glibc/string/strstr.c
Wilco Dijkstra 83a552b0bb Fix strstr bug with huge needles (bug 23637)
The generic strstr in GLIBC 2.28 fails to match huge needles.  The optimized
AVAILABLE macro reads ahead a large fixed amount to reduce the overhead of
repeatedly checking for the end of the string.  However if the needle length
is larger than this, two_way_long_needle may confuse this as meaning the end
of the string and return NULL.  This is fixed by adding the needle length to
the amount to read ahead.

	[BZ #23637]
	* string/test-strstr.c (pr23637): New function.
	(test_main): Add tests with longer needles.
	* string/strcasestr.c (AVAILABLE): Fix readahead distance.
	* string/strstr.c (AVAILABLE): Likewise.
2018-09-19 16:50:18 +01:00

94 lines
3.1 KiB
C

/* Return the offset of one string within another.
Copyright (C) 1994-2018 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
/* This particular implementation was written by Eric Blake, 2008. */
#ifndef _LIBC
# include <config.h>
#endif
/* Specification of strstr. */
#include <string.h>
#include <stdbool.h>
#ifndef _LIBC
# define __builtin_expect(expr, val) (expr)
#endif
#define RETURN_TYPE char *
#define AVAILABLE(h, h_l, j, n_l) \
(((j) + (n_l) <= (h_l)) \
|| ((h_l) += __strnlen ((void*)((h) + (h_l)), (n_l) + 512), \
(j) + (n_l) <= (h_l)))
#define CHECK_EOL (1)
#define RET0_IF_0(a) if (!a) goto ret0
#define FASTSEARCH(S,C,N) (void*) strchr ((void*)(S), (C))
#include "str-two-way.h"
#undef strstr
#ifndef STRSTR
#define STRSTR strstr
#endif
/* Return the first occurrence of NEEDLE in HAYSTACK. Return HAYSTACK
if NEEDLE is empty, otherwise NULL if NEEDLE is not found in
HAYSTACK. */
char *
STRSTR (const char *haystack, const char *needle)
{
size_t needle_len; /* Length of NEEDLE. */
size_t haystack_len; /* Known minimum length of HAYSTACK. */
/* Handle empty NEEDLE special case. */
if (needle[0] == '\0')
return (char *) haystack;
/* Skip until we find the first matching char from NEEDLE. */
haystack = strchr (haystack, needle[0]);
if (haystack == NULL || needle[1] == '\0')
return (char *) haystack;
/* Ensure HAYSTACK length is at least as long as NEEDLE length.
Since a match may occur early on in a huge HAYSTACK, use strnlen
and read ahead a few cachelines for improved performance. */
needle_len = strlen (needle);
haystack_len = __strnlen (haystack, needle_len + 256);
if (haystack_len < needle_len)
return NULL;
/* Check whether we have a match. This improves performance since we avoid
the initialization overhead of the two-way algorithm. */
if (memcmp (haystack, needle, needle_len) == 0)
return (char *) haystack;
/* Perform the search. Abstract memory is considered to be an array
of 'unsigned char' values, not an array of 'char' values. See
ISO C 99 section 6.2.6.1. */
if (needle_len < LONG_NEEDLE_THRESHOLD)
return two_way_short_needle ((const unsigned char *) haystack,
haystack_len,
(const unsigned char *) needle, needle_len);
return two_way_long_needle ((const unsigned char *) haystack, haystack_len,
(const unsigned char *) needle, needle_len);
}
libc_hidden_builtin_def (strstr)
#undef LONG_NEEDLE_THRESHOLD