glibc/sysdeps/ia64/fpu/e_asin.S
Siddhesh Poyarekar 30891f35fa Remove "Contributed by" lines
We stopped adding "Contributed by" or similar lines in sources in 2012
in favour of git logs and keeping the Contributors section of the
glibc manual up to date.  Removing these lines makes the license
header a bit more consistent across files and also removes the
possibility of error in attribution when license blocks or files are
copied across since the contributed-by lines don't actually reflect
reality in those cases.

Move all "Contributed by" and similar lines (Written by, Test by,
etc.) into a new file CONTRIBUTED-BY to retain record of these
contributions.  These contributors are also mentioned in
manual/contrib.texi, so we just maintain this additional record as a
courtesy to the earlier developers.

The following scripts were used to filter a list of files to edit in
place and to clean up the CONTRIBUTED-BY file respectively.  These
were not added to the glibc sources because they're not expected to be
of any use in future given that this is a one time task:

https://gist.github.com/siddhesh/b5ecac94eabfd72ed2916d6d8157e7dc
https://gist.github.com/siddhesh/15ea1f5e435ace9774f485030695ee02

Reviewed-by: Carlos O'Donell <carlos@redhat.com>
2021-09-03 22:06:44 +05:30

855 lines
23 KiB
ArmAsm

.file "asin.s"
// Copyright (c) 2000 - 2003 Intel Corporation
// All rights reserved.
//
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote
// products derived from this software without specific prior written
// permission.
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Intel Corporation is the author of this code, and requests that all
// problem reports or change requests be submitted to it directly at
// http://www.intel.com/software/products/opensource/libraries/num.htm.
// History
//==============================================================
// 02/02/00 Initial version
// 08/17/00 New and much faster algorithm.
// 08/31/00 Avoided bank conflicts on loads, shortened |x|=1 path,
// fixed mfb split issue stalls.
// 12/19/00 Fixed small arg cases to force inexact, or inexact and underflow.
// 08/02/02 New and much faster algorithm II
// 02/06/03 Reordered header: .section, .global, .proc, .align
// Description
//=========================================
// The asin function computes the principal value of the arc sine of x.
// asin(0) returns 0, asin(1) returns pi/2, asin(-1) returns -pi/2.
// A doman error occurs for arguments not in the range [-1,+1].
//
// The asin function returns the arc sine in the range [-pi/2, +pi/2] radians.
//
// There are 8 paths:
// 1. x = +/-0.0
// Return asin(x) = +/-0.0
//
// 2. 0.0 < |x| < 0.625
// Return asin(x) = x + x^3 *PolA(x^2)
// where PolA(x^2) = A3 + A5*x^2 + A7*x^4 +...+ A35*x^32
