mirror of
https://sourceware.org/git/glibc.git
synced 2024-12-02 01:40:07 +00:00
30891f35fa
We stopped adding "Contributed by" or similar lines in sources in 2012 in favour of git logs and keeping the Contributors section of the glibc manual up to date. Removing these lines makes the license header a bit more consistent across files and also removes the possibility of error in attribution when license blocks or files are copied across since the contributed-by lines don't actually reflect reality in those cases. Move all "Contributed by" and similar lines (Written by, Test by, etc.) into a new file CONTRIBUTED-BY to retain record of these contributions. These contributors are also mentioned in manual/contrib.texi, so we just maintain this additional record as a courtesy to the earlier developers. The following scripts were used to filter a list of files to edit in place and to clean up the CONTRIBUTED-BY file respectively. These were not added to the glibc sources because they're not expected to be of any use in future given that this is a one time task: https://gist.github.com/siddhesh/b5ecac94eabfd72ed2916d6d8157e7dc https://gist.github.com/siddhesh/15ea1f5e435ace9774f485030695ee02 Reviewed-by: Carlos O'Donell <carlos@redhat.com>
3331 lines
73 KiB
ArmAsm
3331 lines
73 KiB
ArmAsm
.file "libm_tan.s"
|
|
|
|
// Copyright (C) 2000, 2001, Intel Corporation
|
|
// All rights reserved.
|
|
//
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistributions in binary form must reproduce the above copyright
|
|
// notice, this list of conditions and the following disclaimer in the
|
|
// documentation and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of Intel Corporation may not be used to endorse or promote
|
|
// products derived from this software without specific prior written
|
|
// permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
|
|
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
|
|
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
|
|
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
//
|
|
// Intel Corporation is the author of this code, and requests that all
|
|
// problem reports or change requests be submitted to it directly at
|
|
// http://developer.intel.com/opensource.
|
|
//
|
|
// *********************************************************************
|
|
//
|
|
// History:
|
|
// 02/02/00 Initial Version
|
|
// 4/04/00 Unwind support added
|
|
// 12/28/00 Fixed false invalid flags
|
|
//
|
|
// *********************************************************************
|
|
//
|
|
// Function: tan(x) = tangent(x), for double precision x values
|
|
//
|
|
// *********************************************************************
|
|
//
|
|
// Accuracy: Very accurate for double-precision values
|
|
//
|
|
// *********************************************************************
|
|
//
|
|
// Resources Used:
|
|
//
|
|
// Floating-Point Registers: f8 (Input and Return Value)
|
|
// f9-f15
|
|
// f32-f112
|
|
//
|
|
// General Purpose Registers:
|
|
// r32-r48
|
|
// r49-r50 (Used to pass arguments to pi_by_2 reduce routine)
|
|
//
|
|
// Predicate Registers: p6-p15
|
|
//
|
|
// *********************************************************************
|
|
//
|
|
// IEEE Special Conditions:
|
|
//
|
|
// Denormal fault raised on denormal inputs
|
|
// Overflow exceptions do not occur
|
|
// Underflow exceptions raised when appropriate for tan
|
|
// (No specialized error handling for this routine)
|
|
// Inexact raised when appropriate by algorithm
|
|
//
|
|
// tan(SNaN) = QNaN
|
|
// tan(QNaN) = QNaN
|
|
// tan(inf) = QNaN
|
|
// tan(+/-0) = +/-0
|
|
//
|
|
// *********************************************************************
|
|
//
|
|
// Mathematical Description
|
|
//
|
|
// We consider the computation of FPTAN of Arg. Now, given
|
|
//
|
|
// Arg = N pi/2 + alpha, |alpha| <= pi/4,
|
|
//
|
|
// basic mathematical relationship shows that
|
|
//
|
|
// tan( Arg ) = tan( alpha ) if N is even;
|
|
// = -cot( alpha ) otherwise.
|
|
//
|
|
// The value of alpha is obtained by argument reduction and
|
|
// represented by two working precision numbers r and c where
|
|
//
|
|
// alpha = r + c accurately.
|
|
//
|
|
// The reduction method is described in a previous write up.
