mirror of
https://sourceware.org/git/glibc.git
synced 2024-11-26 15:00:06 +00:00
0fed79a827
The ldbl-128ibm implementation of fmodl has logic to detect when the first argument has absolute value less than or equal to the second. This logic is only correct for nonzero low parts; if the high parts are equal and the low parts are zero, then the signs of the low parts (which have no semantic effect on the value of the long double number) can result in equal values being wrongly treated as unequal, and an incorrect result being returned from fmodl. This patch fixes this by checking for the case of zero low parts. Although this does show up in tests from libm-test.inc (both tests of fmodl, and, indirectly, of remainderl / dreml), the dependence on non-semantic zero low parts means that test shouldn't be expected to reproduce it reliably; thus, this patch adds a standalone test that sets up affected values using unions. Tested for powerpc. [BZ #19602] * sysdeps/ieee754/ldbl-128ibm/e_fmodl.c (__ieee754_fmodl): Handle equal high parts and both low parts zero specially. * sysdeps/ieee754/ldbl-128ibm/test-fmodl-ldbl-128ibm.c: New test. * sysdeps/ieee754/ldbl-128ibm/Makefile [$(subdir) = math] (tests): Add test-fmodl-ldbl-128ibm.
150 lines
4.6 KiB
C
150 lines
4.6 KiB
C
/* e_fmodl.c -- long double version of e_fmod.c.
|
|
* Conversion to IEEE quad long double by Jakub Jelinek, jj@ultra.linux.cz.
|
|
*/
|
|
/*
|
|
* ====================================================
|
|
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
|
*
|
|
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
|
* Permission to use, copy, modify, and distribute this
|
|
* software is freely granted, provided that this notice
|
|
* is preserved.
|
|
* ====================================================
|
|
*/
|
|
|
|
/*
|
|
* __ieee754_fmodl(x,y)
|
|
* Return x mod y in exact arithmetic
|
|
* Method: shift and subtract
|
|
*/
|
|
|
|
#include <math.h>
|
|
#include <math_private.h>
|
|
#include <ieee754.h>
|
|
|
|
static const long double one = 1.0, Zero[] = {0.0, -0.0,};
|
|
|
|
long double
|
|
__ieee754_fmodl (long double x, long double y)
|
|
{
|
|
int64_t hx, hy, hz, sx, sy;
|
|
uint64_t lx, ly, lz;
|
|
int n, ix, iy;
|
|
double xhi, xlo, yhi, ylo;
|
|
|
|
ldbl_unpack (x, &xhi, &xlo);
|
|
EXTRACT_WORDS64 (hx, xhi);
|
|
EXTRACT_WORDS64 (lx, xlo);
|
|
ldbl_unpack (y, &yhi, &ylo);
|
|
EXTRACT_WORDS64 (hy, yhi);
|
|
EXTRACT_WORDS64 (ly, ylo);
|
|
sx = hx&0x8000000000000000ULL; /* sign of x */
|
|
hx ^= sx; /* |x| */
|
|
sy = hy&0x8000000000000000ULL; /* sign of y */
|
|
hy ^= sy; /* |y| */
|
|
|
|
/* purge off exception values */
|
|
if(__builtin_expect(hy==0 ||
|
|
(hx>=0x7ff0000000000000LL)|| /* y=0,or x not finite */
|
|
(hy>0x7ff0000000000000LL),0)) /* or y is NaN */
|
|
return (x*y)/(x*y);
|
|
if (__glibc_unlikely (hx <= hy))
|
|
{
|
|
/* If |x| < |y| return x. */
|
|
if (hx < hy)
|
|
return x;
|
|
/* At this point the absolute value of the high doubles of
|
|
x and y must be equal. */
|
|
if ((lx & 0x7fffffffffffffffLL) == 0