//
// 3. 0.625 <=|x| < 1.0
// Return asin(x) = sign(x) * ( Pi/2 - sqrt(R) * PolB(R))
// Where R = 1 - |x|,
// PolB(R) = B0 + B1*R + B2*R^2 +...+B12*R^12
//
// sqrt(R) is approximated using the following sequence:
// y0 = (1 + eps)/sqrt(R) - initial approximation by frsqrta,
// |eps| < 2^(-8)
// Then 3 iterations are used to refine the result:
// H0 = 0.5*y0
// S0 = R*y0
//
// d0 = 0.5 - H0*S0
// H1 = H0 + d0*H0
// S1 = S0 + d0*S0
//
// d1 = 0.5 - H1*S1
// H2 = H1 + d0*H1
// S2 = S1 + d0*S1
//
// d2 = 0.5 - H2*S2
// S3 = S3 + d2*S3
//
// S3 approximates sqrt(R) with enough accuracy for this algorithm
//
// So, the result should be reconstracted as follows:
// asin(x) = sign(x) * (Pi/2 - S3*PolB(R))
//
// But for optimization perposes the reconstruction step is slightly
// changed:
// asin(x) = sign(x)*(Pi/2 - PolB(R)*S2) + sign(x)*d2*S2*PolB(R)
//
// 4. |x| = 1.0
// Return asin(x) = sign(x)*Pi/2
//
// 5. 1.0 < |x| <= +INF
// A doman error occurs for arguments not in the range [-1,+1]
//
// 6. x = [S,Q]NaN
// Return asin(x) = QNaN
//
// 7. x is denormal
// Return asin(x) = x + x^3,
//
// 8. x is unnormal
// Normalize input in f8 and return to the very beginning of the function
//
// Registers used
//==============================================================
// Floating Point registers used:
// f8, input, output
// f6, f7, f9 -> f15, f32 -> f63
// General registers used:
// r3, r21 -> r31, r32 -> r38
// Predicate registers used:
// p0, p6 -> p14
//
// Assembly macros
//=========================================
// integer registers used
// scratch
rTblAddr = r3
rPiBy2Ptr = r21
rTmpPtr3 = r22
rDenoBound = r23
rOne = r24
rAbsXBits = r25
rHalf = r26
r0625 = r27
rSign = r28
rXBits = r29
rTmpPtr2 = r30
rTmpPtr1 = r31
// stacked
GR_SAVE_PFS = r32
GR_SAVE_B0 = r33
GR_SAVE_GP = r34
GR_Parameter_X = r35
GR_Parameter_Y = r36
GR_Parameter_RESULT = r37
GR_Parameter_TAG = r38
// floating point registers used
FR_X = f10
FR_Y = f1
FR_RESULT = f8
// scratch
fXSqr = f6
fXCube = f7
fXQuadr = f9
f1pX = f10
f1mX = f11
f1pXRcp = f12
f1mXRcp = f13
fH = f14
fS = f15
// stacked
fA3 = f32
fB1 = f32
fA5 = f33
fB2 = f33
fA7 = f34
fPiBy2 = f34
fA9 = f35
fA11 = f36
fB10 = f35
fB11 = f36
fA13 = f37
fA15 = f38
fB4 = f37
fB5 = f38
fA17 = f39
fA19 = f40
fB6 = f39
fB7 = f40
fA21 = f41
fA23 = f42
fB3 = f41
fB8 = f42
fA25 = f43
fA27 = f44
fB9 = f43
fB12 = f44
fA29 = f45
fA31 = f46
fA33 = f47
fA35 = f48
fBaseP = f49
fB0 = f50
fSignedS = f51
fD = f52
fHalf = f53
fR = f54
fCloseTo1Pol = f55
fSignX = f56
fDenoBound = f57
fNormX = f58
fX8 = f59
fRSqr = f60
fRQuadr = f61
fR8 = f62
fX16 = f63
// Data tables
//==============================================================
RODATA
.align 16
LOCAL_OBJECT_START(asin_base_range_table)
