glibc/sysdeps/powerpc/powerpc32/dl-machine.h
James Clarke 8644588807 Fix TLS relocations against local symbols on powerpc32, sparc32 and sparc64
Normally, TLS relocations against local symbols are optimised by the linker
to be absolute.  However, gold does not do this, and so it is possible to
end up with, for example, R_SPARC_TLS_DTPMOD64 referring to a local symbol.
Since sym_map is left as null in elf_machine_rela for the special local
symbol case, the relocation handling thinks it has nothing to do, and so
the module gets left as 0.  Havoc then ensues when the variable in question
is accessed.

Before this fix, the main_local_gold program would receive a SIGBUS on
sparc64, and SIGSEGV on powerpc32.  With this fix applied, that test now
passes like the rest of them.

	* sysdeps/powerpc/powerpc32/dl-machine.h (elf_machine_rela):
	Assign sym_map to be map for local symbols, as TLS relocations
	use sym_map to determine whether the symbol is defined and to
	extract the TLS information.
	* sysdeps/sparc/sparc32/dl-machine.h (elf_machine_rela): Likewise.
	* sysdeps/sparc/sparc64/dl-machine.h (elf_machine_rela): Likewise.
2017-10-13 16:14:16 -03:00

460 lines
14 KiB
C

/* Machine-dependent ELF dynamic relocation inline functions. PowerPC version.
Copyright (C) 1995-2017 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
#ifndef dl_machine_h
#define dl_machine_h
#define ELF_MACHINE_NAME "powerpc"
#include <assert.h>
#include <dl-tls.h>
#include <dl-irel.h>
#include <hwcapinfo.h>
/* Translate a processor specific dynamic tag to the index
in l_info array. */
#define DT_PPC(x) (DT_PPC_##x - DT_LOPROC + DT_NUM)
/* Return nonzero iff ELF header is compatible with the running host. */
static inline int
elf_machine_matches_host (const Elf32_Ehdr *ehdr)
{
return ehdr->e_machine == EM_PPC;
}
/* Return the value of the GOT pointer. */
static inline Elf32_Addr * __attribute__ ((const))
ppc_got (void)
{
Elf32_Addr *got;
asm ("bcl 20,31,1f\n"
"1: mflr %0\n"
" addis %0,%0,_GLOBAL_OFFSET_TABLE_-1b@ha\n"
" addi %0,%0,_GLOBAL_OFFSET_TABLE_-1b@l\n"
: "=b" (got) : : "lr");
return got;
}
/* Return the link-time address of _DYNAMIC, stored as
the first value in the GOT. */
static inline Elf32_Addr __attribute__ ((const))
elf_machine_dynamic (void)
{
return *ppc_got ();
}
/* Return the run-time load address of the shared object. */
static inline Elf32_Addr __attribute__ ((const))
elf_machine_load_address (void)
{
Elf32_Addr *branchaddr;
Elf32_Addr runtime_dynamic;
/* This is much harder than you'd expect. Possibly I'm missing something.
The 'obvious' way:
Apparently, "bcl 20,31,$+4" is what should be used to load LR
with the address of the next instruction.
I think this is so that machines that do bl/blr pairing don't
get confused.
asm ("bcl 20,31,0f ;"
"0: mflr 0 ;"
"lis %0,0b@ha;"
"addi %0,%0,0b@l;"
"subf %0,%0,0"
: "=b" (addr) : : "r0", "lr");
doesn't work, because the linker doesn't have to (and in fact doesn't)
update the @ha and @l references; the loader (which runs after this
code) will do that.