|
|
// The argument reduction scheme identifies 4 cases. For Cases 2
|
|
// and 4, because |alpha| is small, tan(r+c) and -cot(r+c) can be
|
|
// computed very easily by 2 or 3 terms of the Taylor series
|
|
// expansion as follows:
|
|
//
|
|
// Case 2:
|
|
// -------
|
|
//
|
|
// tan(r + c) = r + c + r^3/3 ...accurately
|
|
// -cot(r + c) = -1/(r+c) + r/3 ...accurately
|
|
//
|
|
// Case 4:
|
|
// -------
|
|
//
|
|
// tan(r + c) = r + c + r^3/3 + 2r^5/15 ...accurately
|
|
// -cot(r + c) = -1/(r+c) + r/3 + r^3/45 ...accurately
|
|
//
|
|
//
|
|
// The only cases left are Cases 1 and 3 of the argument reduction
|
|
// procedure. These two cases will be merged since after the
|
|
// argument is reduced in either cases, we have the reduced argument
|
|
// represented as r + c and that the magnitude |r + c| is not small
|
|
// enough to allow the usage of a very short approximation.
|
|
//
|
|
// The greatest challenge of this task is that the second terms of
|
|
// the Taylor series for tan(r) and -cot(r)
|
|
//
|
|
// r + r^3/3 + 2 r^5/15 + ...
|
|
//
|
|
// and
|
|
//
|
|
// -1/r + r/3 + r^3/45 + ...
|
|
//
|
|
// are not very small when |r| is close to pi/4 and the rounding
|
|
// errors will be a concern if simple polynomial accumulation is
|
|
// used. When |r| < 2^(-2), however, the second terms will be small
|
|
// enough (5 bits or so of right shift) that a normal Horner
|
|
// recurrence suffices. Hence there are two cases that we consider
|
|
// in the accurate computation of tan(r) and cot(r), |r| <= pi/4.
|
|
//
|
|
// Case small_r: |r| < 2^(-2)
|
|
// --------------------------
|
|
//
|
|
// Since Arg = N pi/4 + r + c accurately, we have
|
|
//
|
|
// tan(Arg) = tan(r+c) for N even,
|
|
// = -cot(r+c) otherwise.
|
|
//
|
|
// Here for this case, both tan(r) and -cot(r) can be approximated
|
|
// by simple polynomials:
|
|
//
|
|
// tan(r) = r + P1_1 r^3 + P1_2 r^5 + ... + P1_9 r^19
|
|
// -cot(r) = -1/r + Q1_1 r + Q1_2 r^3 + ... + Q1_7 r^13
|
|
//
|
|
// accurately. Since |r| is relatively small, tan(r+c) and
|
|
// -cot(r+c) can be accurately approximated by replacing r with
|
|
// r+c only in the first two terms of the corresponding polynomials.
|
|
//
|
|
// Note that P1_1 (and Q1_1 for that matter) approximates 1/3 to
|
|
// almost 64 sig. bits, thus
|
|
//
|
|
// P1_1 (r+c)^3 = P1_1 r^3 + c * r^2 accurately.
|
|
//
|
|
// Hence,
|
|
//
|
|
// tan(r+c) = r + P1_1 r^3 + P1_2 r^5 + ... + P1_9 r^19
|
|
// + c*(1 + r^2)
|
|
//
|
|
// -cot(r+c) = -1/(r+c) + Q1_1 r + Q1_2 r^3 + ... + Q1_7 r^13
|
|
// + Q1_1*c
|
|
//
|
|
//
|
|
// Case normal_r: 2^(-2) <= |r| <= pi/4
|
|
// ------------------------------------
|
|
//
|
|
// This case is more likely than the previous one if one considers
|
|
// r to be uniformly distributed in [-pi/4 pi/4].
|
|
//
|
|
// The required calculation is either
|
|
//
|
|
// tan(r + c) = tan(r) + correction, or
|
|
// -cot(r + c) = -cot(r) + correction.
|
|
//
|
|
// Specifically,
|
|
//
|
|
// tan(r + c) = tan(r) + c tan'(r) + O(c^2)
|
|
// = tan(r) + c sec^2(r) + O(c^2)
|
|
// = tan(r) + c SEC_sq ...accurately
|
|
// as long as SEC_sq approximates sec^2(r)
|
|
// to, say, 5 bits or so.
|
|
//
|
|
// Similarly,
|
|
//
|
|
// -cot(r + c) = -cot(r) - c cot'(r) + O(c^2)
|
|
// = -cot(r) + c csc^2(r) + O(c^2)
|
|
// = -cot(r) + c CSC_sq ...accurately
|
|
// as long as CSC_sq approximates csc^2(r)
|
|
// to, say, 5 bits or so.