// Ai: Polynomial coefficients for the asin(x), |x| < .625000
// Bi: Polynomial coefficients for the asin(x), |x| > .625000
data8 0xBFDAAB56C01AE468 //A29
data8 0x3FE1C470B76A5B2B //A31
data8 0xBFDC5FF82A0C4205 //A33
data8 0x3FC71FD88BFE93F0 //A35
data8 0xB504F333F9DE6487, 0x00003FFF //B0
data8 0xAAAAAAAAAAAAFC18, 0x00003FFC //A3
data8 0x3F9F1C71BC4A7823 //A9
data8 0x3F96E8BBAAB216B2 //A11
data8 0x3F91C4CA1F9F8A98 //A13
data8 0x3F8C9DDCEDEBE7A6 //A15
data8 0x3F877784442B1516 //A17
data8 0x3F859C0491802BA2 //A19
data8 0x9999999998C88B8F, 0x00003FFB //A5
data8 0x3F6BD7A9A660BF5E //A21
data8 0x3F9FC1659340419D //A23
data8 0xB6DB6DB798149BDF, 0x00003FFA //A7
data8 0xBFB3EF18964D3ED3 //A25
data8 0x3FCD285315542CF2 //A27
data8 0xF15BEEEFF7D2966A, 0x00003FFB //B1
data8 0x3EF0DDA376D10FB3 //B10
data8 0xBEB83CAFE05EBAC9 //B11
data8 0x3F65FFB67B513644 //B4
data8 0x3F5032FBB86A4501 //B5
data8 0x3F392162276C7CBA //B6
data8 0x3F2435949FD98BDF //B7
data8 0xD93923D7FA08341C, 0x00003FF9 //B2
data8 0x3F802995B6D90BDB //B3
data8 0x3F10DF86B341A63F //B8
data8 0xC90FDAA22168C235, 0x00003FFF // Pi/2
data8 0x3EFA3EBD6B0ECB9D //B9
data8 0x3EDE18BA080E9098 //B12
LOCAL_OBJECT_END(asin_base_range_table)
.section .text
GLOBAL_LIBM_ENTRY(asin)
asin_unnormal_back:
{ .mfi
getf.d rXBits = f8 // grab bits of input value
// set p12 = 1 if x is a NaN, denormal, or zero
fclass.m p12, p0 = f8, 0xcf
adds rSign = 1, r0
}
{ .mfi
addl rTblAddr = @ltoff(asin_base_range_table),gp
// 1 - x = 1 - |x| for positive x
fms.s1 f1mX = f1, f1, f8
addl rHalf = 0xFFFE, r0 // exponent of 1/2
}
;;
{ .mfi
addl r0625 = 0x3FE4, r0 // high 16 bits of 0.625
// set p8 = 1 if x < 0
fcmp.lt.s1 p8, p9 = f8, f0
shl rSign = rSign, 63 // sign bit
}
{ .mfi
// point to the beginning of the table
ld8 rTblAddr = [rTblAddr]
// 1 + x = 1 - |x| for negative x
fma.s1 f1pX = f1, f1, f8
adds rOne = 0x3FF, r0
}
;;
{ .mfi
andcm rAbsXBits = rXBits, rSign // bits of |x|
fmerge.s fSignX = f8, f1 // signum(x)
shl r0625 = r0625, 48 // bits of DP representation of 0.625
}
{ .mfb
setf.exp fHalf = rHalf // load A2 to FP reg
fma.s1 fXSqr = f8, f8, f0 // x^2
// branch on special path if x is a NaN, denormal, or zero
(p12) br.cond.spnt asin_special
}
;;
{ .mfi
adds rPiBy2Ptr = 272, rTblAddr
nop.f 0
shl rOne = rOne, 52 // bits of 1.0
}
{ .mfi
adds rTmpPtr1 = 16, rTblAddr
nop.f 0
// set p6 = 1 if |x| < 0.625
cmp.lt p6, p7 = rAbsXBits, r0625
}
;;
{ .mfi
ldfpd fA29, fA31 = [rTblAddr] // A29, fA31
// 1 - x = 1 - |x| for positive x
(p9) fms.s1 fR = f1, f1, f8
// point to coefficient of "near 1" polynomial
(p7) adds rTmpPtr2 = 176, rTblAddr
}
{ .mfi
ldfpd fA33, fA35 = [rTmpPtr1], 16 // A33, fA35
// 1 + x = 1 - |x| for negative x
(p8) fma.s1 fR = f1, f1, f8
(p6) adds rTmpPtr2 = 48, rTblAddr
}
;;
{ .mfi