Instead, we use the following trick:
The linker puts the _link-time_ address of _DYNAMIC at the first
word in the GOT. We could branch to that address, if we wanted,
by using an @local reloc; the linker works this out, so it's safe
to use now. We can't, of course, actually branch there, because
we'd cause an illegal instruction exception; so we need to compute
the address ourselves. That gives us the following code: */
/* Get address of the 'b _DYNAMIC@local'... */
asm ("bcl 20,31,0f;"
"b _DYNAMIC@local;"
"0:"
: "=l" (branchaddr));
/* So now work out the difference between where the branch actually points,
and the offset of that location in memory from the start of the file. */
runtime_dynamic = ((Elf32_Addr) branchaddr
+ ((Elf32_Sword) (*branchaddr << 6 & 0xffffff00) >> 6));
return runtime_dynamic - elf_machine_dynamic ();
}
#define ELF_MACHINE_BEFORE_RTLD_RELOC(dynamic_info) /* nothing */
/* The PLT uses Elf32_Rela relocs. */
#define elf_machine_relplt elf_machine_rela
/* Mask identifying addresses reserved for the user program,
where the dynamic linker should not map anything. */
#define ELF_MACHINE_USER_ADDRESS_MASK 0xf0000000UL
/* The actual _start code is in dl-start.S. Use a really
ugly bit of assembler to let dl-start.o see _dl_start. */
#define RTLD_START asm (".globl _dl_start");
/* Decide where a relocatable object should be loaded. */
extern ElfW(Addr)
__elf_preferred_address(struct link_map *loader, size_t maplength,
ElfW(Addr) mapstartpref);
#define ELF_PREFERRED_ADDRESS(loader, maplength, mapstartpref) \
__elf_preferred_address (loader, maplength, mapstartpref)
/* ELF_RTYPE_CLASS_PLT iff TYPE describes relocation of a PLT entry, so
PLT entries should not be allowed to define the value.
ELF_RTYPE_CLASS_COPY iff TYPE should not be allowed to resolve to one
of the main executable's symbols, as for a COPY reloc. */
/* We never want to use a PLT entry as the destination of a
reloc, when what is being relocated is a branch. This is
partly for efficiency, but mostly so we avoid loops. */
#define elf_machine_type_class(type) \
((((type) == R_PPC_JMP_SLOT \
|| (type) == R_PPC_REL24 \
|| ((type) >= R_PPC_DTPMOD32 /* contiguous TLS */ \
&& (type) <= R_PPC_DTPREL32) \
|| (type) == R_PPC_ADDR24) * ELF_RTYPE_CLASS_PLT) \
| (((type) == R_PPC_COPY) * ELF_RTYPE_CLASS_COPY))
/* A reloc type used for ld.so cmdline arg lookups to reject PLT entries. */
#define ELF_MACHINE_JMP_SLOT R_PPC_JMP_SLOT
/* The PowerPC never uses REL relocations. */
#define ELF_MACHINE_NO_REL 1
#define ELF_MACHINE_NO_RELA 0
/* We define an initialization function to initialize HWCAP/HWCAP2 and
platform data so it can be copied into the TCB later. This is called
very early in _dl_sysdep_start for dynamically linked binaries. */
#ifdef SHARED
# define DL_PLATFORM_INIT dl_platform_init ()
static inline void __attribute__ ((unused))
dl_platform_init (void)
{
__tcb_parse_hwcap_and_convert_at_platform ();
}
#endif
/* Set up the loaded object described by MAP so its unrelocated PLT
entries will jump to the on-demand fixup code in dl-runtime.c.
Also install a small trampoline to be used by entries that have
been relocated to an address too far away for a single branch. */
extern int __elf_machine_runtime_setup (struct link_map *map,
int lazy, int profile);
static inline int
elf_machine_runtime_setup (struct link_map *map,
int lazy, int profile)
{
if (map->l_info[DT_JMPREL] == 0)
return lazy;
if (map->l_info[DT_PPC(GOT)] == 0)
/* Handle old style PLT. */
return __elf_machine_runtime_setup (map, lazy, profile);
/* New style non-exec PLT consisting of an array of addresses. */
map->l_info[DT_PPC(GOT)]->d_un.d_ptr += map->l_addr;
if (lazy)
{
Elf32_Addr *plt, *got, glink;
Elf32_Word num_plt_entries;
void (*dlrr) (void);
extern void _dl_runtime_resolve (void);
extern void _dl_prof_resolve (void);
if (__glibc_likely (!profile))
dlrr = _dl_runtime_resolve;
else
{
if (GLRO(dl_profile) != NULL
&&_dl_name_match_p (GLRO(dl_profile), map))
GL(dl_profile_map) = map;
dlrr = _dl_prof_resolve;
}
got = (Elf32_Addr *) map->l_info[DT_PPC(GOT)]->d_un.d_ptr;
glink = got[1];
got[1] = (Elf32_Addr) dlrr;
got[2] = (Elf32_Addr) map;
/* Relocate everything in .plt by the load address offset. */
plt = (Elf32_Addr *) D_PTR (map, l_info[DT_PLTGOT]);
num_plt_entries = (map->l_info[DT_PLTRELSZ]->d_un.d_val
/ sizeof (Elf32_Rela));
/* If a library is prelinked but we have to relocate anyway,
we have to be able to undo the prelinking of .plt section.
