mirror of
https://sourceware.org/git/glibc.git
synced 2024-12-02 01:40:07 +00:00
30891f35fa
We stopped adding "Contributed by" or similar lines in sources in 2012 in favour of git logs and keeping the Contributors section of the glibc manual up to date. Removing these lines makes the license header a bit more consistent across files and also removes the possibility of error in attribution when license blocks or files are copied across since the contributed-by lines don't actually reflect reality in those cases. Move all "Contributed by" and similar lines (Written by, Test by, etc.) into a new file CONTRIBUTED-BY to retain record of these contributions. These contributors are also mentioned in manual/contrib.texi, so we just maintain this additional record as a courtesy to the earlier developers. The following scripts were used to filter a list of files to edit in place and to clean up the CONTRIBUTED-BY file respectively. These were not added to the glibc sources because they're not expected to be of any use in future given that this is a one time task: https://gist.github.com/siddhesh/b5ecac94eabfd72ed2916d6d8157e7dc https://gist.github.com/siddhesh/15ea1f5e435ace9774f485030695ee02 Reviewed-by: Carlos O'Donell <carlos@redhat.com>
2524 lines
58 KiB
ArmAsm
2524 lines
58 KiB
ArmAsm
.file "asinl.s"
|
|
|
|
|
|
// Copyright (c) 2001 - 2003, Intel Corporation
|
|
// All rights reserved.
|
|
//
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistributions in binary form must reproduce the above copyright
|
|
// notice, this list of conditions and the following disclaimer in the
|
|
// documentation and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of Intel Corporation may not be used to endorse or promote
|
|
// products derived from this software without specific prior written
|
|
// permission.
|
|
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
|
|
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
|
|
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
|
|
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
//
|
|
// Intel Corporation is the author of this code, and requests that all
|
|
// problem reports or change requests be submitted to it directly at
|
|
// http://www.intel.com/software/products/opensource/libraries/num.htm.
|
|
//
|
|
// History
|
|
//==============================================================
|
|
// 08/28/01 New version
|
|
// 05/20/02 Cleaned up namespace and sf0 syntax
|
|
// 02/06/03 Reordered header: .section, .global, .proc, .align
|
|
//
|
|
// API
|
|
//==============================================================
|
|
// long double asinl(long double)
|
|
//
|
|
// Overview of operation
|
|
//==============================================================
|
|
// Background
|
|
//
|
|
// Implementation
|
|
//
|
|
// For |s| in [2^{-4}, sqrt(2)/2]:
|
|
// Let t= 2^k*1.b1 b2..b6 1, where s= 2^k*1.b1 b2.. b52
|
|
// asin(s)= asin(t)+asin(r), where r= s*sqrt(1-t^2)-t*sqrt(1-s^2), i.e.
|
|
// r= (s-t)*sqrt(1-t^2)-t*sqrt(1-t^2)*(sqrt((1-s^2)/(1-t^2))-1)
|
|
// asin(r)-r evaluated as 9-degree polynomial (c3*r^3+c5*r^5+c7*r^7+c9*r^9)
|
|
// The 64-bit significands of sqrt(1-t^2), 1/(1-t^2) are read from the table,
|
|
// along with the high and low parts of asin(t) (stored as two double precision
|
|
// values)
|
|
//
|
|
// |s| in (sqrt(2)/2, sqrt(255/256)):
|
|
// Let t= 2^k*1.b1 b2..b6 1, where (1-s^2)*frsqrta(1-s^2)= 2^k*1.b1 b2..b6..
|
|
// asin(|s|)= pi/2-asin(t)+asin(r), r= s*t-sqrt(1-s^2)*sqrt(1-t^2)
|
|
// To minimize accumulated errors, r is computed as
|
|
// r= (t*s)_s-t^2*y*z+z*y*(t^2-1+s^2)_s+z*y*(1-s^2)_s*x+z'*y*(1-s^2)*PS29+
|
|
// +(t*s-(t*s)_s)+z*y*((t^2-1-(t^2-1+s^2)_s)+s^2)+z*y*(1-s^2-(1-s^2)_s)+
|
|
// +ez*z'*y*(1-s^2)*(1-x),
|
|
// where y= frsqrta(1-s^2), z= (sqrt(1-t^2))_s (rounded to 24 significant bits)
|
|
// z'= sqrt(1-t^2), x= ((1-s^2)*y^2-1)/2
|
|
//
|
|
// |s|<2^{-4}: evaluate as 17-degree polynomial
|
|
// (or simply return s, if|s|<2^{-64})
|
|
//
|
|
// |s| in [sqrt(255/256), 1): asin(|s|)= pi/2-asin(sqrt(1-s^2))
|
|
// use 17-degree polynomial for asin(sqrt(1-s^2)),
|
|
// 9-degree polynomial to evaluate sqrt(1-s^2)
|
|
// High order term is (pi/2)_high-(y*(1-s^2))_high
|
|
//
|
|
|
|
|
|
|
|
// Registers used
|
|
//==============================================================
|
|
// f6-f15, f32-f36
|
|
// r2-r3, r23-r23
|
|
// p6, p7, p8, p12
|
|
//
|
|
|
|
|
|
GR_SAVE_B0= r33
|
|
GR_SAVE_PFS= r34
|
|
GR_SAVE_GP= r35 // This reg. can safely be used
|
|
GR_SAVE_SP= r36
|
|
|
|
GR_Parameter_X= r37
|
|
GR_Parameter_Y= r38
|
|
GR_Parameter_RESULT= r39
|
|
GR_Parameter_TAG= r40
|
|
|
|
FR_X= f10
|
|
FR_Y= f1
|
|
FR_RESULT= f8
|
|
|
|
|
|
|
|
RODATA
|
|
|
|
.align 16
|
|
|
|
|
|
|
|
LOCAL_OBJECT_START(T_table)
|
|
|
|
// stores 64-bit significand of 1/(1-t^2), 64-bit significand of sqrt(1-t^2),
|
|
// asin(t)_high (double precision), asin(t)_low (double precision)
|
|
|
|
data8 0x80828692b71c4391, 0xff7ddcec2d87e879
|
|
data8 0x3fb022bc0ae531a0, 0x3c9f599c7bb42af6
|
|
data8 0x80869f0163d0b082, 0xff79cad2247914d3
|
|
data8 0x3fb062dd26afc320, 0x3ca4eff21bd49c5c
|
|
data8 0x808ac7d5a8690705, 0xff75a89ed6b626b9
|
|
data8 0x3fb0a2ff4a1821e0, 0x3cb7e33b58f164cc
|
|
data8 0x808f0112ad8ad2e0, 0xff7176517c2cc0cb
|
|
data8 0x3fb0e32279319d80, 0x3caee31546582c43
|
|
data8 0x80934abba8a1da0a, 0xff6d33e949b1ed31
|
|
data8 0x3fb12346b8101da0, 0x3cb8bfe463d087cd
|
|
data8 0x8097a4d3dbe63d8f, 0xff68e16571015c63
|
|
data8 0x3fb1636c0ac824e0, 0x3c8870a7c5a3556f
|
|
data8 0x809c0f5e9662b3dd, 0xff647ec520bca0f0
|
|
data8 0x3fb1a392756ed280, 0x3c964f1a927461ae
|
|
data8 0x80a08a5f33fadc66, 0xff600c07846a6830
|
|
data8 0x3fb1e3b9fc19e580, 0x3c69eb3576d56332
|
|
data8 0x80a515d91d71acd4, 0xff5b892bc475affa
|
|
data8 0x3fb223e2a2dfbe80, 0x3c6a4e19fd972fb6
|
|
data8 0x80a9b1cfc86ff7cd, 0xff56f631062cf93d
|
|
data8 0x3fb2640c6dd76260, 0x3c62041160e0849e
|
|
data8 0x80ae5e46b78b0d68, 0xff5253166bc17794
|
|
data8 0x3fb2a43761187c80, 0x3cac61651af678c0
|
|
data8 0x80b31b417a4b756b, 0xff4d9fdb14463dc8
|
|
data8 0x3fb2e46380bb6160, 0x3cb06ef23eeba7a1
|
|
data8 0x80b7e8c3ad33c369, 0xff48dc7e1baf6738
|
|
data8 0x3fb32490d0d910c0, 0x3caa05f480b300d5
|
|
data8 0x80bcc6d0f9c784d6, 0xff4408fe9ad13e37
|
|
data8 0x3fb364bf558b3820, 0x3cb01e7e403aaab9
|
|
data8 0x80c1b56d1692492d, 0xff3f255ba75f5f4e
|
|
data8 0x3fb3a4ef12ec3540, 0x3cb4fe8fcdf5f5f1
|
|
data8 0x80c6b49bc72ec446, 0xff3a319453ebd961
|
|
data8 0x3fb3e5200d171880, 0x3caf2dc089b2b7e2
|
|
data8 0x80cbc460dc4e0ae8, 0xff352da7afe64ac6
|
|
data8 0x3fb425524827a720, 0x3cb75a855e7c6053
|
|
data8 0x80d0e4c033bee9c4, 0xff301994c79afb32
|
|
data8 0x3fb46585c83a5e00, 0x3cb3264981c019ab
|
|
data8 0x80d615bdb87556db, 0xff2af55aa431f291
|
|
data8 0x3fb4a5ba916c73c0, 0x3c994251d94427b5
|
|
data8 0x80db575d6291fd8a, 0xff25c0f84bae0cb9
|
|
data8 0x3fb4e5f0a7dbdb20, 0x3cbee2fcc4c786cb
|
|
data8 0x80e0a9a33769e535, 0xff207c6cc0ec09fd
|
|
data8 0x3fb526280fa74620, 0x3c940656e5549b91
|
|
data8 0x80e60c93498e32cd, 0xff1b27b703a19c98
|
|
data8 0x3fb56660ccee2740, 0x3ca7082374d7b2cd
|
|
data8 0x80eb8031b8d4052d, 0xff15c2d6105c72f8
|
|
data8 0x3fb5a69ae3d0b520, 0x3c7c4d46e09ac68a
|
|
data8 0x80f10482b25c6c8a, 0xff104dc8e0813ed4
|
|
data8 0x3fb5e6d6586fec20, 0x3c9aa84ffd9b4958
|
|
data8 0x80f6998a709c7cfb, 0xff0ac88e6a4ab926
|
|
data8 0x3fb627132eed9140, 0x3cbced2cbbbe7d16
|
|
data8 0x80fc3f4d3b657c44, 0xff053325a0c8a2ec
|
|
data8 0x3fb667516b6c34c0, 0x3c6489c5fc68595a
|
|
data8 0x8101f5cf67ed2af8, 0xfeff8d8d73dec2bb
|
|
data8 0x3fb6a791120f33a0, 0x3cbe12acf159dfad
|
|
data8 0x8107bd1558d6291f, 0xfef9d7c4d043df29
|
|
data8 0x3fb6e7d226fabba0, 0x3ca386d099cd0dc7
|
|
data8 0x810d95237e38766a, 0xfef411ca9f80b5f7
|
|
data8 0x3fb72814ae53cc20, 0x3cb9f35731e71dd6
|
|
data8 0x81137dfe55aa0e29, 0xfeee3b9dc7eef009
|
|
data8 0x3fb76858ac403a00, 0x3c74df3dd959141a
|
|
data8 0x811977aa6a479f0f, 0xfee8553d2cb8122c
|
|
data8 0x3fb7a89e24e6b0e0, 0x3ca6034406ee42bc
|
|
data8 0x811f822c54bd5ef8, 0xfee25ea7add46a91
|
|
data8 0x3fb7e8e51c6eb6a0, 0x3cb82f8f78e68ed7
|
|
data8 0x81259d88bb4ffac1, 0xfedc57dc2809fb1d
|
|
data8 0x3fb8292d9700ad60, 0x3cbebb73c0e653f9
|
|
data8 0x812bc9c451e5a257, 0xfed640d974eb6068
|
|
data8 0x3fb8697798c5d620, 0x3ca2feee76a9701b
|
|
data8 0x813206e3da0f3124, 0xfed0199e6ad6b585
|
|
data8 0x3fb8a9c325e852e0, 0x3cb9e88f2f4d0efe
|
|
data8 0x813854ec231172f9, 0xfec9e229dcf4747d
|
|
data8 0x3fb8ea1042932a00, 0x3ca5ff40d81f66fd
|
|
data8 0x813eb3e209ee858f, 0xfec39a7a9b36538b
|
|
data8 0x3fb92a5ef2f247c0, 0x3cb5e3bece4d6b07
|
|
data8 0x814523ca796f56ce, 0xfebd428f72561efe