ldfe fB0 = [rTmpPtr1], 16 // B0
nop.f 0
nop.i 0
}
{ .mib
adds rTmpPtr3 = 16, rTmpPtr2
// set p10 = 1 if |x| = 1.0
cmp.eq p10, p0 = rAbsXBits, rOne
// branch on special path for |x| = 1.0
(p10) br.cond.spnt asin_abs_1
}
;;
{ .mfi
ldfe fA3 = [rTmpPtr2], 48 // A3 or B1
nop.f 0
adds rTmpPtr1 = 64, rTmpPtr3
}
{ .mib
ldfpd fA9, fA11 = [rTmpPtr3], 16 // A9, A11 or B10, B11
// set p11 = 1 if |x| > 1.0
cmp.gt p11, p0 = rAbsXBits, rOne
// branch on special path for |x| > 1.0
(p11) br.cond.spnt asin_abs_gt_1
}
;;
{ .mfi
ldfpd fA17, fA19 = [rTmpPtr2], 16 // A17, A19 or B6, B7
// initial approximation of 1 / sqrt(1 - x)
frsqrta.s1 f1mXRcp, p0 = f1mX
nop.i 0
}
{ .mfi
ldfpd fA13, fA15 = [rTmpPtr3] // A13, A15 or B4, B5
fma.s1 fXCube = fXSqr, f8, f0 // x^3
nop.i 0
}
;;
{ .mfi
ldfe fA5 = [rTmpPtr2], 48 // A5 or B2
// initial approximation of 1 / sqrt(1 + x)
frsqrta.s1 f1pXRcp, p0 = f1pX
nop.i 0
}
{ .mfi
ldfpd fA21, fA23 = [rTmpPtr1], 16 // A21, A23 or B3, B8
fma.s1 fXQuadr = fXSqr, fXSqr, f0 // x^4
nop.i 0
}
;;
{ .mfi
ldfe fA7 = [rTmpPtr1] // A7 or Pi/2
fma.s1 fRSqr = fR, fR, f0 // R^2
nop.i 0
}
{ .mfb
ldfpd fA25, fA27 = [rTmpPtr2] // A25, A27 or B9, B12
nop.f 0
(p6) br.cond.spnt asin_base_range;
}
;;
{ .mfi
nop.m 0
(p9) fma.s1 fH = fHalf, f1mXRcp, f0 // H0 for x > 0
nop.i 0
}
{ .mfi
nop.m 0
(p9) fma.s1 fS = f1mX, f1mXRcp, f0 // S0 for x > 0
nop.i 0
}
;;
{ .mfi
nop.m 0
(p8) fma.s1 fH = fHalf, f1pXRcp, f0 // H0 for x < 0
nop.i 0
}
{ .mfi
nop.m 0
(p8) fma.s1 fS = f1pX, f1pXRcp, f0 // S0 for x > 0
nop.i 0
}
;;
{ .mfi
nop.m 0
fma.s1 fRQuadr = fRSqr, fRSqr, f0 // R^4
nop.i 0
}
;;
{ .mfi
nop.m 0
fma.s1 fB11 = fB11, fR, fB10
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 fB1 = fB1, fR, fB0
nop.i 0
}
;;
{ .mfi
nop.m 0
fma.s1 fB5 = fB5, fR, fB4
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 fB7 = fB7, fR, fB6
nop.i 0
}
;;
{ .mfi
nop.m 0
fma.s1 fB3 = fB3, fR, fB2
nop.i 0
}
;;
{ .mfi
nop.m 0
fnma.s1 fD = fH, fS, fHalf // d0 = 1/2 - H0*S0
nop.i 0
}
;;
{ .mfi
nop.m 0
fma.s1 fR8 = fRQuadr, fRQuadr, f0 // R^4
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 fB9 = fB9, fR, fB8
nop.i 0
}
;;
{.mfi
nop.m 0
fma.s1 fB12 = fB12, fRSqr, fB11
nop.i 0
}
{.mfi
nop.m 0
fma.s1 fB7 = fB7, fRSqr, fB5
nop.i 0
}
;;
{.mfi
nop.m 0
fma.s1 fB3 = fB3, fRSqr, fB1
nop.i 0
}
;;
{ .mfi
nop.m 0
fma.s1 fH = fH, fD, fH // H1 = H0 + H0*d0
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 fS = fS, fD, fS // S1 = S0 + S0*d0
nop.i 0
}
;;
{.mfi
nop.m 0
fma.s1 fPiBy2 = fPiBy2, fSignX, f0 // signum(x)*Pi/2
nop.i 0
}
;;
{ .mfi
nop.m 0
fma.s1 fB12 = fB12, fRSqr, fB9
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 fB7 = fB7, fRQuadr, fB3
nop.i 0
}
;;
{.mfi
nop.m 0
fnma.s1 fD = fH, fS, fHalf // d1 = 1/2 - H1*S1
nop.i 0
}
{ .mfi
nop.m 0