|
|
//
|
|
// We therefore concentrate on accurately calculating tan(r) and
|
|
// cot(r) for a working-precision number r, |r| <= pi/4 to within
|
|
// 0.1% or so.
|
|
//
|
|
// We will employ a table-driven approach. Let
|
|
//
|
|
// r = sgn_r * 2^k * 1.b_1 b_2 ... b_5 ... b_63
|
|
// = sgn_r * ( B + x )
|
|
//
|
|
// where
|
|
//
|
|
// B = 2^k * 1.b_1 b_2 ... b_5 1
|
|
// x = |r| - B
|
|
//
|
|
// Now,
|
|
// tan(B) + tan(x)
|
|
// tan( B + x ) = ------------------------
|
|
// 1 - tan(B)*tan(x)
|
|
//
|
|
// / \
|
|
// | tan(B) + tan(x) |
|
|
|
|
// = tan(B) + | ------------------------ - tan(B) |
|
|
// | 1 - tan(B)*tan(x) |
|
|
// \ /
|
|
//
|
|
// sec^2(B) * tan(x)
|
|
// = tan(B) + ------------------------
|
|
// 1 - tan(B)*tan(x)
|
|
//
|
|
// (1/[sin(B)*cos(B)]) * tan(x)
|
|
// = tan(B) + --------------------------------
|
|
// cot(B) - tan(x)
|
|
//
|
|
//
|
|
// Clearly, the values of tan(B), cot(B) and 1/(sin(B)*cos(B)) are
|
|
// calculated beforehand and stored in a table. Since
|
|
//
|
|
// |x| <= 2^k * 2^(-6) <= 2^(-7) (because k = -1, -2)
|
|
//
|
|
// a very short polynomial will be sufficient to approximate tan(x)
|
|
// accurately. The details involved in computing the last expression
|
|
// will be given in the next section on algorithm description.
|
|
//
|
|
//
|
|
// Now, we turn to the case where cot( B + x ) is needed.
|
|
//
|
|
//
|
|
// 1 - tan(B)*tan(x)
|
|
// cot( B + x ) = ------------------------
|
|
// tan(B) + tan(x)
|
|
//
|
|
// / \
|
|
// | 1 - tan(B)*tan(x) |
|
|
|
|
// = cot(B) + | ----------------------- - cot(B) |
|
|
// | tan(B) + tan(x) |
|
|
// \ /
|
|
//
|
|
// [tan(B) + cot(B)] * tan(x)
|
|
// = cot(B) - ----------------------------
|
|
// tan(B) + tan(x)
|
|
//
|
|
// (1/[sin(B)*cos(B)]) * tan(x)
|
|
// = cot(B) - --------------------------------
|
|
// tan(B) + tan(x)
|
|
//
|
|
//
|
|
// Note that the values of tan(B), cot(B) and 1/(sin(B)*cos(B)) that
|
|
// are needed are the same set of values needed in the previous
|
|
// case.
|
|
//
|
|
// Finally, we can put all the ingredients together as follows:
|
|
//
|
|
// Arg = N * pi/2 + r + c ...accurately
|
|
//
|
|
// tan(Arg) = tan(r) + correction if N is even;
|
|
// = -cot(r) + correction otherwise.
|
|
//
|
|
// For Cases 2 and 4,
|
|
//
|
|
// Case 2:
|
|
// tan(Arg) = tan(r + c) = r + c + r^3/3 N even
|
|
// = -cot(r + c) = -1/(r+c) + r/3 N odd
|
|
// Case 4:
|
|
// tan(Arg) = tan(r + c) = r + c + r^3/3 + 2r^5/15 N even
|
|
// = -cot(r + c) = -1/(r+c) + r/3 + r^3/45 N odd
|
|
//
|
|
//
|
|
// For Cases 1 and 3,
|
|
//
|
|
// Case small_r: |r| < 2^(-2)
|
|
//
|
|
// tan(Arg) = r + P1_1 r^3 + P1_2 r^5 + ... + P1_9 r^19
|
|
// + c*(1 + r^2) N even
|
|
//
|
|
// = -1/(r+c) + Q1_1 r + Q1_2 r^3 + ... + Q1_7 r^13
|
|
// + Q1_1*c N odd
|
|
//
|
|
// Case normal_r: 2^(-2) <= |r| <= pi/4
|
|
//
|
|
// tan(Arg) = tan(r) + c * sec^2(r) N even
|
|
// = -cot(r) + c * csc^2(r) otherwise
|
|
//
|
|
// For N even,
|
|
//
|
|
// tan(Arg) = tan(r) + c*sec^2(r)
|
|
// = tan( sgn_r * (B+x) ) + c * sec^2(|r|)
|
|
// = sgn_r * ( tan(B+x) + sgn_r*c*sec^2(|r|) )
|
|
// = sgn_r * ( tan(B+x) + sgn_r*c*sec^2(B) )
|
|
//
|
|
// since B approximates |r| to 2^(-6) in relative accuracy.