The prelinker saved us at got[1] address of .glink
section's start. */
if (glink)
{
glink += map->l_addr;
while (num_plt_entries-- != 0)
*plt++ = glink, glink += 4;
}
else
while (num_plt_entries-- != 0)
*plt++ += map->l_addr;
}
return lazy;
}
/* Change the PLT entry whose reloc is 'reloc' to call the actual routine. */
extern Elf32_Addr __elf_machine_fixup_plt (struct link_map *map,
Elf32_Addr *reloc_addr,
Elf32_Addr finaladdr);
static inline Elf32_Addr
elf_machine_fixup_plt (struct link_map *map, lookup_t t,
const ElfW(Sym) *refsym, const ElfW(Sym) *sym,
const Elf32_Rela *reloc,
Elf32_Addr *reloc_addr, Elf64_Addr finaladdr)
{
if (map->l_info[DT_PPC(GOT)] == 0)
/* Handle old style PLT. */
return __elf_machine_fixup_plt (map, reloc_addr, finaladdr);
*reloc_addr = finaladdr;
return finaladdr;
}
/* Return the final value of a plt relocation. */
static inline Elf32_Addr
elf_machine_plt_value (struct link_map *map, const Elf32_Rela *reloc,
Elf32_Addr value)
{
return value + reloc->r_addend;
}
/* Names of the architecture-specific auditing callback functions. */
#define ARCH_LA_PLTENTER ppc32_gnu_pltenter
#define ARCH_LA_PLTEXIT ppc32_gnu_pltexit
#endif /* dl_machine_h */
#ifdef RESOLVE_MAP
/* Do the actual processing of a reloc, once its target address
has been determined. */
extern void __process_machine_rela (struct link_map *map,
const Elf32_Rela *reloc,
struct link_map *sym_map,
const Elf32_Sym *sym,
const Elf32_Sym *refsym,
Elf32_Addr *const reloc_addr,
Elf32_Addr finaladdr,
int rinfo) attribute_hidden;
/* Call _dl_signal_error when a resolved value overflows a relocated area. */
extern void _dl_reloc_overflow (struct link_map *map,
const char *name,
Elf32_Addr *const reloc_addr,
const Elf32_Sym *refsym) attribute_hidden;
/* Perform the relocation specified by RELOC and SYM (which is fully resolved).
LOADADDR is the load address of the object; INFO is an array indexed
by DT_* of the .dynamic section info. */
auto inline void __attribute__ ((always_inline))
elf_machine_rela (struct link_map *map, const Elf32_Rela *reloc,
const Elf32_Sym *sym, const struct r_found_version *version,
void *const reloc_addr_arg, int skip_ifunc)
{
Elf32_Addr *const reloc_addr = reloc_addr_arg;
const Elf32_Sym *const refsym = sym;
Elf32_Addr value;
const int r_type = ELF32_R_TYPE (reloc->r_info);
struct link_map *sym_map = NULL;
#ifndef RESOLVE_CONFLICT_FIND_MAP
if (r_type == R_PPC_RELATIVE)
{
*reloc_addr = map->l_addr + reloc->r_addend;
return;
}
if (__glibc_unlikely (r_type == R_PPC_NONE))
return;
/* binutils on ppc32 includes st_value in r_addend for relocations
against local symbols. */
if (__builtin_expect (ELF32_ST_BIND (sym->st_info) == STB_LOCAL, 0)
&& sym->st_shndx != SHN_UNDEF)
{
sym_map = map;
value = map->l_addr;
}
else
{
sym_map = RESOLVE_MAP (&sym, version, r_type);
value = sym_map == NULL ? 0 : sym_map->l_addr + sym->st_value;
}
value += reloc->r_addend;
#else
value = reloc->r_addend;
#endif
if (sym != NULL
&& __builtin_expect (ELFW(ST_TYPE) (sym->st_info) == STT_GNU_IFUNC, 0)