fnma.s1 fSignedS = fSignX, fS, f0 // -signum(x)*S1
nop.i 0
}
;;
{ .mfi
nop.m 0
fma.s1 fCloseTo1Pol = fB12, fR8, fB7
nop.i 0
}
;;
{ .mfi
nop.m 0
fma.s1 fH = fH, fD, fH // H2 = H1 + H1*d1
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 fS = fS, fD, fS // S2 = S1 + S1*d1
nop.i 0
}
;;
{ .mfi
nop.m 0
// -signum(x)* S2 = -signum(x)*(S1 + S1*d1)
fma.s1 fSignedS = fSignedS, fD, fSignedS
nop.i 0
}
;;
{.mfi
nop.m 0
fnma.s1 fD = fH, fS, fHalf // d2 = 1/2 - H2*S2
nop.i 0
}
;;
{ .mfi
nop.m 0
// signum(x)*(Pi/2 - PolB*S2)
fma.s1 fPiBy2 = fSignedS, fCloseTo1Pol, fPiBy2
nop.i 0
}
{ .mfi
nop.m 0
// -signum(x)*PolB * S2
fma.s1 fCloseTo1Pol = fSignedS, fCloseTo1Pol, f0
nop.i 0
}
;;
{ .mfb
nop.m 0
// final result for 0.625 <= |x| < 1
fma.d.s0 f8 = fCloseTo1Pol, fD, fPiBy2
// exit here for 0.625 <= |x| < 1
br.ret.sptk b0
}
;;
// here if |x| < 0.625
.align 32
asin_base_range:
{ .mfi
nop.m 0
fma.s1 fA33 = fA33, fXSqr, fA31
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 fA15 = fA15, fXSqr, fA13
nop.i 0
}
;;
{ .mfi
nop.m 0
fma.s1 fA29 = fA29, fXSqr, fA27
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 fA25 = fA25, fXSqr, fA23
nop.i 0
}
;;
{ .mfi
nop.m 0
fma.s1 fA21 = fA21, fXSqr, fA19
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 fA9 = fA9, fXSqr, fA7
nop.i 0
}
;;
{ .mfi
nop.m 0
fma.s1 fA5 = fA5, fXSqr, fA3
nop.i 0
}
;;
{ .mfi
nop.m 0
fma.s1 fA35 = fA35, fXQuadr, fA33
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 fA17 = fA17, fXQuadr, fA15
nop.i 0
}
;;
{ .mfi
nop.m 0
fma.s1 fX8 = fXQuadr, fXQuadr, f0 // x^8
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 fA25 = fA25, fXQuadr, fA21
nop.i 0
}
;;
{ .mfi
nop.m 0
fma.s1 fA9 = fA9, fXQuadr, fA5
nop.i 0
}
;;
{ .mfi
nop.m 0
fma.s1 fA35 = fA35, fXQuadr, fA29
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 fA17 = fA17, fXSqr, fA11
nop.i 0
}
;;
{ .mfi
nop.m 0
fma.s1 fX16 = fX8, fX8, f0 // x^16
nop.i 0
}
;;
{ .mfi
nop.m 0
fma.s1 fA35 = fA35, fX8, fA25
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 fA17 = fA17, fX8, fA9
nop.i 0
}
;;
{ .mfi
nop.m 0
fma.s1 fBaseP = fA35, fX16, fA17
nop.i 0
}
;;
{ .mfb
nop.m 0
// final result for |x| < 0.625
fma.d.s0 f8 = fBaseP, fXCube, f8
// exit here for |x| < 0.625 path
br.ret.sptk b0
}
;;
// here if |x| = 1
// asin(x) = sign(x) * Pi/2
.align 32
asin_abs_1:
{ .mfi
ldfe fPiBy2 = [rPiBy2Ptr] // Pi/2
nop.f 0
nop.i 0
}
;;
{.mfb
nop.m 0
// result for |x| = 1.0
fma.d.s0 f8 = fPiBy2, fSignX, f0
// exit here for |x| = 1.0
br.ret.sptk b0
}
;;
// here if x is a NaN, denormal, or zero
.align 32
asin_special:
{ .mfi
nop.m 0
// set p12 = 1 if x is a NaN
fclass.m p12, p0 = f8, 0xc3
nop.i 0
}
{ .mlx
nop.m 0
// smallest positive DP normalized number
movl rDenoBound = 0x0010000000000000
}
;;
{ .mfi
nop.m 0
// set p13 = 1 if x = 0.0
