INFINITY))
|
|
return 1.0 + x;
|
|
if (!(asuint64 (x) >> 63))
|
|
return __math_oflow (0);
|
|
else if (asuint64 (x) >= asuint64 (-1075.0))
|
|
return __math_uflow (0);
|
|
}
|
|
if (2 * asuint64 (x) > 2 * asuint64 (928.0))
|
|
/* Large x is special cased below. */
|
|
abstop = 0;
|
|
}
|
|
|
|
/* exp2(x) = 2^(k/N) * 2^r, with 2^r in [2^(-1/2N),2^(1/2N)]. */
|
|
/* x = k/N + r, with int k and r in [-1/2N, 1/2N]. */
|
|
kd = math_narrow_eval (x + Shift);
|
|
ki = asuint64 (kd); /* k. */
|
|
kd -= Shift; /* k/N for int k. */
|
|
r = x - kd;
|
|
/* 2^(k/N) ~= scale * (1 + tail). */
|
|
idx = 2 * (ki % N);
|
|
top = ki << (52 - EXP_TABLE_BITS);
|
|
tail = asdouble (T[idx]);
|
|
/* This is only a valid scale when -1023*N < k < 1024*N. */
|
|
sbits = T[idx + 1] + top;
|
|
/* exp2(x) = 2^(k/N) * 2^r ~= scale + scale * (tail + 2^r - 1). */
|
|
/* Evaluation is optimized assuming superscalar pipelined execution. */
|
|
r2 = r * r;
|
|
/* Without fma the worst case error is 0.5/N ulp larger. */
|
|
/* Worst case error is less than 0.5+0.86/N+(abs poly error * 2^53) ulp. */
|
|
tmp = tail + r * C1 + r2 * (C2 + r * C3) + r2 * r2 * (C4 + r * C5);
|
|
if (__glibc_unlikely (abstop == 0))
|
|
return specialcase (tmp, sbits, ki);
|
|
scale = asdouble (sbits);
|
|
/* Note: tmp == 0 or |tmp| > 2^-65 and scale > 2^-928, so there
|
|
is no spurious underflow here even without fma. */
|
|
return scale + scale * tmp;
|
|
}
|
|
#ifndef __exp2
|
|
strong_alias (__exp2, __ieee754_exp2)
|
|
libm_alias_finite (__ieee754_exp2, __exp2)
|
|
# if LIBM_SVID_COMPAT
|
|
versioned_symbol (libm, __exp2, exp2, GLIBC_2_29);
|
|
libm_alias_double_other (__exp2, exp2)
|
|
# else
|
|
libm_alias_double (__exp2, exp2)
|
|
# endif
|
|
#endif
|