|
|
data8 0x3fb96aaf3b3281a0, 0x3cb7b9e499436d7c
|
|
data8 0x814ba4aa6a2d3ff9, 0xfeb6da672bd48fe4
|
|
data8 0x3fb9ab011f819860, 0x3cb9168143cc1a7f
|
|
data8 0x81523686e29bbdd7, 0xfeb062008df81f50
|
|
data8 0x3fb9eb54a40e3ac0, 0x3cb6e544197eb1e1
|
|
data8 0x8158d964f7124614, 0xfea9d95a5bcbd65a
|
|
data8 0x3fba2ba9cd080800, 0x3ca9a717be8f7446
|
|
data8 0x815f8d49c9d639e4, 0xfea34073551e1ac8
|
|
data8 0x3fba6c009e9f9260, 0x3c741e989a60938a
|
|
data8 0x8166523a8b24f626, 0xfe9c974a367f785c
|
|
data8 0x3fbaac591d0661a0, 0x3cb2c1290107e57d
|
|
data8 0x816d283c793e0114, 0xfe95ddddb94166cb
|
|
data8 0x3fbaecb34c6ef600, 0x3c9c7d5fbaec405d
|
|
data8 0x81740f54e06d55bd, 0xfe8f142c93750c50
|
|
data8 0x3fbb2d0f310cca00, 0x3cbc09479a9cbcfb
|
|
data8 0x817b07891b15cd5e, 0xfe883a3577e9fceb
|
|
data8 0x3fbb6d6ccf1455e0, 0x3cb9450bff4ee307
|
|
data8 0x818210de91bba6c8, 0xfe814ff7162cf62f
|
|
data8 0x3fbbadcc2abb1180, 0x3c9227fda12a8d24
|
|
data8 0x81892b5abb0f2bf9, 0xfe7a55701a8697b1
|
|
data8 0x3fbbee2d48377700, 0x3cb6fad72acfe356
|
|
data8 0x819057031bf7760e, 0xfe734a9f2dfa1810
|
|
data8 0x3fbc2e902bc10600, 0x3cb4465b588d16ad
|
|
data8 0x819793dd479d4fbe, 0xfe6c2f82f643f68b
|
|
data8 0x3fbc6ef4d9904580, 0x3c8b9ac54823960d
|
|
data8 0x819ee1eedf76367a, 0xfe65041a15d8a92c
|
|
data8 0x3fbcaf5b55dec6a0, 0x3ca2b8d28a954db2
|
|
data8 0x81a6413d934f7a66, 0xfe5dc8632be3477f
|
|
data8 0x3fbcefc3a4e727a0, 0x3c9380da83713ab4
|
|
data8 0x81adb1cf21597d4b, 0xfe567c5cd44431d5
|
|
data8 0x3fbd302dcae51600, 0x3ca995b83421756a
|
|
data8 0x81b533a9563310b8, 0xfe4f2005a78fb50f
|
|
data8 0x3fbd7099cc155180, 0x3caefa2f7a817d5f
|
|
data8 0x81bcc6d20cf4f373, 0xfe47b35c3b0caaeb
|
|
data8 0x3fbdb107acb5ae80, 0x3cb455fc372dd026
|
|
data8 0x81c46b4f2f3d6e68, 0xfe40365f20b316d6
|
|
data8 0x3fbdf177710518c0, 0x3cbee3dcc5b01434
|
|
data8 0x81cc2126b53c1144, 0xfe38a90ce72abf36
|
|
data8 0x3fbe31e91d439620, 0x3cb3e131c950aebd
|
|
data8 0x81d3e85ea5bd8ee2, 0xfe310b6419c9c33a
|
|
data8 0x3fbe725cb5b24900, 0x3c01d3fac6029027
|
|
data8 0x81dbc0fd1637b9c1, 0xfe295d6340932d15
|
|
data8 0x3fbeb2d23e937300, 0x3c6304cc44aeedd1
|
|
data8 0x81e3ab082ad5a0a4, 0xfe219f08e03580b3
|
|
data8 0x3fbef349bc2a77e0, 0x3cac1d2d6abe9c72
|
|
data8 0x81eba6861683cb97, 0xfe19d0537a0946e2
|
|
data8 0x3fbf33c332bbe020, 0x3ca0909dba4e96ca
|
|
data8 0x81f3b37d1afc9979, 0xfe11f1418c0f94e2
|
|
data8 0x3fbf743ea68d5b60, 0x3c937fc12a2a779a
|
|
data8 0x81fbd1f388d4be45, 0xfe0a01d190f09063
|
|
data8 0x3fbfb4bc1be5c340, 0x3cbf51a504b55813
|
|
data8 0x820401efbf87e248, 0xfe020201fff9efea
|
|
data8 0x3fbff53b970d1e80, 0x3ca625444b260078
|
|
data8 0x82106ad2ffdca049, 0xfdf5e3940a49135e
|
|
data8 0x3fc02aff52065460, 0x3c9125d113e22a57
|
|
data8 0x8221343d6ea1d3e2, 0xfde581a45429b0a0
|
|
data8 0x3fc06b84f8e03220, 0x3caccf362295894b
|
|
data8 0x82324434adbf99c2, 0xfdd4de1a001fb775
|
|
data8 0x3fc0ac0ed1fe7240, 0x3cc22f676096b0af
|
|
data8 0x82439aee8d0c7747, 0xfdc3f8e8269d1f03
|
|
data8 0x3fc0ec9cee9e4820, 0x3cca147e2886a628
|
|
data8 0x825538a1d0fcb2f0, 0xfdb2d201a9b1ba66
|
|
data8 0x3fc12d2f6006f0a0, 0x3cc72b36633bc2d4
|
|
data8 0x82671d86345c5cee, 0xfda1695934d723e7
|
|
data8 0x3fc16dc63789de60, 0x3cb11f9c47c7b83f
|
|
data8 0x827949d46a121770, 0xfd8fbee13cbbb823
|
|
data8 0x3fc1ae618682e620, 0x3cce1b59020cef8e
|
|
data8 0x828bbdc61eeab9ba, 0xfd7dd28bff0c9f34
|
|
data8 0x3fc1ef015e586c40, 0x3cafec043e0225ee
|
|
data8 0x829e7995fb6de9e1, 0xfd6ba44b823ee1ca
|
|
data8 0x3fc22fa5d07b90c0, 0x3cba905409caf8e3
|
|
data8 0x82b17d7fa5bbc982, 0xfd5934119557883a
|
|
data8 0x3fc2704eee685da0, 0x3cb5ef21838a823e
|
|
data8 0x82c4c9bfc373d276, 0xfd4681cfcfb2c161
|
|
data8 0x3fc2b0fcc9a5f3e0, 0x3ccc7952c5e0e312
|
|
data8 0x82d85e93fba50136, 0xfd338d7790ca0f41
|
|
data8 0x3fc2f1af73c6ba00, 0x3cbecf5f977d1ca9
|
|
data8 0x82ec3c3af8c76b32, 0xfd2056f9fff97727
|
|
data8 0x3fc33266fe6889a0, 0x3c9d329c022ebdb5
|
|
data8 0x830062f46abf6022, 0xfd0cde480c43b327
|
|
data8 0x3fc373237b34de60, 0x3cc95806d4928adb
|
|
data8 0x8314d30108ea35f0, 0xfcf923526c1562b2
|
|
data8 0x3fc3b3e4fbe10520, 0x3cbc299fe7223d54
|
|
data8 0x83298ca29434df97, 0xfce526099d0737ed
|
|
data8 0x3fc3f4ab922e4a60, 0x3cb59d8bb8fdbccc
|
|
data8 0x833e901bd93c7009, 0xfcd0e65de39f1f7c
|
|
data8 0x3fc435774fea2a60, 0x3c9ec18b43340914
|
|
data8 0x8353ddb0b278aad8, 0xfcbc643f4b106055
|
|
data8 0x3fc4764846ee80a0, 0x3cb90402efd87ed6
|
|
data8 0x836975a60a70c52e, 0xfca79f9da4fab13a
|
|
data8 0x3fc4b71e8921b860, 0xbc58f23449ed6365
|
|
data8 0x837f5841ddfa7a46, 0xfc92986889284148
|
|
data8 0x3fc4f7fa2876fca0, 0xbc6294812bf43acd
|
|
data8 0x839585cb3e839773, 0xfc7d4e8f554ab12f
|
|
data8 0x3fc538db36ee6960, 0x3cb910b773d4c578
|
|
data8 0x83abfe8a5466246f, 0xfc67c2012cb6fa68
|
|
data8 0x3fc579c1c6953cc0, 0x3cc5ede909fc47fc
|
|
data8 0x83c2c2c861474d91, 0xfc51f2acf82041d5
|
|
data8 0x3fc5baade9860880, 0x3cac63cdfc3588e5
|
|
data8 0x83d9d2cfc2813637, 0xfc3be08165519325
|
|
data8 0x3fc5fb9fb1e8e3a0, 0x3cbf7c8466578c29
|
|
data8 0x83f12eebf397daac, 0xfc258b6ce6e6822f
|
|
data8 0x3fc63c9731f39d40, 0x3cb6d2a7ffca3e9e
|
|
data8 0x8408d76990b9296e, 0xfc0ef35db402af94
|
|
data8 0x3fc67d947be9eec0, 0x3cb1980da09e6566
|
|
data8 0x8420cc9659487cd7, 0xfbf81841c8082dc4
|
|
data8 0x3fc6be97a21daf00, 0x3cc2ac8330e59aa5
|
|
data8 0x84390ec132759ecb, 0xfbe0fa06e24cc390
|
|
data8 0x3fc6ffa0b6ef05e0, 0x3ccc1a030fee56c4
|
|
data8 0x84519e3a29df811a, 0xfbc9989a85ce0954
|
|
data8 0x3fc740afcccca000, 0x3cc19692a5301ca6
|
|
data8 0x846a7b527842d61b, 0xfbb1f3e9f8e45dc4
|
|
data8 0x3fc781c4f633e2c0, 0x3cc0e98f3868a508
|
|
data8 0x8483a65c8434b5f0, 0xfb9a0be244f4af45
|
|
data8 0x3fc7c2e045b12140, 0x3cb2a8d309754420
|
|
data8 0x849d1fabe4e97dd7, 0xfb81e070362116d1
|
|
data8 0x3fc80401cddfd120, 0x3ca7a44544aa4ce6
|
|
data8 0x84b6e795650817ea, 0xfb6971805af8411e
|
|
data8 0x3fc84529a16ac020, 0x3c9e3b709c7d6f94
|
|
data8 0x84d0fe6f0589da92, 0xfb50beff0423a2f5
|
|
data8 0x3fc88657d30c49e0, 0x3cc60d65a7f0a278
|
|
data8 0x84eb649000a73014, 0xfb37c8d84414755c
|
|
data8 0x3fc8c78c758e8e80, 0x3cc94b2ee984c2b7
|
|
data8 0x85061a50ccd13781, 0xfb1e8ef7eeaf764b
|
|
data8 0x3fc908c79bcba900, 0x3cc8540ae794a2fe
|
|
data8 0x8521200b1fb8916e, 0xfb05114998f76a83
|
|
data8 0x3fc94a0958ade6c0, 0x3ca127f49839fa9c
|
|
data8 0x853c7619f1618bf6, 0xfaeb4fb898b65d19
|
|
data8 0x3fc98b51bf2ffee0, 0x3c8c9ba7a803909a
|
|
data8 0x85581cd97f45e274, 0xfad14a3004259931
|
|
data8 0x3fc9cca0e25d4ac0, 0x3cba458e91d3bf54
|
|
data8 0x857414a74f8446b4, 0xfab7009ab1945a54
|
|
data8 0x3fca0df6d551fe80, 0x3cc78ea1d329d2b2
|
|
data8 0x85905de2341dea46, 0xfa9c72e3370d2fbc
|
|
data8 0x3fca4f53ab3b6200, 0x3ccf60dca86d57ef
|
|
data8 0x85acf8ea4e423ff8, 0xfa81a0f3e9fa0ee9
|
|
data8 0x3fca90b777580aa0, 0x3ca4c4e2ec8a867e
|
|
data8 0x85c9e62111a92e7d, 0xfa668ab6dec711b1
|
|
data8 0x3fcad2224cf814e0, 0x3c303de5980d071c
|
|
data8 0x85e725e947fbee97, 0xfa4b3015e883dbfe
|
|
data8 0x3fcb13943f7d5f80, 0x3cc29d4eefa5cb1e
|
|
data8 0x8604b8a7144cd054, 0xfa2f90fa9883a543
|
|
data8 0x3fcb550d625bc6a0, 0x3c9e01a746152daf
|
|
data8 0x86229ebff69e2415, 0xfa13ad4e3dfbe1c1
|
|
data8 0x3fcb968dc9195ea0, 0x3ccc091bd73ae518
|
|
data8 0x8640d89acf78858c, 0xf9f784f9e5a1877b
|
|
data8 0x3fcbd815874eb160, 0x3cb5f4b89875e187
|
|
data8 0x865f669fe390c7f5, 0xf9db17e65944eacf
|
|
data8 0x3fcc19a4b0a6f9c0, 0x3cc5c0bc2b0bbf14
|
|
data8 0x867e4938df7dc45f, 0xf9be65fc1f6c2e6e
|
|
data8 0x3fcc5b3b58e061e0, 0x3cc1ca70df8f57e7
|
|
data8 0x869d80d0db7e4c0c, 0xf9a16f237aec427a
|
|
data8 0x3fcc9cd993cc4040, 0x3cbae93acc85eccf
|
|
data8 0x86bd0dd45f4f8265, 0xf98433446a806e70
|
|
data8 0x3fccde7f754f5660, 0x3cb22f70e64568d0
|
|
data8 0x86dcf0b16613e37a, 0xf966b246a8606170
|
|
data8 0x3fcd202d11620fa0, 0x3c962030e5d4c849
|
|
data8 0x86fd29d7624b3d5d, 0xf948ec11a9d4c45b
|
|
data8 0x3fcd61e27c10c0a0, 0x3cc7083c91d59217
|
|
data8 0x871db9b741dbe44a, 0xf92ae08c9eca4941
|
|
data8 0x3fcda39fc97be7c0, 0x3cc9258579e57211
|
|
data8 0x873ea0c3722d6af2, 0xf90c8f9e71633363
|
|
data8 0x3fcde5650dd86d60, 0x3ca4755a9ea582a9
|
|
data8 0x875fdf6fe45529e8, 0xf8edf92dc5875319
|
|
data8 0x3fce27325d6fe520, 0x3cbc1e2b6c1954f9
|
|
data8 0x878176321154e2bc, 0xf8cf1d20f87270b8
|
|
data8 0x3fce6907cca0d060, 0x3cb6ca4804750830
|
|
data8 0x87a36580fe6bccf5, 0xf8affb5e20412199
|
|
data8 0x3fceaae56fdee040, 0x3cad6b310d6fd46c
|
|
data8 0x87c5add5417a5cb9, 0xf89093cb0b7c0233
|
|
data8 0x3fceeccb5bb33900, 0x3cc16e99cedadb20
|
|
data8 0x87e84fa9057914ca, 0xf870e64d40a15036
|
|
data8 0x3fcf2eb9a4bcb600, 0x3cc75ee47c8b09e9
|
|
data8 0x880b4b780f02b709, 0xf850f2c9fdacdf78
|
|
data8 0x3fcf70b05fb02e20, 0x3cad6350d379f41a
|
|