|
|
&& (ly & 0x7fffffffffffffffLL) == 0)
|
|
/* Both low parts are zero. The result should be an
|
|
appropriately signed zero, but the subsequent logic
|
|
could treat them as unequal, depending on the signs
|
|
of the low parts. */
|
|
return Zero[(uint64_t) sx >> 63];
|
|
/* If the low double of y is the same sign as the high
|
|
double of y (ie. the low double increases |y|)... */
|
|
if (((ly ^ sy) & 0x8000000000000000LL) == 0
|
|
/* ... then a different sign low double to high double
|
|
for x or same sign but lower magnitude... */
|
|
&& (int64_t) (lx ^ sx) < (int64_t) (ly ^ sy))
|
|
/* ... means |x| < |y|. */
|
|
return x;
|
|
/* If the low double of x differs in sign to the high
|
|
double of x (ie. the low double decreases |x|)... */
|
|
if (((lx ^ sx) & 0x8000000000000000LL) != 0
|
|
/* ... then a different sign low double to high double
|
|
for y with lower magnitude (we've already caught
|
|
the same sign for y case above)... */
|
|
&& (int64_t) (lx ^ sx) > (int64_t) (ly ^ sy))
|
|
/* ... means |x| < |y|. */
|
|
return x;
|
|
/* If |x| == |y| return x*0. */
|
|
if ((lx ^ sx) == (ly ^ sy))
|
|
return Zero[(uint64_t) sx >> 63];
|
|
}
|
|
|
|
/* Make the IBM extended format 105 bit mantissa look like the ieee854 112
|
|
bit mantissa so the following operations will give the correct
|
|
result. */
|
|
ldbl_extract_mantissa(&hx, &lx, &ix, x);
|
|
ldbl_extract_mantissa(&hy, &ly, &iy, y);
|
|
|
|
if (__glibc_unlikely (ix == -IEEE754_DOUBLE_BIAS))
|
|
{
|
|
/* subnormal x, shift x to normal. */
|
|
while ((hx & (1LL << 48)) == 0)
|
|
{
|
|
hx = (hx << 1) | (lx >> 63);
|
|
lx = lx << 1;
|
|
ix -= 1;
|
|
}
|
|
}
|
|
|
|
if (__glibc_unlikely (iy == -IEEE754_DOUBLE_BIAS))
|
|
{
|
|
/* subnormal y, shift y to normal. */
|
|
while ((hy & (1LL << 48)) == 0)
|
|
{
|
|
hy = (hy << 1) | (ly >> 63);
|
|
ly = ly << 1;
|
|
iy -= 1;
|
|
}
|
|
}
|
|
|
|
/* fix point fmod */
|
|
n = ix - iy;
|
|
while(n--) {
|
|
hz=hx-hy;lz=lx-ly; if(lx<ly) hz -= 1;
|
|
if(hz<0){hx = hx+hx+(lx>>63); lx = lx+lx;}
|
|
else {
|
|
if((hz|lz)==0) /* return sign(x)*0 */
|
|
return Zero[(u_int64_t)sx>>63];
|
|
hx = hz+hz+(lz>>63); lx = lz+lz;
|
|
}
|
|
}
|
|
hz=hx-hy;lz=lx-ly; if(lx<ly) hz -= 1;
|
|
if(hz>=0) {hx=hz;lx=lz;}
|
|
|
|
/* convert back to floating value and restore the sign */
|
|
if((hx|lx)==0) /* return sign(x)*0 */
|
|
return Zero[(u_int64_t)sx>>63];
|
|
while(hx<0x0001000000000000LL) { /* normalize x */
|
|
hx = hx+hx+(lx>>63); lx = lx+lx;
|
|
iy -= 1;
|
|
}
|
|
if(__builtin_expect(iy>= -1022,0)) { /* normalize output */
|
|
x = ldbl_insert_mantissa((sx>>63), iy, hx, lx);
|
|
} else { /* subnormal output */
|
|
n = -1022 - iy;
|
|
/* We know 1 <= N <= 52, and that there are no nonzero
|
|
bits in places below 2^-1074. */
|
|
lx = (lx >> n) | ((u_int64_t) hx << (64 - n));
|
|
hx >>= n;
|
|
x = ldbl_insert_mantissa((sx>>63), -1023, hx, lx);
|
|
x *= one; /* create necessary signal */
|
|
}
|
|
return x; /* exact output */
|
|
}
|
|
strong_alias (__ieee754_fmodl, __fmodl_finite)
|