|
|
//
|
|
// / (1/[sin(B)*cos(B)]) * tan(x)
|
|
// tan(Arg) = sgn_r * | tan(B) + --------------------------------
|
|
// \ cot(B) - tan(x)
|
|
// \
|
|
// + CORR |
|
|
|
|
// /
|
|
// where
|
|
//
|
|
// CORR = sgn_r*c*tan(B)*SC_inv(B); SC_inv(B) = 1/(sin(B)*cos(B)).
|
|
//
|
|
// For N odd,
|
|
//
|
|
// tan(Arg) = -cot(r) + c*csc^2(r)
|
|
// = -cot( sgn_r * (B+x) ) + c * csc^2(|r|)
|
|
// = sgn_r * ( -cot(B+x) + sgn_r*c*csc^2(|r|) )
|
|
// = sgn_r * ( -cot(B+x) + sgn_r*c*csc^2(B) )
|
|
//
|
|
// since B approximates |r| to 2^(-6) in relative accuracy.
|
|
//
|
|
// / (1/[sin(B)*cos(B)]) * tan(x)
|
|
// tan(Arg) = sgn_r * | -cot(B) + --------------------------------
|
|
// \ tan(B) + tan(x)
|
|
// \
|
|
// + CORR |
|
|
|
|
// /
|
|
// where
|
|
//
|
|
// CORR = sgn_r*c*cot(B)*SC_inv(B); SC_inv(B) = 1/(sin(B)*cos(B)).
|
|
//
|
|
//
|
|
// The actual algorithm prescribes how all the mathematical formulas
|
|
// are calculated.
|
|
//
|
|
//
|
|
// 2. Algorithmic Description
|
|
// ==========================
|
|
//
|
|
// 2.1 Computation for Cases 2 and 4.
|
|
// ----------------------------------
|
|
//
|
|
// For Case 2, we use two-term polynomials.
|
|
//
|
|
// For N even,
|
|
//
|
|
// rsq := r * r
|
|
// Result := c + r * rsq * P1_1
|
|
// Result := r + Result ...in user-defined rounding
|
|
//
|
|
// For N odd,
|
|
// S_hi := -frcpa(r) ...8 bits
|
|
// S_hi := S_hi + S_hi*(1 + S_hi*r) ...16 bits
|
|
// S_hi := S_hi + S_hi*(1 + S_hi*r) ...32 bits
|
|
// S_hi := S_hi + S_hi*(1 + S_hi*r) ...64 bits
|
|
// S_lo := S_hi*( (1 + S_hi*r) + S_hi*c )
|
|
// ...S_hi + S_lo is -1/(r+c) to extra precision
|
|
// S_lo := S_lo + Q1_1*r
|
|
//
|
|
// Result := S_hi + S_lo ...in user-defined rounding
|
|
//
|
|
// For Case 4, we use three-term polynomials
|
|
//
|
|
// For N even,
|
|
//
|
|
// rsq := r * r
|
|
// Result := c + r * rsq * (P1_1 + rsq * P1_2)
|
|
// Result := r + Result ...in user-defined rounding
|
|
//
|
|
// For N odd,
|
|
// S_hi := -frcpa(r) ...8 bits
|
|
// S_hi := S_hi + S_hi*(1 + S_hi*r) ...16 bits
|
|
// S_hi := S_hi + S_hi*(1 + S_hi*r) ...32 bits
|
|
// S_hi := S_hi + S_hi*(1 + S_hi*r) ...64 bits
|
|
// S_lo := S_hi*( (1 + S_hi*r) + S_hi*c )
|
|
// ...S_hi + S_lo is -1/(r+c) to extra precision
|
|
// rsq := r * r
|
|
// P := Q1_1 + rsq*Q1_2
|
|
// S_lo := S_lo + r*P
|
|
//
|
|
// Result := S_hi + S_lo ...in user-defined rounding
|
|
//
|
|
//
|
|
// Note that the coefficients P1_1, P1_2, Q1_1, and Q1_2 are
|
|
// the same as those used in the small_r case of Cases 1 and 3
|
|
// below.