data8 0x882ea1bfc0f228ac, 0xf830b926379e6465
|
|
data8 0x3fcfb2afa158b8a0, 0x3cce0ccd9f829985
|
|
data8 0x885252ff21146108, 0xf810394699fe0e8e
|
|
data8 0x3fcff4b77e97f3e0, 0x3c9b30faa7a4c703
|
|
data8 0x88765fb6dceebbb3, 0xf7ef730f865f6df0
|
|
data8 0x3fd01b6406332540, 0x3cdc5772c9e0b9bd
|
|
data8 0x88ad1f69be2cc730, 0xf7bdc59bc9cfbd97
|
|
data8 0x3fd04cf8ad203480, 0x3caeef44fe21a74a
|
|
data8 0x88f763f70ae2245e, 0xf77a91c868a9c54e
|
|
data8 0x3fd08f23ce0162a0, 0x3cd6290ab3fe5889
|
|
data8 0x89431fc7bc0c2910, 0xf73642973c91298e
|
|
data8 0x3fd0d1610f0c1ec0, 0x3cc67401a01f08cf
|
|
data8 0x8990573407c7738e, 0xf6f0d71d1d7a2dd6
|
|
data8 0x3fd113b0c65d88c0, 0x3cc7aa4020fe546f
|
|
data8 0x89df0eb108594653, 0xf6aa4e6a05cfdef2
|
|
data8 0x3fd156134ada6fe0, 0x3cc87369da09600c
|
|
data8 0x8a2f4ad16e0ed78a, 0xf662a78900c35249
|
|
data8 0x3fd19888f43427a0, 0x3cc62b220f38e49c
|
|
data8 0x8a811046373e0819, 0xf619e180181d97cc
|
|
data8 0x3fd1db121aed7720, 0x3ca3ede7490b52f4
|
|
data8 0x8ad463df6ea0fa2c, 0xf5cffb504190f9a2
|
|
data8 0x3fd21daf185fa360, 0x3caafad98c1d6c1b
|
|
data8 0x8b294a8cf0488daf, 0xf584f3f54b8604e6
|
|
data8 0x3fd2606046bf95a0, 0x3cdb2d704eeb08fa
|
|
data8 0x8b7fc95f35647757, 0xf538ca65c960b582
|
|
data8 0x3fd2a32601231ec0, 0x3cc661619fa2f126
|
|
data8 0x8bd7e588272276f8, 0xf4eb7d92ff39fccb
|
|
data8 0x3fd2e600a3865760, 0x3c8a2a36a99aca4a
|
|
data8 0x8c31a45bf8e9255e, 0xf49d0c68cd09b689
|
|
data8 0x3fd328f08ad12000, 0x3cb9efaf1d7ab552
|
|
data8 0x8c8d0b520a35eb18, 0xf44d75cd993cfad2
|
|
data8 0x3fd36bf614dcc040, 0x3ccacbb590bef70d
|
|
data8 0x8cea2005d068f23d, 0xf3fcb8a23ab4942b
|
|
data8 0x3fd3af11a079a6c0, 0x3cd9775872cf037d
|
|
data8 0x8d48e837c8cd5027, 0xf3aad3c1e2273908
|
|
data8 0x3fd3f2438d754b40, 0x3ca03304f667109a
|
|
data8 0x8da969ce732f3ac7, 0xf357c60202e2fd7e
|
|
data8 0x3fd4358c3ca032e0, 0x3caecf2504ff1a9d
|
|
data8 0x8e0baad75555e361, 0xf3038e323ae9463a
|
|
data8 0x3fd478ec0fd419c0, 0x3cc64bdc3d703971
|
|
data8 0x8e6fb18807ba877e, 0xf2ae2b1c3a6057f7
|
|
data8 0x3fd4bc6369fa40e0, 0x3cbb7122ec245cf2
|
|
data8 0x8ed5843f4bda74d5, 0xf2579b83aa556f0c
|
|
data8 0x3fd4fff2af11e2c0, 0x3c9cfa2dc792d394
|
|
data8 0x8f3d29862c861fef, 0xf1ffde2612ca1909
|
|
data8 0x3fd5439a4436d000, 0x3cc38d46d310526b
|
|
data8 0x8fa6a81128940b2d, 0xf1a6f1bac0075669
|
|
data8 0x3fd5875a8fa83520, 0x3cd8bf59b8153f8a
|
|
data8 0x901206c1686317a6, 0xf14cd4f2a730d480
|
|
data8 0x3fd5cb33f8cf8ac0, 0x3c9502b5c4d0e431
|
|
data8 0x907f4ca5fe9cf739, 0xf0f186784a125726
|
|
data8 0x3fd60f26e847b120, 0x3cc8a1a5e0acaa33
|
|
data8 0x90ee80fd34aeda5e, 0xf09504ef9a212f18
|
|
data8 0x3fd65333c7e43aa0, 0x3cae5b029cb1f26e
|
|
data8 0x915fab35e37421c6, 0xf0374ef5daab5c45
|
|
data8 0x3fd6975b02b8e360, 0x3cd5aa1c280c45e6
|
|
data8 0x91d2d2f0d894d73c, 0xefd86321822dbb51
|
|
data8 0x3fd6db9d05213b20, 0x3cbecf2c093ccd8b
|
|
data8 0x9248000249200009, 0xef7840021aca5a72
|
|
data8 0x3fd71ffa3cc87fc0, 0x3cb8d273f08d00d9
|
|
data8 0x92bf3a7351f081d2, 0xef16e42021d7cbd5
|
|
data8 0x3fd7647318b1ad20, 0x3cbce099d79cdc46
|
|
data8 0x93388a8386725713, 0xeeb44dfce6820283
|
|
data8 0x3fd7a908093fc1e0, 0x3ccb033ec17a30d9
|
|
data8 0x93b3f8aa8e653812, 0xee507c126774fa45
|
|
data8 0x3fd7edb9803e3c20, 0x3cc10aedb48671eb
|
|
data8 0x94318d99d341ade4, 0xedeb6cd32f891afb
|
|
data8 0x3fd83287f0e9cf80, 0x3c994c0c1505cd2a
|
|
data8 0x94b1523e3dedc630, 0xed851eaa3168f43c
|
|
data8 0x3fd87773cff956e0, 0x3cda3b7bce6a6b16
|
|
data8 0x95334fc20577563f, 0xed1d8ffaa2279669
|
|
data8 0x3fd8bc7d93a70440, 0x3cd4922edc792ce2
|
|
data8 0x95b78f8e8f92f274, 0xecb4bf1fd2be72da
|
|
data8 0x3fd901a5b3b9cf40, 0x3cd3fea1b00f9d0d
|
|
data8 0x963e1b4e63a87c3f, 0xec4aaa6d08694cc1
|
|
data8 0x3fd946eca98f2700, 0x3cdba4032d968ff1
|
|
data8 0x96c6fcef314074fc, 0xebdf502d53d65fea
|
|
data8 0x3fd98c52f024e800, 0x3cbe7be1ab8c95c9
|
|
data8 0x97523ea3eab028b2, 0xeb72aea36720793e
|
|
data8 0x3fd9d1d904239860, 0x3cd72d08a6a22b70
|
|
data8 0x97dfeae6f4ee4a9a, 0xeb04c4096a884e94
|
|
data8 0x3fda177f63e8ef00, 0x3cd818c3c1ebfac7
|
|
data8 0x98700c7c6d85d119, 0xea958e90cfe1efd7
|
|
data8 0x3fda5d468f92a540, 0x3cdf45fbfaa080fe
|
|
data8 0x9902ae7487a9caa1, 0xea250c6224aab21a
|
|
data8 0x3fdaa32f090998e0, 0x3cd715a9353cede4
|
|
data8 0x9997dc2e017a9550, 0xe9b33b9ce2bb7638
|
|
data8 0x3fdae939540d3f00, 0x3cc545c014943439
|
|
data8 0x9a2fa158b29b649b, 0xe9401a573f8aa706
|
|
data8 0x3fdb2f65f63f6c60, 0x3cd4a63c2f2ca8e2
|
|
data8 0x9aca09f835466186, 0xe8cba69df9f0bf35
|
|
data8 0x3fdb75b5773075e0, 0x3cda310ce1b217ec
|
|
data8 0x9b672266ab1e0136, 0xe855de74266193d4
|
|
data8 0x3fdbbc28606babc0, 0x3cdc84b75cca6c44
|
|
data8 0x9c06f7579f0b7bd5, 0xe7debfd2f98c060b
|
|
data8 0x3fdc02bf3d843420, 0x3cd225d967ffb922
|
|
data8 0x9ca995db058cabdc, 0xe76648a991511c6e
|
|
data8 0x3fdc497a9c224780, 0x3cde08101c5b825b
|
|
data8 0x9d4f0b605ce71e88, 0xe6ec76dcbc02d9a7
|
|
data8 0x3fdc905b0c10d420, 0x3cb1abbaa3edf120
|
|
data8 0x9df765b9eecad5e6, 0xe6714846bdda7318
|
|
data8 0x3fdcd7611f4b8a00, 0x3cbf6217ae80aadf
|
|
data8 0x9ea2b320350540fe, 0xe5f4bab71494cd6b
|
|
data8 0x3fdd1e8d6a0d56c0, 0x3cb726e048cc235c
|
|
data8 0x9f51023562fc5676, 0xe576cbf239235ecb
|
|
data8 0x3fdd65e082df5260, 0x3cd9e66872bd5250
|
|
data8 0xa002620915c2a2f6, 0xe4f779b15f5ec5a7
|
|
data8 0x3fddad5b02a82420, 0x3c89743b0b57534b
|
|
data8 0xa0b6e21c2caf9992, 0xe476c1a233a7873e
|
|
data8 0x3fddf4fd84bbe160, 0x3cbf7adea9ee3338
|
|
data8 0xa16e9264cc83a6b2, 0xe3f4a16696608191
|
|
data8 0x3fde3cc8a6ec6ee0, 0x3cce46f5a51f49c6
|
|
data8 0xa22983528f3d8d49, 0xe3711694552da8a8
|
|
data8 0x3fde84bd099a6600, 0x3cdc78f6490a2d31
|
|
data8 0xa2e7c5d2e2e69460, 0xe2ec1eb4e1e0a5fb
|
|
data8 0x3fdeccdb4fc685c0, 0x3cdd3aedb56a4825
|
|
data8 0xa3a96b5599bd2532, 0xe265b74506fbe1c9
|
|
data8 0x3fdf15241f23b3e0, 0x3cd440f3c6d65f65
|
|
data8 0xa46e85d1ae49d7de, 0xe1ddddb499b3606f
|
|
data8 0x3fdf5d98202994a0, 0x3cd6c44bd3fb745a
|
|
data8 0xa53727ca3e11b99e, 0xe1548f662951b00d
|
|
data8 0x3fdfa637fe27bf60, 0x3ca8ad1cd33054dd
|
|
data8 0xa6036453bdc20186, 0xe0c9c9aeabe5e481
|
|
data8 0x3fdfef0467599580, 0x3cc0f1ac0685d78a
|
|
data8 0xa6d34f1969dda338, 0xe03d89d5281e4f81
|
|
data8 0x3fe01bff067d6220, 0x3cc0731e8a9ef057
|
|
data8 0xa7a6fc62f7246ff3, 0xdfafcd125c323f54
|
|
data8 0x3fe04092d1ae3b40, 0x3ccabda24b59906d
|
|
data8 0xa87e811a861df9b9, 0xdf20909061bb9760
|
|
data8 0x3fe0653df0fd9fc0, 0x3ce94c8dcc722278
|
|
data8 0xa959f2d2dd687200, 0xde8fd16a4e5f88bd
|
|
data8 0x3fe08a00c1cae320, 0x3ce6b888bb60a274
|
|
data8 0xaa3967cdeea58bda, 0xddfd8cabd1240d22
|
|
data8 0x3fe0aedba3221c00, 0x3ced5941cd486e46
|
|
data8 0xab904fd587263c84, 0xdd1f4472e1cf64ed
|
|
data8 0x3fe0e651e85229c0, 0x3cdb6701042299b1
|
|
data8 0xad686d44dd5a74bb, 0xdbf173e1f6b46e92
|
|
data8 0x3fe1309cbf4cdb20, 0x3cbf1be7bb3f0ec5
|
|
data8 0xaf524e15640ebee4, 0xdabd54896f1029f6
|
|
data8 0x3fe17b4ee1641300, 0x3ce81dd055b792f1
|
|
data8 0xb14eca24ef7db3fa, 0xd982cb9ae2f47e41
|
|
data8 0x3fe1c66b9ffd6660, 0x3cd98ea31eb5ddc7
|
|
data8 0xb35ec807669920ce, 0xd841bd1b8291d0b6
|
|
data8 0x3fe211f66db3a5a0, 0x3ca480c35a27b4a2
|
|
data8 0xb5833e4755e04dd1, 0xd6fa0bd3150b6930
|
|
data8 0x3fe25df2e05b6c40, 0x3ca4bc324287a351
|
|
data8 0xb7bd34c8000b7bd3, 0xd5ab9939a7d23aa1
|
|
data8 0x3fe2aa64b32f7780, 0x3cba67314933077c
|
|
data8 0xba0dc64d126cc135, 0xd4564563ce924481
|
|
data8 0x3fe2f74fc9289ac0, 0x3cec1a1dc0efc5ec
|
|
data8 0xbc76222cbbfa74a6, 0xd2f9eeed501125a8
|
|
data8 0x3fe344b82f859ac0, 0x3ceeef218de413ac
|
|
data8 0xbef78e31985291a9, 0xd19672e2182f78be
|
|
data8 0x3fe392a22087b7e0, 0x3cd2619ba201204c
|
|
data8 0xc19368b2b0629572, 0xd02baca5427e436a
|
|
data8 0x3fe3e11206694520, 0x3cb5d0b3143fe689
|
|
data8 0xc44b2ae8c6733e51, 0xceb975d60b6eae5d
|
|
data8 0x3fe4300c7e945020, 0x3cbd367143da6582
|
|
data8 0xc7206b894212dfef, 0xcd3fa6326ff0ac9a
|
|
data8 0x3fe47f965d201d60, 0x3ce797c7a4ec1d63
|
|
data8 0xca14e1b0622de526, 0xcbbe13773c3c5338
|
|
data8 0x3fe4cfb4b09d1a20, 0x3cedfadb5347143c
|
|
data8 0xcd2a6825eae65f82, 0xca34913d425a5ae9
|
|
data8 0x3fe5206cc637e000, 0x3ce2798b38e54193
|
|
data8 0xd06301095e1351ee, 0xc8a2f0d3679c08c0
|
|
data8 0x3fe571c42e3d0be0, 0x3ccd7cb9c6c2ca68
|
|
data8 0xd3c0d9f50057adda, 0xc70901152d59d16b
|
|
data8 0x3fe5c3c0c108f940, 0x3ceb6c13563180ab
|
|
data8 0xd74650a98cc14789, 0xc5668e3d4cbf8828
|
|
data8 0x3fe61668a46ffa80, 0x3caa9092e9e3c0e5
|
|
data8 0xdaf5f8579dcc8f8f, 0xc3bb61b3eed42d02
|
|
data8 0x3fe669c251ad69e0, 0x3cccf896ef3b4fee
|
|
data8 0xded29f9f9a6171b4, 0xc20741d7f8e8e8af
|
|
data8 0x3fe6bdd49bea05c0, 0x3cdc6b29937c575d
|
|
data8 0xe2df5765854ccdb0, 0xc049f1c2d1b8014b
|
|