&& __builtin_expect (sym->st_shndx != SHN_UNDEF, 1)
&& __builtin_expect (!skip_ifunc, 1))
value = elf_ifunc_invoke (value);
/* A small amount of code is duplicated here for speed. In libc,
more than 90% of the relocs are R_PPC_RELATIVE; in the X11 shared
libraries, 60% are R_PPC_RELATIVE, 24% are R_PPC_GLOB_DAT or
R_PPC_ADDR32, and 16% are R_PPC_JMP_SLOT (which this routine
wouldn't usually handle). As an bonus, doing this here allows
the switch statement in __process_machine_rela to work. */
switch (r_type)
{
case R_PPC_GLOB_DAT:
case R_PPC_ADDR32:
*reloc_addr = value;
break;
#ifndef RESOLVE_CONFLICT_FIND_MAP
# ifdef RTLD_BOOTSTRAP
# define NOT_BOOTSTRAP 0
# else
# define NOT_BOOTSTRAP 1
# endif
case R_PPC_DTPMOD32:
if (map->l_info[DT_PPC(OPT)]
&& (map->l_info[DT_PPC(OPT)]->d_un.d_val & PPC_OPT_TLS))
{
if (!NOT_BOOTSTRAP)
{
reloc_addr[0] = 0;
reloc_addr[1] = (sym_map->l_tls_offset - TLS_TP_OFFSET
+ TLS_DTV_OFFSET);
break;
}
else if (sym_map != NULL)
{
# ifndef SHARED
CHECK_STATIC_TLS (map, sym_map);
# else
if (TRY_STATIC_TLS (map, sym_map))
# endif
{
reloc_addr[0] = 0;
/* Set up for local dynamic. */
reloc_addr[1] = (sym_map->l_tls_offset - TLS_TP_OFFSET
+ TLS_DTV_OFFSET);
break;
}
}
}
if (!NOT_BOOTSTRAP)
/* During startup the dynamic linker is always index 1. */
*reloc_addr = 1;
else if (sym_map != NULL)
/* Get the information from the link map returned by the
RESOLVE_MAP function. */
*reloc_addr = sym_map->l_tls_modid;
break;
case R_PPC_DTPREL32:
if (map->l_info[DT_PPC(OPT)]
&& (map->l_info[DT_PPC(OPT)]->d_un.d_val & PPC_OPT_TLS))
{
if (!NOT_BOOTSTRAP)
{
*reloc_addr = TLS_TPREL_VALUE (sym_map, sym, reloc);
break;
}
else if (sym_map != NULL)
{
/* This reloc is always preceded by R_PPC_DTPMOD32. */
# ifndef SHARED
assert (HAVE_STATIC_TLS (map, sym_map));
# else
if (HAVE_STATIC_TLS (map, sym_map))
# endif
{
*reloc_addr = TLS_TPREL_VALUE (sym_map, sym, reloc);
break;
}
}
}
/* During relocation all TLS symbols are defined and used.
Therefore the offset is already correct. */
if (NOT_BOOTSTRAP && sym_map != NULL)
*reloc_addr = TLS_DTPREL_VALUE (sym, reloc);
break;
case R_PPC_TPREL32:
if (!NOT_BOOTSTRAP || sym_map != NULL)
{
if (NOT_BOOTSTRAP)
CHECK_STATIC_TLS (map, sym_map);
*reloc_addr = TLS_TPREL_VALUE (sym_map, sym, reloc);
}
break;
#endif
case R_PPC_JMP_SLOT:
#ifdef RESOLVE_CONFLICT_FIND_MAP
RESOLVE_CONFLICT_FIND_MAP (map, reloc_addr);
#endif
if (map->l_info[DT_PPC(GOT)] != 0)
{
*reloc_addr = value;
break;
}
/* FALLTHROUGH */
default:
__process_machine_rela (map, reloc, sym_map, sym, refsym,
reloc_addr, value, r_type);
}
}
auto inline void __attribute__ ((always_inline))
elf_machine_rela_relative (Elf32_Addr l_addr, const Elf32_Rela *reloc,
void *const reloc_addr_arg)
{
Elf32_Addr *const reloc_addr = reloc_addr_arg;
*reloc_addr = l_addr + reloc->r_addend;
}
auto inline void __attribute__ ((always_inline))
elf_machine_lazy_rel (struct link_map *map,
Elf32_Addr l_addr, const Elf32_Rela *reloc,
int skip_ifunc)
{
/* elf_machine_runtime_setup handles this. */
}
#endif /* RESOLVE_MAP */