fclass.m p13, p0 = f8, 0x07
nop.i 0
}
{ .mfi
nop.m 0
fnorm.s1 fNormX = f8
nop.i 0
}
;;
{ .mfb
// load smallest normal to FP reg
setf.d fDenoBound = rDenoBound
// answer if x is a NaN
(p12) fma.d.s0 f8 = f8,f1,f0
// exit here if x is a NaN
(p12) br.ret.spnt b0
}
;;
{ .mfb
nop.m 0
nop.f 0
// exit here if x = 0.0
(p13) br.ret.spnt b0
}
;;
// if we still here then x is denormal or unnormal
{ .mfi
nop.m 0
// absolute value of normalized x
fmerge.s fNormX = f1, fNormX
nop.i 0
}
;;
{ .mfi
nop.m 0
// set p14 = 1 if normalized x is greater than or
// equal to the smallest denormalized value
// So, if p14 is set to 1 it means that we deal with
// unnormal rather than with "true" denormal
fcmp.ge.s1 p14, p0 = fNormX, fDenoBound
nop.i 0
}
;;
{ .mfi
nop.m 0
(p14) fcmp.eq.s0 p6, p0 = f8, f0 // Set D flag if x unnormal
nop.i 0
}
{ .mfb
nop.m 0
// normalize unnormal input
(p14) fnorm.s1 f8 = f8
// return to the main path
(p14) br.cond.sptk asin_unnormal_back
}
;;
// if we still here it means that input is "true" denormal
{ .mfb
nop.m 0
// final result if x is denormal
fma.d.s0 f8 = f8, fXSqr, f8
// exit here if x is denormal
br.ret.sptk b0
}
;;
// here if |x| > 1.0
// error handler should be called
.align 32
asin_abs_gt_1:
{ .mfi
alloc r32 = ar.pfs, 0, 3, 4, 0 // get some registers
fmerge.s FR_X = f8,f8
nop.i 0
}
{ .mfb
mov GR_Parameter_TAG = 61 // error code
frcpa.s0 FR_RESULT, p0 = f0,f0
// call error handler routine
br.cond.sptk __libm_error_region
}
;;
GLOBAL_LIBM_END(asin)
libm_alias_double_other (asin, asin)
LOCAL_LIBM_ENTRY(__libm_error_region)
.prologue
{ .mfi
add GR_Parameter_Y=-32,sp // Parameter 2 value
nop.f 0
.save ar.pfs,GR_SAVE_PFS
mov GR_SAVE_PFS=ar.pfs // Save ar.pfs
}
{ .mfi
.fframe 64
add sp=-64,sp // Create new stack
nop.f 0
mov GR_SAVE_GP=gp // Save gp
};;
{ .mmi
stfd [GR_Parameter_Y] = FR_Y,16 // STORE Parameter 2 on stack
add GR_Parameter_X = 16,sp // Parameter 1 address
.save b0, GR_SAVE_B0
mov GR_SAVE_B0=b0 // Save b0
};;
.body
{ .mib
stfd [GR_Parameter_X] = FR_X // STORE Parameter 1 on stack
add GR_Parameter_RESULT = 0,GR_Parameter_Y // Parameter 3 address
nop.b 0
}
{ .mib
stfd [GR_Parameter_Y] = FR_RESULT // STORE Parameter 3 on stack
add GR_Parameter_Y = -16,GR_Parameter_Y
br.call.sptk b0=__libm_error_support# // Call error handling function
};;
{ .mmi
add GR_Parameter_RESULT = 48,sp
nop.m 0
nop.i 0
};;
{ .mmi
ldfd f8 = [GR_Parameter_RESULT] // Get return result off stack
.restore sp
add sp = 64,sp // Restore stack pointer
mov b0 = GR_SAVE_B0 // Restore return address
};;
{ .mib
mov gp = GR_SAVE_GP // Restore gp
mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs
br.ret.sptk b0 // Return
};;
LOCAL_LIBM_END(__libm_error_region)
.type __libm_error_support#,@function
.global __libm_error_support#