data8 0x3fe712a6b76c6e80, 0x3ce1ddc6f2922321
|
|
data8 0xe71f7a9b94fcb4c3, 0xbe833105ec291e91
|
|
data8 0x3fe76840418978a0, 0x3ccda46e85432c3d
|
|
data8 0xeb96b72d3374b91e, 0xbcb2bb61493b28b3
|
|
data8 0x3fe7bea9496d5a40, 0x3ce37b42ec6e17d3
|
|
data8 0xf049183c3f53c39b, 0xbad848720223d3a8
|
|
data8 0x3fe815ea59dab0a0, 0x3cb03ad41bfc415b
|
|
data8 0xf53b11ec7f415f15, 0xb8f38b57c53c9c48
|
|
data8 0x3fe86e0c84010760, 0x3cc03bfcfb17fe1f
|
|
data8 0xfa718f05adbf2c33, 0xb70432500286b185
|
|
data8 0x3fe8c7196b9225c0, 0x3ced99fcc6866ba9
|
|
data8 0xfff200c3f5489608, 0xb509e6454dca33cc
|
|
data8 0x3fe9211b54441080, 0x3cb789cb53515688
|
|
// The following table entries are not used
|
|
//data8 0x82e138a0fac48700, 0xb3044a513a8e6132
|
|
//data8 0x3fe97c1d30f5b7c0, 0x3ce1eb765612d1d0
|
|
//data8 0x85f4cc7fc670d021, 0xb0f2fb2ea6cbbc88
|
|
//data8 0x3fe9d82ab4b5fde0, 0x3ced3fe6f27e8039
|
|
//data8 0x89377c1387d5b908, 0xaed58e9a09014d5c
|
|
//data8 0x3fea355065f87fa0, 0x3cbef481d25f5b58
|
|
//data8 0x8cad7a2c98dec333, 0xacab929ce114d451
|
|
//data8 0x3fea939bb451e2a0, 0x3c8e92b4fbf4560f
|
|
//data8 0x905b7dfc99583025, 0xaa748cc0dbbbc0ec
|
|
//data8 0x3feaf31b11270220, 0x3cdced8c61bd7bd5
|
|
//data8 0x9446d8191f80dd42, 0xa82ff92687235baf
|
|
//data8 0x3feb53de0bcffc20, 0x3cbe1722fb47509e
|
|
//data8 0x98758ba086e4000a, 0xa5dd497a9c184f58
|
|
//data8 0x3febb5f571cb0560, 0x3ce0c7774329a613
|
|
//data8 0x9cee6c7bf18e4e24, 0xa37be3c3cd1de51b
|
|
//data8 0x3fec197373bc7be0, 0x3ce08ebdb55c3177
|
|
//data8 0xa1b944000a1b9440, 0xa10b2101b4f27e03
|
|
//data8 0x3fec7e6bd023da60, 0x3ce5fc5fd4995959
|
|
//data8 0xa6defd8ba04d3e38, 0x9e8a4b93cad088ec
|
|
//data8 0x3fece4f404e29b20, 0x3cea3413401132b5
|
|
//data8 0xac69dd408a10c62d, 0x9bf89d5d17ddae8c
|
|
//data8 0x3fed4d2388f63600, 0x3cd5a7fb0d1d4276
|
|
//data8 0xb265c39cbd80f97a, 0x99553d969fec7beb
|
|
//data8 0x3fedb714101e0a00, 0x3cdbda21f01193f2
|
|
//data8 0xb8e081a16ae4ae73, 0x969f3e3ed2a0516c
|
|
//data8 0x3fee22e1da97bb00, 0x3ce7231177f85f71
|
|
//data8 0xbfea427678945732, 0x93d5990f9ee787af
|
|
//data8 0x3fee90ac13b18220, 0x3ce3c8a5453363a5
|
|
//data8 0xc79611399b8c90c5, 0x90f72bde80febc31
|
|
//data8 0x3fef009542b712e0, 0x3ce218fd79e8cb56
|
|
//data8 0xcffa8425040624d7, 0x8e02b4418574ebed
|
|
//data8 0x3fef72c3d2c57520, 0x3cd32a717f82203f
|
|
//data8 0xd93299cddcf9cf23, 0x8af6ca48e9c44024
|
|
//data8 0x3fefe762b77744c0, 0x3ce53478a6bbcf94
|
|
//data8 0xe35eda760af69ad9, 0x87d1da0d7f45678b
|
|
//data8 0x3ff02f511b223c00, 0x3ced6e11782c28fc
|
|
//data8 0xeea6d733421da0a6, 0x84921bbe64ae029a
|
|
//data8 0x3ff06c5c6f8ce9c0, 0x3ce71fc71c1ffc02
|
|
//data8 0xfb3b2c73fc6195cc, 0x813589ba3a5651b6
|
|
//data8 0x3ff0aaf2613700a0, 0x3cf2a72d2fd94ef3
|
|
//data8 0x84ac1fcec4203245, 0xfb73a828893df19e
|
|
//data8 0x3ff0eb367c3fd600, 0x3cf8054c158610de
|
|
//data8 0x8ca50621110c60e6, 0xf438a14c158d867c
|
|
//data8 0x3ff12d51caa6b580, 0x3ce6bce9748739b6
|
|
//data8 0x95b8c2062d6f8161, 0xecb3ccdd37b369da
|
|
//data8 0x3ff1717418520340, 0x3ca5c2732533177c
|
|
//data8 0xa0262917caab4ad1, 0xe4dde4ddc81fd119
|
|
//data8 0x3ff1b7d59dd40ba0, 0x3cc4c7c98e870ff5
|
|
//data8 0xac402c688b72f3f4, 0xdcae469be46d4c8d
|
|
//data8 0x3ff200b93cc5a540, 0x3c8dd6dc1bfe865a
|
|
//data8 0xba76968b9eabd9ab, 0xd41a8f3df1115f7f
|
|
//data8 0x3ff24c6f8f6affa0, 0x3cf1acb6d2a7eff7
|
|
//data8 0xcb63c87c23a71dc5, 0xcb161074c17f54ec
|
|
//data8 0x3ff29b5b338b7c80, 0x3ce9b5845f6ec746
|
|
//data8 0xdfe323b8653af367, 0xc19107d99ab27e42
|
|
//data8 0x3ff2edf6fac7f5a0, 0x3cf77f961925fa02
|
|
//data8 0xf93746caaba3e1f1, 0xb777744a9df03bff
|
|
//data8 0x3ff344df237486c0, 0x3cf6ddf5f6ddda43
|
|
//data8 0x8ca77052f6c340f0, 0xacaf476f13806648
|
|
//data8 0x3ff3a0dfa4bb4ae0, 0x3cfee01bbd761bff
|
|
//data8 0xa1a48604a81d5c62, 0xa11575d30c0aae50
|
|
//data8 0x3ff4030b73c55360, 0x3cf1cf0e0324d37c
|
|
//data8 0xbe45074b05579024, 0x9478e362a07dd287
|
|
//data8 0x3ff46ce4c738c4e0, 0x3ce3179555367d12
|
|
//data8 0xe7a08b5693d214ec, 0x8690e3575b8a7c3b
|
|
//data8 0x3ff4e0a887c40a80, 0x3cfbd5d46bfefe69
|
|
//data8 0x94503d69396d91c7, 0xedd2ce885ff04028
|
|
//data8 0x3ff561ebd9c18cc0, 0x3cf331bd176b233b
|
|
//data8 0xced1d96c5bb209e6, 0xc965278083808702
|
|
//data8 0x3ff5f71d7ff42c80, 0x3ce3301cc0b5a48c
|
|
//data8 0xabac2cee0fc24e20, 0x9c4eb1136094cbbd
|
|
//data8 0x3ff6ae4c63222720, 0x3cf5ff46874ee51e
|
|
//data8 0x8040201008040201, 0xb4d7ac4d9acb1bf4
|
|
//data8 0x3ff7b7d33b928c40, 0x3cfacdee584023bb
|
|
LOCAL_OBJECT_END(T_table)
|
|
|
|
|
|
|
|
.align 16
|
|
|
|
LOCAL_OBJECT_START(poly_coeffs)
|
|
// C_3
|
|
data8 0xaaaaaaaaaaaaaaab, 0x0000000000003ffc
|
|
// C_5
|
|
data8 0x999999999999999a, 0x0000000000003ffb
|
|
// C_7, C_9
|
|
data8 0x3fa6db6db6db6db7, 0x3f9f1c71c71c71c8
|
|
// pi/2 (low, high)
|
|
data8 0x3C91A62633145C07, 0x3FF921FB54442D18
|
|
// C_11, C_13
|
|
data8 0x3f96e8ba2e8ba2e9, 0x3f91c4ec4ec4ec4e
|
|
// C_15, C_17
|
|
data8 0x3f8c99999999999a, 0x3f87a87878787223
|
|
LOCAL_OBJECT_END(poly_coeffs)
|
|
|
|
|
|
R_DBL_S = r21
|
|
R_EXP0 = r22
|
|
R_EXP = r15
|
|
R_SGNMASK = r23
|
|
R_TMP = r24
|
|
R_TMP2 = r25
|
|
R_INDEX = r26
|
|
R_TMP3 = r27
|
|
R_TMP03 = r27
|
|
R_TMP4 = r28
|
|
R_TMP5 = r23
|
|
R_TMP6 = r22
|
|
R_TMP7 = r21
|
|
R_T = r29
|
|
R_BIAS = r20
|
|
|
|
F_T = f6
|
|
F_1S2 = f7
|
|
F_1S2_S = f9
|
|
F_INV_1T2 = f10
|
|
F_SQRT_1T2 = f11
|
|
F_S2T2 = f12
|
|
F_X = f13
|
|
F_D = f14
|
|
F_2M64 = f15
|
|
|
|
F_CS2 = f32
|
|
F_CS3 = f33
|
|
F_CS4 = f34
|
|
F_CS5 = f35
|
|
F_CS6 = f36
|
|
F_CS7 = f37
|
|
F_CS8 = f38
|
|
F_CS9 = f39
|
|
F_S23 = f40
|
|
F_S45 = f41
|
|
F_S67 = f42
|
|
F_S89 = f43
|
|
F_S25 = f44
|
|
F_S69 = f45
|
|
F_S29 = f46
|
|
F_X2 = f47
|
|
F_X4 = f48
|
|
F_TSQRT = f49
|
|
F_DTX = f50
|
|
F_R = f51
|
|
F_R2 = f52
|
|
F_R3 = f53
|
|
F_R4 = f54
|
|
|
|
F_C3 = f55
|
|
F_C5 = f56
|
|
F_C7 = f57
|
|
F_C9 = f58
|
|
F_P79 = f59
|
|
F_P35 = f60
|
|
F_P39 = f61
|
|
|
|
F_ATHI = f62
|
|
F_ATLO = f63
|
|
|
|
F_T1 = f64
|
|
F_Y = f65
|
|
F_Y2 = f66
|
|
F_ANDMASK = f67
|
|
F_ORMASK = f68
|
|
F_S = f69
|
|
F_05 = f70
|
|
F_SQRT_1S2 = f71
|
|
F_DS = f72
|
|
F_Z = f73
|
|
F_1T2 = f74
|
|
F_DZ = f75
|
|
F_ZE = f76
|
|
F_YZ = f77
|
|
F_Y1S2 = f78
|
|
F_Y1S2X = f79
|
|
F_1X = f80
|
|
F_ST = f81
|
|
F_1T2_ST = f82
|
|
F_TSS = f83
|
|
F_Y1S2X2 = f84
|
|
F_DZ_TERM = f85
|
|
F_DTS = f86
|
|
F_DS2X = f87
|
|
F_T2 = f88
|
|
F_ZY1S2S = f89
|
|
F_Y1S2_1X = f90
|
|
F_TS = f91
|
|
F_PI2_LO = f92
|
|
F_PI2_HI = f93
|
|
F_S19 = f94
|
|
F_INV1T2_2 = f95
|
|
F_CORR = f96
|
|
F_DZ0 = f97
|
|
|
|
F_C11 = f98
|
|
F_C13 = f99
|
|
F_C15 = f100
|
|
F_C17 = f101
|
|
F_P1113 = f102
|
|
F_P1517 = f103
|
|
F_P1117 = f104
|
|
F_P317 = f105
|
|
F_R8 = f106
|
|
F_HI = f107
|
|
F_1S2_HI = f108
|
|
F_DS2 = f109
|
|
F_Y2_2 = f110
|
|
F_S2 = f111
|
|
F_S_DS2 = f112
|
|
F_S_1S2S = f113
|
|
F_XL = f114
|
|
F_2M128 = f115
|
|
|
|
|
|
.section .text
|
|
GLOBAL_LIBM_ENTRY(asinl)
|
|
|
|
{.mfi
|
|
// get exponent, mantissa (rounded to double precision) of s
|
|
getf.d R_DBL_S = f8
|
|
// 1-s^2
|
|
fnma.s1 F_1S2 = f8, f8, f1
|
|
// r2 = pointer to T_table
|
|
addl r2 = @ltoff(T_table), gp
|
|
}
|
|
|
|
{.mfi
|
|
// sign mask
|
|
mov R_SGNMASK = 0x20000
|
|
nop.f 0
|
|
// bias-63-1
|
|
mov R_TMP03 = 0xffff-64;;
|
|
}
|
|
|
|
|
|
{.mfi
|
|
// get exponent of s
|
|
getf.exp R_EXP = f8
|
|
nop.f 0
|
|
// R_TMP4 = 2^45
|
|
shl R_TMP4 = R_SGNMASK, 45-17
|
|
}
|
|
|
|
{.mlx
|
|
// load bias-4
|
|
mov R_TMP = 0xffff-4
|
|
// load RU(sqrt(2)/2) to integer register (in double format, shifted left by 1)
|
|
movl R_TMP2 = 0x7fcd413cccfe779a;;
|
|
}
|
|
|
|
|
|
{.mfi
|
|
// load 2^{-64} in FP register
|
|
setf.exp F_2M64 = R_TMP03
|
|
nop.f 0
|
|
// index = (0x7-exponent)|b1 b2.. b6
|
|
extr.u R_INDEX = R_DBL_S, 46, 9
|
|
}
|
|
|
|
{.mfi
|
|
// get t = sign|exponent|b1 b2.. b6 1 x.. x
|
|
or R_T = R_DBL_S, R_TMP4
|
|
nop.f 0
|
|
// R_TMP4 = 2^45-1
|
|
sub R_TMP4 = R_TMP4, r0, 1;;
|
|
}
|
|
|
|
|
|
{.mfi
|
|
// get t = sign|exponent|b1 b2.. b6 1 0.. 0
|
|
andcm R_T = R_T, R_TMP4
|
|
nop.f 0
|
|
// eliminate sign from R_DBL_S (shift left by 1)
|
|
shl R_TMP3 = R_DBL_S, 1
|
|
}
|
|
|
|
{.mfi
|
|
// R_BIAS = 3*2^6
|
|
mov R_BIAS = 0xc0
|
|
nop.f 0
|
|
// eliminate sign from R_EXP
|
|
andcm R_EXP0 = R_EXP, R_SGNMASK;;
|
|
}
|
|
|
|
|
|
|
|
{.mfi
|
|
// load start address for T_table
|
|
ld8 r2 = [r2]
|
|
nop.f 0
|
|
// p8 = 1 if |s|> = sqrt(2)/2
|
|
cmp.geu p8, p0 = R_TMP3, R_TMP2
|
|
}
|
|
|
|
{.mlx
|
|
// p7 = 1 if |s|<2^{-4} (exponent of s<bias-4)
|
|
cmp.lt p7, p0 = R_EXP0, R_TMP
|
|
// sqrt coefficient cs8 = -33*13/128
|
|
movl R_TMP2 = 0xc0568000;;
|
|
}
|
|
|
|
|
|
|
|
{.mbb
|
|
// load t in FP register
|
|
setf.d F_T = R_T
|
|
// if |s|<2^{-4}, take alternate path
|
|
(p7) br.cond.spnt SMALL_S
|
|
// if |s|> = sqrt(2)/2, take alternate path
|
|
(p8) br.cond.sptk LARGE_S
|
|
}
|
|
|
|
{.mlx
|
|
// index = (4-exponent)|b1 b2.. b6
|
|
sub R_INDEX = R_INDEX, R_BIAS
|
|
// sqrt coefficient cs9 = 55*13/128
|
|
movl R_TMP = 0x40b2c000;;
|
|
}
|
|
|
|
|
|
{.mfi
|
|
// sqrt coefficient cs8 = -33*13/128
|
|
setf.s F_CS8 = R_TMP2
|
|
nop.f 0
|
|
// shift R_INDEX by 5
|
|
shl R_INDEX = R_INDEX, 5
|
|
}
|
|
|
|
{.mfi
|
|
// sqrt coefficient cs3 = 0.5 (set exponent = bias-1)
|
|
mov R_TMP4 = 0xffff - 1
|
|
nop.f 0
|
|
// sqrt coefficient cs6 = -21/16
|
|
mov R_TMP6 = 0xbfa8;;
|
|
}
|
|
|
|
|
|
{.mlx
|
|
// table index
|
|
add r2 = r2, R_INDEX
|
|
// sqrt coefficient cs7 = 33/16
|
|
movl R_TMP2 = 0x40040000;;
|
|
}
|
|
|
|
|
|
{.mmi
|
|
// load cs9 = 55*13/128
|
|
setf.s F_CS9 = R_TMP
|
|
// sqrt coefficient cs5 = 7/8
|
|
mov R_TMP3 = 0x3f60
|
|
// sqrt coefficient cs6 = 21/16
|
|
shl R_TMP6 = R_TMP6, 16;;
|
|
}
|
|
|
|
|
|
{.mmi
|
|
// load significand of 1/(1-t^2)
|
|
ldf8 F_INV_1T2 = [r2], 8
|
|
// sqrt coefficient cs7 = 33/16
|
|
setf.s F_CS7 = R_TMP2
|
|
// sqrt coefficient cs4 = -5/8
|
|
mov R_TMP5 = 0xbf20;;
|
|
}
|
|
|
|
|
|
{.mmi
|
|
// load significand of sqrt(1-t^2)
|
|
ldf8 F_SQRT_1T2 = [r2], 8
|
|
// sqrt coefficient cs6 = 21/16
|
|
setf.s F_CS6 = R_TMP6
|
|
// sqrt coefficient cs5 = 7/8
|
|
shl R_TMP3 = R_TMP3, 16;;
|
|
}
|
|
|
|
|
|
{.mmi
|
|
// sqrt coefficient cs3 = 0.5 (set exponent = bias-1)
|
|
setf.exp F_CS3 = R_TMP4
|
|
// r3 = pointer to polynomial coefficients
|
|
addl r3 = @ltoff(poly_coeffs), gp
|
|
// sqrt coefficient cs4 = -5/8
|
|
shl R_TMP5 = R_TMP5, 16;;
|
|
}
|
|
|
|
|
|
{.mfi
|
|
// sqrt coefficient cs5 = 7/8
|
|
setf.s F_CS5 = R_TMP3
|
|
// d = s-t
|
|
fms.s1 F_D = f8, f1, F_T
|
|
// set p6 = 1 if s<0, p11 = 1 if s> = 0
|
|
cmp.ge p6, p11 = R_EXP, R_DBL_S
|
|
}
|
|
|
|
{.mfi
|
|
// r3 = load start address to polynomial coefficients
|
|
ld8 r3 = [r3]
|
|
// s+t
|
|
fma.s1 F_S2T2 = f8, f1, F_T
|
|
nop.i 0;;
|
|
}
|
|
|
|
|
|
{.mfi
|
|
// sqrt coefficient cs4 = -5/8
|
|
setf.s F_CS4 = R_TMP5
|
|
// s^2-t^2
|
|
fma.s1 F_S2T2 = F_S2T2, F_D, f0
|
|
nop.i 0;;
|
|
}
|
|
|
|
|
|
{.mfi
|
|
// load C3
|
|
ldfe F_C3 = [r3], 16
|
|
// 0.5/(1-t^2) = 2^{-64}*(2^63/(1-t^2))
|
|
fma.s1 F_INV_1T2 = F_INV_1T2, F_2M64, f0
|
|
nop.i 0;;
|
|
}
|
|
|
|
{.mfi
|
|
// load C_5
|
|
ldfe F_C5 = [r3], 16
|
|
// set correct exponent for sqrt(1-t^2)
|
|
fma.s1 F_SQRT_1T2 = F_SQRT_1T2, F_2M64, f0
|
|
nop.i 0;;
|
|
}
|
|
|
|
|
|
{.mfi
|
|
// load C_7, C_9
|
|
ldfpd F_C7, F_C9 = [r3]
|
|
// x = -(s^2-t^2)/(1-t^2)/2
|
|
fnma.s1 F_X = F_INV_1T2, F_S2T2, f0
|
|
nop.i 0;;
|
|
}
|
|
|
|
|
|
{.mfi
|
|
// load asin(t)_high, asin(t)_low
|
|
ldfpd F_ATHI, F_ATLO = [r2]
|
|
// t*sqrt(1-t^2)
|
|
fma.s1 F_TSQRT = F_T, F_SQRT_1T2, f0
|
|
nop.i 0;;
|
|
}
|
|
|
|
|
|
{.mfi
|
|
nop.m 0
|
|
// cs9*x+cs8
|
|
fma.s1 F_S89 = F_CS9, F_X, F_CS8
|
|
nop.i 0
|
|
}
|
|
|
|
{.mfi
|
|
nop.m 0
|
|
// cs7*x+cs6
|
|
fma.s1 F_S67 = F_CS7, F_X, F_CS6
|
|
nop.i 0;;
|
|
}
|
|
|
|
{.mfi
|
|
nop.m 0
|
|
// cs5*x+cs4
|
|
fma.s1 F_S45 = F_CS5, F_X, F_CS4
|
|
nop.i 0
|
|
}
|
|
|
|
{.mfi
|
|
nop.m 0
|
|
// x*x
|
|
fma.s1 F_X2 = F_X, F_X, f0
|
|
nop.i 0;;
|
|
}
|
|
|
|
|
|
{.mfi
|
|
nop.m 0
|
|
// (s-t)-t*x
|
|
fnma.s1 F_DTX = F_T, F_X, F_D
|
|
nop.i 0
|
|
}
|
|
|
|
{.mfi
|
|
nop.m 0
|
|
// cs3*x+cs2 (cs2 = -0.5 = -cs3)
|
|
fms.s1 F_S23 = F_CS3, F_X, F_CS3
|
|
nop.i 0;;
|
|
}
|
|
|
|
|
|
{.mfi
|
|
nop.m 0
|
|
// cs9*x^3+cs8*x^2+cs7*x+cs6
|
|
fma.s1 F_S69 = F_S89, F_X2, F_S67
|
|
nop.i 0
|
|
}
|
|
|
|
{.mfi
|
|
nop.m 0
|
|
// x^4
|
|
fma.s1 F_X4 = F_X2, F_X2, f0
|
|
nop.i 0;;
|
|
}
|
|
|
|
|
|
{.mfi
|
|
nop.m 0
|
|
// t*sqrt(1-t^2)*x^2
|
|
fma.s1 F_TSQRT = F_TSQRT, F_X2, f0
|
|
nop.i 0
|
|
}
|
|
|
|
{.mfi
|
|
nop.m 0
|
|
// cs5*x^3+cs4*x^2+cs3*x+cs2
|
|
fma.s1 F_S25 = F_S45, F_X2, F_S23
|
|
nop.i 0;;
|
|
}
|
|
|
|
|
|
{.mfi
|
|
nop.m 0
|
|
// ((s-t)-t*x)*sqrt(1-t^2)
|
|
fma.s1 F_DTX = F_DTX, F_SQRT_1T2, f0
|
|
nop.i 0;;
|
|
}
|
|
|
|
|
|
{.mfi
|
|
nop.m 0
|
|
// if sign is negative, negate table values: asin(t)_low
|
|
(p6) fnma.s1 F_ATLO = F_ATLO, f1, f0
|
|
nop.i 0
|
|
}
|
|
|
|
{.mfi
|
|
nop.m 0
|
|
// PS29 = cs9*x^7+..+cs5*x^3+cs4*x^2+cs3*x+cs2
|
|
fma.s1 F_S29 = F_S69, F_X4, F_S25
|
|
nop.i 0;;
|
|
}
|
|
|
|
|
|
{.mfi
|
|
nop.m 0
|
|
// if sign is negative, negate table values: asin(t)_high
|
|
(p6) fnma.s1 F_ATHI = F_ATHI, f1, f0
|
|
nop.i 0
|
|
}
|
|
|
|
{.mfi
|
|
nop.m 0
|
|
// R = ((s-t)-t*x)*sqrt(1-t^2)-t*sqrt(1-t^2)*x^2*PS29
|
|
fnma.s1 F_R = F_S29, F_TSQRT, F_DTX
|
|
nop.i 0;;
|
|
}
|
|
|
|
|
|
{.mfi
|
|
nop.m 0
|
|
// R^2
|
|
fma.s1 F_R2 = F_R, F_R, f0
|
|
nop.i 0;;
|
|
}
|
|
|
|
|
|
{.mfi
|
|
nop.m 0
|
|
// c7+c9*R^2
|
|
fma.s1 F_P79 = F_C9, F_R2, F_C7
|
|
nop.i 0
|
|
}
|
|
|
|
{.mfi
|
|
nop.m 0
|
|
// c3+c5*R^2
|
|
fma.s1 F_P35 = F_C5, F_R2, F_C3
|
|
nop.i 0;;
|
|
}
|
|
|
|
{.mfi
|
|
nop.m 0
|
|
// R^3
|
|
fma.s1 F_R4 = F_R2, F_R2, f0
|
|
nop.i 0;;
|
|
}
|
|
|
|
{.mfi
|
|
nop.m 0
|
|
// R^3
|
|
fma.s1 F_R3 = F_R2, F_R, f0
|
|
nop.i 0;;
|
|
}
|
|
|
|
|
|
|
|
{.mfi
|
|
nop.m 0
|
|
// c3+c5*R^2+c7*R^4+c9*R^6
|
|
fma.s1 F_P39 = F_P79, F_R4, F_P35
|
|
nop.i 0;;
|
|
}
|
|
|
|
|
|
{.mfi
|
|
nop.m 0
|
|
// asin(t)_low+R^3*(c3+c5*R^2+c7*R^4+c9*R^6)
|
|
fma.s1 F_P39 = F_P39, F_R3, F_ATLO
|
|
nop.i 0;;
|
|
}
|
|
|
|
|
|
{.mfi
|
|
nop.m 0
|
|
// R+asin(t)_low+R^3*(c3+c5*R^2+c7*R^4+c9*R^6)
|
|
fma.s1 F_P39 = F_P39, f1, F_R
|
|
nop.i 0;;
|
|
}
|
|
|
|
|
|
{.mfb
|
|
nop.m 0
|
|
// result = asin(t)_high+R+asin(t)_low+R^3*(c3+c5*R^2+c7*R^4+c9*R^6)
|
|
fma.s0 f8 = F_ATHI, f1, F_P39
|
|
// return
|
|
br.ret.sptk b0;;
|
|
}
|
|
|
|
|
|
|
|
|
|
LARGE_S:
|
|
|
|
{.mfi
|
|
// bias-1
|
|
mov R_TMP3 = 0xffff - 1
|
|
// y ~ 1/sqrt(1-s^2)
|
|
frsqrta.s1 F_Y, p7 = F_1S2
|
|
// c9 = 55*13*17/128
|
|
mov R_TMP4 = 0x10af7b
|
|
}
|
|
|
|
{.mlx
|
|
// c8 = -33*13*15/128
|
|
mov R_TMP5 = 0x184923
|
|
movl R_TMP2 = 0xff00000000000000;;
|
|
}
|
|
|
|
{.mfi
|
|
// set p6 = 1 if s<0, p11 = 1 if s>0
|
|
cmp.ge p6, p11 = R_EXP, R_DBL_S
|
|
// 1-s^2
|
|
fnma.s1 F_1S2 = f8, f8, f1
|
|
// set p9 = 1
|
|
cmp.eq p9, p0 = r0, r0;;
|
|
}
|
|
|
|
|
|
{.mfi
|
|
// load 0.5
|
|
setf.exp F_05 = R_TMP3
|
|
// (1-s^2) rounded to single precision
|
|
fnma.s.s1 F_1S2_S = f8, f8, f1
|
|
// c9 = 55*13*17/128
|
|
shl R_TMP4 = R_TMP4, 10
|
|
}
|
|
|
|
{.mlx
|
|
// AND mask for getting t ~ sqrt(1-s^2)
|
|
setf.sig F_ANDMASK = R_TMP2
|
|
// OR mask
|
|
movl R_TMP2 = 0x0100000000000000;;
|
|
}
|
|
|
|
|
|
{.mfi
|
|
nop.m 0
|
|
// (s^2)_s
|
|
fma.s.s1 F_S2 = f8, f8, f0
|
|
nop.i 0;;
|
|
}
|
|
|
|
|
|
{.mmi
|
|
// c9 = 55*13*17/128
|
|
setf.s F_CS9 = R_TMP4
|
|
// c7 = 33*13/16
|
|
mov R_TMP4 = 0x41d68
|
|
// c8 = -33*13*15/128
|
|
shl R_TMP5 = R_TMP5, 11;;
|
|
}
|
|
|
|
|
|
{.mfi
|
|
setf.sig F_ORMASK = R_TMP2
|
|
// y^2
|
|
fma.s1 F_Y2 = F_Y, F_Y, f0
|
|
// c7 = 33*13/16
|
|
shl R_TMP4 = R_TMP4, 12
|
|
}
|
|
|
|
{.mfi
|
|
// c6 = -33*7/16
|
|
mov R_TMP6 = 0xc1670
|
|
// y' ~ sqrt(1-s^2)
|
|
fma.s1 F_T1 = F_Y, F_1S2, f0
|
|
// c5 = 63/8
|
|
mov R_TMP7 = 0x40fc;;
|
|
}
|
|
|
|
|
|
{.mlx
|
|
// load c8 = -33*13*15/128
|
|
setf.s F_CS8 = R_TMP5
|
|
// c4 = -35/8
|
|
movl R_TMP5 = 0xc08c0000;;
|
|
}
|
|
|
|
{.mfi
|
|
// r3 = pointer to polynomial coefficients
|
|
addl r3 = @ltoff(poly_coeffs), gp
|
|
// 1-(1-s^2)_s
|
|
fnma.s1 F_DS = F_1S2_S, f1, f1
|
|
// p9 = 0 if p7 = 1 (p9 = 1 for special cases only)
|
|
(p7) cmp.ne p9, p0 = r0, r0
|
|
}
|
|
|
|
{.mlx
|
|
// load c7 = 33*13/16
|
|
setf.s F_CS7 = R_TMP4
|
|
// c3 = 5/2
|
|
movl R_TMP4 = 0x40200000;;
|
|
}
|
|
|
|
|
|
{.mfi
|
|
nop.m 0
|
|
// 1-(s^2)_s
|
|
fnma.s1 F_S_1S2S = F_S2, f1, f1
|
|
nop.i 0
|
|
}
|
|
|
|
{.mlx
|
|
// load c4 = -35/8
|
|
setf.s F_CS4 = R_TMP5
|
|
// c2 = -3/2
|
|
movl R_TMP5 = 0xbfc00000;;
|
|
}
|
|
|
|
|
|
{.mfi
|
|
// load c3 = 5/2
|
|
setf.s F_CS3 = R_TMP4
|
|
// x = (1-s^2)_s*y^2-1
|
|
fms.s1 F_X = F_1S2_S, F_Y2, f1
|
|
// c6 = -33*7/16
|
|
shl R_TMP6 = R_TMP6, 12
|
|
}
|
|
|
|
{.mfi
|
|
nop.m 0
|
|
// y^2/2
|
|
fma.s1 F_Y2_2 = F_Y2, F_05, f0
|
|
nop.i 0;;
|
|
}
|
|
|
|
|
|
{.mfi
|
|
// load c6 = -33*7/16
|
|
setf.s F_CS6 = R_TMP6
|
|
// eliminate lower bits from y'
|
|
fand F_T = F_T1, F_ANDMASK
|
|
// c5 = 63/8
|
|
shl R_TMP7 = R_TMP7, 16
|
|
}
|
|
|
|
{.mfb
|
|
// r3 = load start address to polynomial coefficients
|
|
ld8 r3 = [r3]
|
|
// 1-(1-s^2)_s-s^2
|
|
fnma.s1 F_DS = f8, f8, F_DS
|
|
// p9 = 1 if s is a special input (NaN, or |s|> = 1)
|
|
(p9) br.cond.spnt ASINL_SPECIAL_CASES;;
|
|
}
|
|
|
|
{.mmf
|
|
// get exponent, significand of y' (in single prec.)
|
|
getf.s R_TMP = F_T1
|
|
// load c3 = -3/2
|
|
setf.s F_CS2 = R_TMP5
|
|
// y*(1-s^2)
|
|
fma.s1 F_Y1S2 = F_Y, F_1S2, f0;;
|
|
}
|
|
|
|
|
|
{.mfi
|
|
nop.m 0
|
|
// x' = (y^2/2)*(1-(s^2)_s)-0.5
|
|
fms.s1 F_XL = F_Y2_2, F_S_1S2S, F_05
|
|
nop.i 0
|
|
}
|
|
|
|
{.mfi
|
|
nop.m 0
|
|
// s^2-(s^2)_s
|
|
fms.s1 F_S_DS2 = f8, f8, F_S2
|
|
nop.i 0;;
|
|
}
|
|
|
|
|
|
{.mfi
|
|
nop.m 0
|
|
// if s<0, set s = -s
|
|
(p6) fnma.s1 f8 = f8, f1, f0
|
|
nop.i 0;;
|
|
}
|
|
|
|
{.mfi
|
|
// load c5 = 63/8
|
|
setf.s F_CS5 = R_TMP7
|
|
// x = (1-s^2)_s*y^2-1+(1-(1-s^2)_s-s^2)*y^2
|
|
fma.s1 F_X = F_DS, F_Y2, F_X
|
|
// for t = 2^k*1.b1 b2.., get 7-k|b1.. b6
|
|
extr.u R_INDEX = R_TMP, 17, 9;;
|
|
}
|
|
|
|
|
|
{.mmi
|
|
// index = (4-exponent)|b1 b2.. b6
|
|
sub R_INDEX = R_INDEX, R_BIAS
|
|
nop.m 0
|
|
// get exponent of y
|
|
shr.u R_TMP2 = R_TMP, 23;;
|
|
}
|
|
|
|
{.mmi
|
|
// load C3
|
|
ldfe F_C3 = [r3], 16
|
|
// set p8 = 1 if y'<2^{-4}
|
|
cmp.gt p8, p0 = 0x7b, R_TMP2
|
|
// shift R_INDEX by 5
|
|
shl R_INDEX = R_INDEX, 5;;
|
|
}
|
|
|
|
|
|
{.mfb
|
|
// get table index for sqrt(1-t^2)
|
|
add r2 = r2, R_INDEX
|
|
// get t = 2^k*1.b1 b2.. b7 1
|
|
for F_T = F_T, F_ORMASK
|
|
(p8) br.cond.spnt VERY_LARGE_INPUT;;
|
|
}
|
|
|
|
|
|
|
|
{.mmf
|
|
// load C5
|
|
ldfe F_C5 = [r3], 16
|
|
// load 1/(1-t^2)
|
|
ldfp8 F_INV_1T2, F_SQRT_1T2 = [r2], 16
|
|
// x = ((1-s^2)*y^2-1)/2
|
|
fma.s1 F_X = F_X, F_05, f0;;
|
|
}
|
|
|
|
|
|
|
|
{.mmf
|
|
nop.m 0
|
|
// C7, C9
|
|
ldfpd F_C7, F_C9 = [r3], 16
|
|
// set correct exponent for t
|
|
fmerge.se F_T = F_T1, F_T;;
|
|
}
|
|
|
|
|
|
|
|
{.mfi
|
|
// pi/2 (low, high)
|
|
ldfpd F_PI2_LO, F_PI2_HI = [r3]
|
|
// c9*x+c8
|
|
fma.s1 F_S89 = F_X, F_CS9, F_CS8
|
|
nop.i 0
|
|
}
|
|
|
|
{.mfi
|
|
nop.m 0
|
|
// x^2
|
|
fma.s1 F_X2 = F_X, F_X, f0
|
|
nop.i 0;;
|
|
}
|
|
|
|
|
|
{.mfi
|
|
nop.m 0
|
|
// y*(1-s^2)*x
|
|
fma.s1 F_Y1S2X = F_Y1S2, F_X, f0
|
|
nop.i 0
|
|
}
|
|
|
|
{.mfi
|
|
nop.m 0
|
|
// c7*x+c6
|
|
fma.s1 F_S67 = F_X, F_CS7, F_CS6
|
|
nop.i 0;;
|
|
}
|
|
|
|
|
|
{.mfi
|
|
nop.m 0
|
|
// 1-x
|
|
fnma.s1 F_1X = F_X, f1, f1
|
|
nop.i 0
|
|
}
|
|
|
|
{.mfi
|
|
nop.m 0
|
|
// c3*x+c2
|
|
fma.s1 F_S23 = F_X, F_CS3, F_CS2
|
|
nop.i 0;;
|
|
}
|
|
|
|
|
|
{.mfi
|
|
nop.m 0
|
|
// 1-t^2
|
|
fnma.s1 F_1T2 = F_T, F_T, f1
|
|
nop.i 0
|
|
}
|
|
|
|
{.mfi
|
|
// load asin(t)_high, asin(t)_low
|
|
ldfpd F_ATHI, F_ATLO = [r2]
|
|
// c5*x+c4
|
|
fma.s1 F_S45 = F_X, F_CS5, F_CS4
|
|
nop.i 0;;
|
|
}
|
|
|
|
|
|
|
|
{.mfi
|
|
nop.m 0
|
|
// t*s
|
|
fma.s1 F_TS = F_T, f8, f0
|
|
nop.i 0
|
|
}
|
|
|
|
{.mfi
|
|
nop.m 0
|
|
// 0.5/(1-t^2)
|
|
fma.s1 F_INV_1T2 = F_INV_1T2, F_2M64, f0
|
|
nop.i 0;;
|
|
}
|
|
|
|
{.mfi
|
|
nop.m 0
|
|
// z~sqrt(1-t^2), rounded to 24 significant bits
|
|
fma.s.s1 F_Z = F_SQRT_1T2, F_2M64, f0
|
|
nop.i 0
|
|
}
|
|
|
|
{.mfi
|
|
nop.m 0
|
|
// sqrt(1-t^2)
|
|
fma.s1 F_SQRT_1T2 = F_SQRT_1T2, F_2M64, f0
|
|
nop.i 0;;
|
|
}
|
|
|
|
|
|
{.mfi
|
|
nop.m 0
|
|
// y*(1-s^2)*x^2
|
|
fma.s1 F_Y1S2X2 = F_Y1S2, F_X2, f0
|
|
nop.i 0
|
|
}
|
|
|
|
{.mfi
|
|
nop.m 0
|
|
// x^4
|
|
fma.s1 F_X4 = F_X2, F_X2, f0
|
|
nop.i 0;;
|
|
}
|
|
|
|
|
|
{.mfi
|
|
nop.m 0
|
|
// s*t rounded to 24 significant bits
|
|
fma.s.s1 F_TSS = F_T, f8, f0
|
|
nop.i 0
|
|
}
|
|
|
|
{.mfi
|
|
nop.m 0
|
|
// c9*x^3+..+c6
|
|
fma.s1 F_S69 = F_X2, F_S89, F_S67
|
|
nop.i 0;;
|
|
}
|
|
|
|
|
|
{.mfi
|
|
nop.m 0
|
|
// ST = (t^2-1+s^2) rounded to 24 significant bits
|
|
fms.s.s1 F_ST = f8, f8, F_1T2
|
|
nop.i 0
|
|
}
|
|
|
|
{.mfi
|
|
nop.m 0
|
|
// c5*x^3+..+c2
|
|
fma.s1 F_S25 = F_X2, F_S45, F_S23
|
|
nop.i 0;;
|
|
}
|
|
|
|
|
|
{.mfi
|
|
nop.m 0
|
|
// 0.25/(1-t^2)
|
|
fma.s1 F_INV1T2_2 = F_05, F_INV_1T2, f0
|
|
nop.i 0
|
|
}
|
|
|
|
{.mfi
|
|
nop.m 0
|
|
// t*s-sqrt(1-t^2)*(1-s^2)*y
|
|
fnma.s1 F_TS = F_Y1S2, F_SQRT_1T2, F_TS
|
|
nop.i 0;;
|
|
}
|
|
|
|
|
|
{.mfi
|
|
nop.m 0
|
|
// z*0.5/(1-t^2)
|
|
fma.s1 F_ZE = F_INV_1T2, F_SQRT_1T2, f0
|
|
nop.i 0
|
|
}
|
|
|
|
{.mfi
|
|
nop.m 0
|
|
// z^2+t^2-1
|
|
fms.s1 F_DZ0 = F_Z, F_Z, F_1T2
|
|
nop.i 0;;
|
|
}
|
|
|
|
|
|
{.mfi
|
|
nop.m 0
|
|
// (1-s^2-(1-s^2)_s)*x
|
|
fma.s1 F_DS2X = F_X, F_DS, f0
|
|
nop.i 0;;
|
|
}
|
|
|
|
|
|
{.mfi
|
|
nop.m 0
|
|
// t*s-(t*s)_s
|
|
fms.s1 F_DTS = F_T, f8, F_TSS
|
|
nop.i 0
|
|
}
|
|
|
|
{.mfi
|
|
nop.m 0
|
|
// c9*x^7+..+c2
|
|
fma.s1 F_S29 = F_X4, F_S69, F_S25
|
|
nop.i 0;;
|
|
}
|
|
|
|
|
|
{.mfi
|
|
nop.m 0
|
|
// y*z
|
|
fma.s1 F_YZ = F_Z, F_Y, f0
|
|
nop.i 0
|
|
}
|
|
|
|
{.mfi
|
|
nop.m 0
|
|
// t^2
|
|
fma.s1 F_T2 = F_T, F_T, f0
|
|
nop.i 0;;
|
|
}
|
|
|
|
|
|
{.mfi
|
|
nop.m 0
|
|
// 1-t^2+ST
|
|
fma.s1 F_1T2_ST = F_ST, f1, F_1T2
|
|
nop.i 0;;
|
|
}
|
|
|
|
|
|
{.mfi
|
|
nop.m 0
|
|
// y*(1-s^2)(1-x)
|
|
fma.s1 F_Y1S2_1X = F_Y1S2, F_1X, f0
|
|
nop.i 0
|
|
}
|
|
|
|
{.mfi
|
|
nop.m 0
|
|
// dz ~ sqrt(1-t^2)-z
|
|
fma.s1 F_DZ = F_DZ0, F_ZE, f0
|
|
nop.i 0;;
|
|
}
|
|
|
|
|
|
{.mfi
|
|
nop.m 0
|
|
// -1+correction for sqrt(1-t^2)-z
|
|
fnma.s1 F_CORR = F_INV1T2_2, F_DZ0, f0
|
|
nop.i 0;;
|
|
}
|
|
|
|
|
|
{.mfi
|
|
nop.m 0
|
|
// (PS29*x^2+x)*y*(1-s^2)
|
|
fma.s1 F_S19 = F_Y1S2X2, F_S29, F_Y1S2X
|
|
nop.i 0;;
|
|
}
|
|
|
|
|
|
{.mfi
|
|
nop.m 0
|
|
// z*y*(1-s^2)_s
|
|
fma.s1 F_ZY1S2S = F_YZ, F_1S2_S, f0
|
|
nop.i 0
|
|
}
|
|
|
|
{.mfi
|
|
nop.m 0
|
|
// s^2-(1-t^2+ST)
|
|
fms.s1 F_1T2_ST = f8, f8, F_1T2_ST
|
|
nop.i 0;;
|
|
}
|
|
|
|
|
|
{.mfi
|
|
nop.m 0
|
|
// (t*s-(t*s)_s)+z*y*(1-s^2-(1-s^2)_s)*x
|
|
fma.s1 F_DTS = F_YZ, F_DS2X, F_DTS
|
|
nop.i 0
|
|
}
|
|
|
|
{.mfi
|
|
nop.m 0
|
|
// dz*y*(1-s^2)*(1-x)
|
|
fma.s1 F_DZ_TERM = F_DZ, F_Y1S2_1X, f0
|
|
nop.i 0;;
|
|
}
|
|
|
|
|
|
{.mfi
|
|
nop.m 0
|
|
// R = t*s-sqrt(1-t^2)*(1-s^2)*y+sqrt(1-t^2)*(1-s^2)*y*PS19
|
|
// (used for polynomial evaluation)
|
|
fma.s1 F_R = F_S19, F_SQRT_1T2, F_TS
|
|
nop.i 0;;
|
|
}
|
|
|
|
|
|
{.mfi
|
|
nop.m 0
|
|
// (PS29*x^2)*y*(1-s^2)
|
|
fma.s1 F_S29 = F_Y1S2X2, F_S29, f0
|
|
nop.i 0
|
|
}
|
|
|
|
{.mfi
|
|
nop.m 0
|
|
// apply correction to dz*y*(1-s^2)*(1-x)
|
|
fma.s1 F_DZ_TERM = F_DZ_TERM, F_CORR, F_DZ_TERM
|
|
nop.i 0;;
|
|
}
|
|
|
|
|
|
{.mfi
|
|
nop.m 0
|
|
// R^2
|
|
fma.s1 F_R2 = F_R, F_R, f0
|
|
nop.i 0;;
|
|
}
|
|
|
|
|
|
{.mfi
|
|
nop.m 0
|
|
// (t*s-(t*s)_s)+z*y*(1-s^2-(1-s^2)_s)*x+dz*y*(1-s^2)*(1-x)
|
|
fma.s1 F_DZ_TERM = F_DZ_TERM, f1, F_DTS
|
|
nop.i 0;;
|
|
}
|
|
|
|
|
|
{.mfi
|
|
nop.m 0
|
|
// c7+c9*R^2
|
|
fma.s1 F_P79 = F_C9, F_R2, F_C7
|
|
nop.i 0
|
|
}
|
|
|
|
{.mfi
|
|
nop.m 0
|
|
// c3+c5*R^2
|
|
fma.s1 F_P35 = F_C5, F_R2, F_C3
|
|
nop.i 0;;
|
|
}
|
|
|
|
{.mfi
|
|
nop.m 0
|
|
// asin(t)_low-(pi/2)_low
|
|
fms.s1 F_ATLO = F_ATLO, f1, F_PI2_LO
|
|
nop.i 0
|
|
}
|
|
|
|
{.mfi
|
|
nop.m 0
|
|
// R^4
|
|
fma.s1 F_R4 = F_R2, F_R2, f0
|
|
nop.i 0;;
|
|
}
|
|
|
|
{.mfi
|
|
nop.m 0
|
|
// R^3
|
|
fma.s1 F_R3 = F_R2, F_R, f0
|
|
nop.i 0;;
|
|
}
|
|
|
|
|
|
{.mfi
|
|
nop.m 0
|
|
// (t*s)_s-t^2*y*z
|
|
fnma.s1 F_TSS = F_T2, F_YZ, F_TSS
|
|
nop.i 0
|
|
}
|
|
|
|
{.mfi
|
|
nop.m 0
|
|
// d(ts)+z*y*d(1-s^2)*x+dz*y*(1-s^2)*(1-x)+z*y*(s^2-1+t^2-ST)
|
|
fma.s1 F_DZ_TERM = F_YZ, F_1T2_ST, F_DZ_TERM
|
|
nop.i 0;;
|
|
}
|
|
|
|
|
|
{.mfi
|
|
nop.m 0
|
|
// (pi/2)_hi-asin(t)_hi
|
|
fms.s1 F_ATHI = F_PI2_HI, f1, F_ATHI
|
|
nop.i 0
|
|
}
|
|
|
|
{.mfi
|
|
nop.m 0
|
|
// c3+c5*R^2+c7*R^4+c9*R^6
|
|
fma.s1 F_P39 = F_P79, F_R4, F_P35
|
|
nop.i 0;;
|
|
}
|
|
|
|
|
|
{.mfi
|
|
nop.m 0
|
|
// d(ts)+z*y*d(1-s^2)*x+dz*y*(1-s^2)*(1-x)+z*y*(s^2-1+t^2-ST)+
|
|
// + sqrt(1-t^2)*y*(1-s^2)*x^2*PS29
|
|
fma.s1 F_DZ_TERM = F_SQRT_1T2, F_S29, F_DZ_TERM
|
|
nop.i 0;;
|
|
}
|
|
|
|
|
|
{.mfi
|
|
nop.m 0
|
|
// (t*s)_s-t^2*y*z+z*y*ST
|
|
fma.s1 F_TSS = F_YZ, F_ST, F_TSS
|
|
nop.i 0
|
|
}
|
|
|
|
{.mfi
|
|
nop.m 0
|
|
// -asin(t)_low+R^3*(c3+c5*R^2+c7*R^4+c9*R^6)
|
|
fms.s1 F_P39 = F_P39, F_R3, F_ATLO
|
|
nop.i 0;;
|
|
}
|
|
|
|
|
|
{.mfi
|
|
nop.m 0
|
|
// if s<0, change sign of F_ATHI
|
|
(p6) fnma.s1 F_ATHI = F_ATHI, f1, f0
|
|
nop.i 0
|
|
}
|
|
|
|
{.mfi
|
|
nop.m 0
|
|
// d(ts)+z*y*d(1-s^2)*x+dz*y*(1-s^2)*(1-x)+z*y*(s^2-1+t^2-ST) +
|
|
// + sqrt(1-t^2)*y*(1-s^2)*x^2*PS29 +
|
|
// - asin(t)_low+R^3*(c3+c5*R^2+c7*R^4+c9*R^6)
|
|
fma.s1 F_DZ_TERM = F_P39, f1, F_DZ_TERM
|
|
nop.i 0;;
|
|
}
|
|
|
|
|
|
{.mfi
|
|
nop.m 0
|
|
// d(ts)+z*y*d(1-s^2)*x+dz*y*(1-s^2)*(1-x)+z*y*(s^2-1+t^2-ST) +
|
|
// + sqrt(1-t^2)*y*(1-s^2)*x^2*PS29 + z*y*(1-s^2)_s*x +
|
|
// - asin(t)_low+R^3*(c3+c5*R^2+c7*R^4+c9*R^6)
|
|
fma.s1 F_DZ_TERM = F_ZY1S2S, F_X, F_DZ_TERM
|
|
nop.i 0;;
|
|
}
|
|
|
|
|
|
{.mfi
|
|
nop.m 0
|
|
// d(ts)+z*y*d(1-s^2)*x+dz*y*(1-s^2)*(1-x)+z*y*(s^2-1+t^2-ST) +
|
|
// + sqrt(1-t^2)*y*(1-s^2)*x^2*PS29 + z*y*(1-s^2)_s*x +
|
|
// - asin(t)_low+R^3*(c3+c5*R^2+c7*R^4+c9*R^6) +
|
|
// + (t*s)_s-t^2*y*z+z*y*ST
|
|
fma.s1 F_DZ_TERM = F_TSS, f1, F_DZ_TERM
|
|
nop.i 0;;
|
|
}
|
|
|
|
|
|
.pred.rel "mutex", p6, p11
|
|
{.mfi
|
|
nop.m 0
|
|
// result: add high part of pi/2-table value
|
|
// s>0 in this case
|
|
(p11) fma.s0 f8 = F_DZ_TERM, f1, F_ATHI
|
|
nop.i 0
|
|
}
|
|
|
|
{.mfb
|
|
nop.m 0
|
|
// result: add high part of pi/2-table value
|
|
// if s<0
|
|
(p6) fnma.s0 f8 = F_DZ_TERM, f1, F_ATHI
|
|
br.ret.sptk b0;;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
SMALL_S:
|
|
|
|
// use 15-term polynomial approximation
|
|
|
|
{.mmi
|
|
// r3 = pointer to polynomial coefficients
|
|
addl r3 = @ltoff(poly_coeffs), gp;;
|
|
// load start address for coefficients
|
|
ld8 r3 = [r3]
|
|
mov R_TMP = 0x3fbf;;
|
|
}
|
|
|
|
|
|
{.mmi
|
|
add r2 = 64, r3
|
|
ldfe F_C3 = [r3], 16
|
|
// p7 = 1 if |s|<2^{-64} (exponent of s<bias-64)
|
|
cmp.lt p7, p0 = R_EXP0, R_TMP;;
|
|
}
|
|
|
|
{.mmf
|
|
ldfe F_C5 = [r3], 16
|
|
ldfpd F_C11, F_C13 = [r2], 16
|
|
// 2^{-128}
|
|
fma.s1 F_2M128 = F_2M64, F_2M64, f0;;
|
|
}
|
|
|
|
{.mmf
|
|
ldfpd F_C7, F_C9 = [r3]
|
|
ldfpd F_C15, F_C17 = [r2]
|
|
// if |s|<2^{-64}, return s+2^{-128}*s
|
|
(p7) fma.s0 f8 = f8, F_2M128, f8;;
|
|
}
|
|
|
|
|
|
|
|
{.mfb
|
|
nop.m 0
|
|
// s^2
|
|
fma.s1 F_R2 = f8, f8, f0
|
|
// if |s|<2^{-64}, return s
|
|
(p7) br.ret.spnt b0;;
|
|
}
|
|
|
|
|
|
{.mfi
|
|
nop.m 0
|
|
// s^3
|
|
fma.s1 F_R3 = f8, F_R2, f0
|
|
nop.i 0
|
|
}
|
|
|
|
{.mfi
|
|
nop.m 0
|
|
// s^4
|
|
fma.s1 F_R4 = F_R2, F_R2, f0
|
|
nop.i 0;;
|
|
}
|
|
|
|
|
|
{.mfi
|
|
nop.m 0
|
|
// c3+c5*s^2
|
|
fma.s1 F_P35 = F_C5, F_R2, F_C3
|
|
nop.i 0
|
|
}
|
|
|
|
{.mfi
|
|
nop.m 0
|
|
// c11+c13*s^2
|
|
fma.s1 F_P1113 = F_C13, F_R2, F_C11
|
|
nop.i 0;;
|
|
}
|
|
|
|
|
|
{.mfi
|
|
nop.m 0
|
|
// c7+c9*s^2
|
|
fma.s1 F_P79 = F_C9, F_R2, F_C7
|
|
nop.i 0
|
|
}
|
|
|
|
{.mfi
|
|
nop.m 0
|
|
// c15+c17*s^2
|
|
fma.s1 F_P1517 = F_C17, F_R2, F_C15
|
|
nop.i 0;;
|
|
}
|
|
|
|
|
|
{.mfi
|
|
nop.m 0
|
|
// s^8
|
|
fma.s1 F_R8 = F_R4, F_R4, f0
|
|
nop.i 0;;
|
|
}
|
|
|
|
|
|
{.mfi
|
|
nop.m 0
|
|
// c3+c5*s^2+c7*s^4+c9*s^6
|
|
fma.s1 F_P39 = F_P79, F_R4, F_P35
|
|
nop.i 0
|
|
}
|
|
|
|
{.mfi
|
|
nop.m 0
|
|
// c11+c13*s^2+c15*s^4+c17*s^6
|
|
fma.s1 F_P1117 = F_P1517, F_R4, F_P1113
|
|
nop.i 0;;
|
|
}
|
|
|
|
|
|
{.mfi
|
|
nop.m 0
|
|
// c3+..+c17*s^14
|
|
fma.s1 F_P317 = F_R8, F_P1117, F_P39
|
|
nop.i 0;;
|
|
}
|
|
|
|
|
|
{.mfb
|
|
nop.m 0
|
|
// result
|
|
fma.s0 f8 = F_P317, F_R3, f8
|
|
br.ret.sptk b0;;
|
|
}
|
|
|
|
|
|
{.mfb
|
|
nop.m 0
|
|
fma.s0 f8 = F_P317, F_R3, f0//F_P317, F_R3, F_S29
|
|
// nop.f 0//fma.s0 f8 = f13, f6, f0
|
|
br.ret.sptk b0;;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
VERY_LARGE_INPUT:
|
|
|
|
{.mfi
|
|
nop.m 0
|
|
// s rounded to 24 significant bits
|
|
fma.s.s1 F_S = f8, f1, f0
|
|
nop.i 0
|
|
}
|
|
|
|
{.mfi
|
|
// load C5
|
|
ldfe F_C5 = [r3], 16
|
|
// x = ((1-(s^2)_s)*y^2-1)/2-(s^2-(s^2)_s)*y^2/2
|
|
fnma.s1 F_X = F_S_DS2, F_Y2_2, F_XL
|
|
nop.i 0;;
|
|
}
|
|
|
|
|
|
|
|
{.mmf
|
|
nop.m 0
|
|
// C7, C9
|
|
ldfpd F_C7, F_C9 = [r3], 16
|
|
nop.f 0;;
|
|
}
|
|
|
|
|
|
|
|
{.mfi
|
|
// pi/2 (low, high)
|
|
ldfpd F_PI2_LO, F_PI2_HI = [r3], 16
|
|
// c9*x+c8
|
|
fma.s1 F_S89 = F_X, F_CS9, F_CS8
|
|
nop.i 0
|
|
}
|
|
|
|
{.mfi
|
|
nop.m 0
|
|
// x^2
|
|
fma.s1 F_X2 = F_X, F_X, f0
|
|
nop.i 0;;
|
|
}
|
|
|
|
|
|
{.mfi
|
|
nop.m 0
|
|
// y*(1-s^2)*x
|
|
fma.s1 F_Y1S2X = F_Y1S2, F_X, f0
|
|
nop.i 0
|
|
}
|
|
|
|
{.mfi
|
|
// C11, C13
|
|
ldfpd F_C11, F_C13 = [r3], 16
|
|
// c7*x+c6
|
|
fma.s1 F_S67 = F_X, F_CS7, F_CS6
|
|
nop.i 0;;
|
|
}
|
|
|
|
|
|
{.mfi
|
|
// C15, C17
|
|
ldfpd F_C15, F_C17 = [r3], 16
|
|
// c3*x+c2
|
|
fma.s1 F_S23 = F_X, F_CS3, F_CS2
|
|
nop.i 0;;
|
|
}
|
|
|
|
|
|
{.mfi
|
|
nop.m 0
|
|
// c5*x+c4
|
|
fma.s1 F_S45 = F_X, F_CS5, F_CS4
|
|
nop.i 0;;
|
|
}
|
|
|
|
|
|
{.mfi
|
|
nop.m 0
|
|
// (s_s)^2
|
|
fma.s1 F_DS = F_S, F_S, f0
|
|
nop.i 0
|
|
}
|
|
|
|
{.mfi
|
|
nop.m 0
|
|
// 1-(s_s)^2
|
|
fnma.s1 F_1S2_S = F_S, F_S, f1
|
|
nop.i 0;;
|
|
}
|
|
|
|
|
|
{.mfi
|
|
nop.m 0
|
|
// y*(1-s^2)*x^2
|
|
fma.s1 F_Y1S2X2 = F_Y1S2, F_X2, f0
|
|
nop.i 0
|
|
}
|
|
|
|
{.mfi
|
|
nop.m 0
|
|
// x^4
|
|
fma.s1 F_X4 = F_X2, F_X2, f0
|
|
nop.i 0;;
|
|
}
|
|
|
|
|
|
{.mfi
|
|
nop.m 0
|
|
// c9*x^3+..+c6
|
|
fma.s1 F_S69 = F_X2, F_S89, F_S67
|
|
nop.i 0;;
|
|
}
|
|
|
|
|
|
{.mfi
|
|
nop.m 0
|
|
// c5*x^3+..+c2
|
|
fma.s1 F_S25 = F_X2, F_S45, F_S23
|
|
nop.i 0;;
|
|
}
|
|
|
|
|
|
{.mfi
|
|
nop.m 0
|
|
// ((s_s)^2-s^2)
|
|
fnma.s1 F_DS = f8, f8, F_DS
|
|
nop.i 0
|
|
}
|
|
|
|
{.mfi
|
|
nop.m 0
|
|
// (pi/2)_high-y*(1-(s_s)^2)
|
|
fnma.s1 F_HI = F_Y, F_1S2_S, F_PI2_HI
|
|
nop.i 0;;
|
|
}
|
|
|
|
|
|
{.mfi
|
|
nop.m 0
|
|
// c9*x^7+..+c2
|
|
fma.s1 F_S29 = F_X4, F_S69, F_S25
|
|
nop.i 0;;
|
|
}
|
|
|
|
|
|
{.mfi
|
|
nop.m 0
|
|
// -(y*(1-(s_s)^2))_high
|
|
fms.s1 F_1S2_HI = F_HI, f1, F_PI2_HI
|
|
nop.i 0;;
|
|
}
|
|
|
|
|
|
{.mfi
|
|
nop.m 0
|
|
// (PS29*x^2+x)*y*(1-s^2)
|
|
fma.s1 F_S19 = F_Y1S2X2, F_S29, F_Y1S2X
|
|
nop.i 0;;
|
|
}
|
|
|
|
|
|
{.mfi
|
|
nop.m 0
|
|
// y*(1-(s_s)^2)-(y*(1-s^2))_high
|
|
fma.s1 F_DS2 = F_Y, F_1S2_S, F_1S2_HI
|
|
nop.i 0;;
|
|
}
|
|
|
|
|
|
|
|
{.mfi
|
|
nop.m 0
|
|
// R ~ sqrt(1-s^2)
|
|
// (used for polynomial evaluation)
|
|
fnma.s1 F_R = F_S19, f1, F_Y1S2
|
|
nop.i 0;;
|
|
}
|
|
|
|
|
|
{.mfi
|
|
nop.m 0
|
|
// y*(1-s^2)-(y*(1-s^2))_high
|
|
fma.s1 F_DS2 = F_Y, F_DS, F_DS2
|
|
nop.i 0
|
|
}
|
|
|
|
{.mfi
|
|
nop.m 0
|
|
// (pi/2)_low+(PS29*x^2)*y*(1-s^2)
|
|
fma.s1 F_S29 = F_Y1S2X2, F_S29, F_PI2_LO
|
|
nop.i 0;;
|
|
}
|
|
|
|
|
|
|
|
{.mfi
|
|
nop.m 0
|
|
// R^2
|
|
fma.s1 F_R2 = F_R, F_R, f0
|
|
nop.i 0;;
|
|
}
|
|
|
|
|
|
{.mfi
|
|
nop.m 0
|
|
// (pi/2)_low+(PS29*x^2)*y*(1-s^2)-(y*(1-s^2)-(y*(1-s^2))_high)
|
|
fms.s1 F_S29 = F_S29, f1, F_DS2
|
|
nop.i 0;;
|
|
}
|
|
|
|
|
|
{.mfi
|
|
nop.m 0
|
|
// c7+c9*R^2
|
|
fma.s1 F_P79 = F_C9, F_R2, F_C7
|
|
nop.i 0
|
|
}
|
|
|
|
{.mfi
|
|
nop.m 0
|
|
// c3+c5*R^2
|
|
fma.s1 F_P35 = F_C5, F_R2, F_C3
|
|
nop.i 0;;
|
|
}
|
|
|
|
|
|
|
|
{.mfi
|
|
nop.m 0
|
|
// R^4
|
|
fma.s1 F_R4 = F_R2, F_R2, f0
|
|
nop.i 0
|
|
}
|
|
|
|
{.mfi
|
|
nop.m 0
|
|
// R^3
|
|
fma.s1 F_R3 = F_R2, F_R, f0
|
|
nop.i 0;;
|
|
}
|
|
|
|
|
|
{.mfi
|
|
nop.m 0
|
|
// c11+c13*R^2
|
|
fma.s1 F_P1113 = F_C13, F_R2, F_C11
|
|
nop.i 0
|
|
}
|
|
|
|
{.mfi
|
|
nop.m 0
|
|
// c15+c17*R^2
|
|
fma.s1 F_P1517 = F_C17, F_R2, F_C15
|
|
nop.i 0;;
|
|
}
|
|
|
|
|
|
{.mfi
|
|
nop.m 0
|
|
// (pi/2)_low+(PS29*x^2)*y*(1-s^2)-(y*(1-s^2)-(y*(1-s^2))_high)+y*(1-s^2)*x
|
|
fma.s1 F_S29 = F_Y1S2, F_X, F_S29
|
|
nop.i 0;;
|
|
}
|
|
|
|
|
|
{.mfi
|
|
nop.m 0
|
|
// c11+c13*R^2+c15*R^4+c17*R^6
|
|
fma.s1 F_P1117 = F_P1517, F_R4, F_P1113
|
|
nop.i 0
|
|
}
|
|
|
|
{.mfi
|
|
nop.m 0
|
|
// c3+c5*R^2+c7*R^4+c9*R^6
|
|
fma.s1 F_P39 = F_P79, F_R4, F_P35
|
|
nop.i 0;;
|
|
}
|
|
|
|
|
|
{.mfi
|
|
nop.m 0
|
|
// R^8
|
|
fma.s1 F_R8 = F_R4, F_R4, f0
|
|
nop.i 0;;
|
|
}
|
|
|
|
|
|
{.mfi
|
|
nop.m 0
|
|
// c3+c5*R^2+c7*R^4+c9*R^6+..+c17*R^14
|
|
fma.s1 F_P317 = F_P1117, F_R8, F_P39
|
|
nop.i 0;;
|
|
}
|
|
|
|
|
|
{.mfi
|
|
nop.m 0
|
|
// (pi/2)_low-(PS29*x^2)*y*(1-s^2)-(y*(1-s^2)-
|
|
// -(y*(1-s^2))_high)+y*(1-s^2)*x - P3, 17
|
|
fnma.s1 F_S29 = F_P317, F_R3, F_S29
|
|
nop.i 0;;
|
|
}
|
|
|
|
{.mfi
|
|
nop.m 0
|
|
// set sign
|
|
(p6) fnma.s1 F_S29 = F_S29, f1, f0
|
|
nop.i 0
|
|
}
|
|
|
|
{.mfi
|
|
nop.m 0
|
|
(p6) fnma.s1 F_HI = F_HI, f1, f0
|
|
nop.i 0;;
|
|
}
|
|
|
|
|
|
{.mfb
|
|
nop.m 0
|
|
// Result:
|
|
// (pi/2)_low-(PS29*x^2)*y*(1-s^2)-(y*(1-s^2)-
|
|
// -(y*(1-s^2))_high)+y*(1-s^2)*x - P3, 17
|
|
// +(pi/2)_high-(y*(1-s^2))_high
|
|
fma.s0 f8 = F_S29, f1, F_HI
|
|
br.ret.sptk b0;;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ASINL_SPECIAL_CASES:
|
|
|
|
{.mfi
|
|
alloc r32 = ar.pfs, 1, 4, 4, 0
|
|
// check if the input is a NaN, or unsupported format
|
|
// (i.e. not infinity or normal/denormal)
|
|
fclass.nm p7, p8 = f8, 0x3f
|
|
// pointer to pi/2
|
|
add r3 = 48, r3;;
|
|
}
|
|
|
|
|
|
{.mfi
|
|
// load pi/2
|
|
ldfpd F_PI2_HI, F_PI2_LO = [r3]
|
|
// get |s|
|
|
fmerge.s F_S = f0, f8
|
|
nop.i 0
|
|
}
|
|
|
|
{.mfb
|
|
nop.m 0
|
|
// if NaN, quietize it, and return
|
|
(p7) fma.s0 f8 = f8, f1, f0
|
|
(p7) br.ret.spnt b0;;
|
|
}
|
|
|
|
|
|
{.mfi
|
|
nop.m 0
|
|
// |s| = 1 ?
|
|
fcmp.eq.s0 p9, p0 = F_S, f1
|
|
nop.i 0
|
|
}
|
|
|
|
{.mfi
|
|
nop.m 0
|
|
// load FR_X
|
|
fma.s1 FR_X = f8, f1, f0
|
|
// load error tag
|
|
mov GR_Parameter_TAG = 60;;
|
|
}
|
|
|
|
|
|
{.mfb
|
|
nop.m 0
|
|
// change sign if s = -1
|
|
(p6) fnma.s1 F_PI2_HI = F_PI2_HI, f1, f0
|
|
nop.b 0
|
|
}
|
|
|
|
{.mfb
|
|
nop.m 0
|
|
// change sign if s = -1
|
|
(p6) fnma.s1 F_PI2_LO = F_PI2_LO, f1, f0
|
|
nop.b 0;;
|
|
}
|
|
|
|
{.mfb
|
|
nop.m 0
|
|
// if s = 1, result is pi/2
|
|
(p9) fma.s0 f8 = F_PI2_HI, f1, F_PI2_LO
|
|
// return if |s| = 1
|
|
(p9) br.ret.sptk b0;;
|
|
}
|
|
|
|
|
|
{.mfi
|
|
nop.m 0
|
|
// get Infinity
|
|
frcpa.s1 FR_RESULT, p0 = f1, f0
|
|
nop.i 0;;
|
|
}
|
|
|
|
|
|
{.mfi
|
|
nop.m 0
|
|
// return QNaN indefinite (0*Infinity)
|
|
fma.s0 FR_RESULT = f0, FR_RESULT, f0
|
|
nop.i 0;;
|
|
}
|
|
|
|
|
|
GLOBAL_LIBM_END(asinl)
|
|
libm_alias_ldouble_other (asin, asin)
|
|
|
|
|
|
|
|
LOCAL_LIBM_ENTRY(__libm_error_region)
|
|
.prologue
|
|
// (1)
|
|
{ .mfi
|
|
add GR_Parameter_Y=-32,sp // Parameter 2 value
|
|
nop.f 0
|
|
.save ar.pfs,GR_SAVE_PFS
|
|
mov GR_SAVE_PFS=ar.pfs // Save ar.pfs
|
|
}
|
|
{ .mfi
|
|
.fframe 64
|
|
add sp=-64,sp // Create new stack
|
|
nop.f 0
|
|
mov GR_SAVE_GP=gp // Save gp
|
|
};;
|
|
|
|
|
|
// (2)
|
|
{ .mmi
|
|
stfe [GR_Parameter_Y] = f1,16 // Store Parameter 2 on stack
|
|
add GR_Parameter_X = 16,sp // Parameter 1 address
|
|
.save b0, GR_SAVE_B0
|
|
mov GR_SAVE_B0=b0 // Save b0
|
|
};;
|
|
|
|
.body
|
|
// (3)
|
|
{ .mib
|
|
stfe [GR_Parameter_X] = FR_X // Store Parameter 1 on stack
|
|
add GR_Parameter_RESULT = 0,GR_Parameter_Y
|
|
nop.b 0 // Parameter 3 address
|
|
}
|
|
{ .mib
|
|
stfe [GR_Parameter_Y] = FR_RESULT // Store Parameter 3 on stack
|
|
add GR_Parameter_Y = -16,GR_Parameter_Y
|
|
br.call.sptk b0=__libm_error_support# // Call error handling function
|
|
};;
|
|
{ .mmi
|
|
nop.m 0
|
|
nop.m 0
|
|
add GR_Parameter_RESULT = 48,sp
|
|
};;
|
|
|
|
// (4)
|
|
{ .mmi
|
|
ldfe f8 = [GR_Parameter_RESULT] // Get return result off stack
|
|
.restore sp
|
|
add sp = 64,sp // Restore stack pointer
|
|
mov b0 = GR_SAVE_B0 // Restore return address
|
|
};;
|
|
|
|
{ .mib
|
|
mov gp = GR_SAVE_GP // Restore gp
|
|
mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs
|
|
br.ret.sptk b0 // Return
|
|
};;
|
|
|
|
LOCAL_LIBM_END(__libm_error_region)
|
|
|
|
.type __libm_error_support#,@function
|
|
.global __libm_error_support#
|