|
|
//
|
|
//
|
|
// 2.2 Computation for Cases 1 and 3.
|
|
// ----------------------------------
|
|
// This is further divided into the case of small_r,
|
|
// where |r| < 2^(-2), and the case of normal_r, where |r| lies between
|
|
// 2^(-2) and pi/4.
|
|
//
|
|
// Algorithm for the case of small_r
|
|
// ---------------------------------
|
|
//
|
|
// For N even,
|
|
// rsq := r * r
|
|
// Poly1 := rsq*(P1_1 + rsq*(P1_2 + rsq*P1_3))
|
|
// r_to_the_8 := rsq * rsq
|
|
// r_to_the_8 := r_to_the_8 * r_to_the_8
|
|
// Poly2 := P1_4 + rsq*(P1_5 + rsq*(P1_6 + ... rsq*P1_9))
|
|
// CORR := c * ( 1 + rsq )
|
|
// Poly := Poly1 + r_to_the_8*Poly2
|
|
// Result := r*Poly + CORR
|
|
// Result := r + Result ...in user-defined rounding
|
|
// ...note that Poly1 and r_to_the_8 can be computed in parallel
|
|
// ...with Poly2 (Poly1 is intentionally set to be much
|
|
// ...shorter than Poly2 so that r_to_the_8 and CORR can be hidden)
|
|
//
|
|
// For N odd,
|
|
// S_hi := -frcpa(r) ...8 bits
|
|
// S_hi := S_hi + S_hi*(1 + S_hi*r) ...16 bits
|
|
// S_hi := S_hi + S_hi*(1 + S_hi*r) ...32 bits
|
|
// S_hi := S_hi + S_hi*(1 + S_hi*r) ...64 bits
|
|
// S_lo := S_hi*( (1 + S_hi*r) + S_hi*c )
|
|
// ...S_hi + S_lo is -1/(r+c) to extra precision
|
|
// S_lo := S_lo + Q1_1*c
|
|
//
|
|
// ...S_hi and S_lo are computed in parallel with
|
|
// ...the following
|
|
// rsq := r*r
|
|
// P := Q1_1 + rsq*(Q1_2 + rsq*(Q1_3 + ... + rsq*Q1_7))
|
|
//
|
|
// Result := r*P + S_lo
|
|
// Result := S_hi + Result ...in user-defined rounding
|
|
//
|
|
//
|
|
// Algorithm for the case of normal_r
|
|
// ----------------------------------
|
|
//
|
|
// Here, we first consider the computation of tan( r + c ). As
|
|
// presented in the previous section,
|
|
//
|
|
// tan( r + c ) = tan(r) + c * sec^2(r)
|
|
// = sgn_r * [ tan(B+x) + CORR ]
|
|
// CORR = sgn_r * c * tan(B) * 1/[sin(B)*cos(B)]
|
|
//
|
|
// because sec^2(r) = sec^(|r|), and B approximate |r| to 6.5 bits.
|
|
//
|
|
// tan( r + c ) =
|
|
// / (1/[sin(B)*cos(B)]) * tan(x)
|
|
// sgn_r * | tan(B) + -------------------------------- +
|
|
// \ cot(B) - tan(x)
|
|
// \
|
|
// CORR |
|
|
|
|
// /
|
|
//
|
|
// The values of tan(B), cot(B) and 1/(sin(B)*cos(B)) are
|
|
// calculated beforehand and stored in a table. Specifically,
|
|
// the table values are
|
|
//
|
|
// tan(B) as T_hi + T_lo;
|
|
// cot(B) as C_hi + C_lo;
|
|
// 1/[sin(B)*cos(B)] as SC_inv
|
|
//
|
|
// T_hi, C_hi are in double-precision memory format;
|
|
// T_lo, C_lo are in single-precision memory format;
|
|
// SC_inv is in extended-precision memory format.
|
|
//
|
|
// The value of tan(x) will be approximated by a short polynomial of
|
|
// the form
|
|
//
|
|
// tan(x) as x + x * P, where
|
|
// P = x^2 * (P2_1 + x^2 * (P2_2 + x^2 * P2_3))
|
|
//
|
|
// Because |x| <= 2^(-7), cot(B) - x approximates cot(B) - tan(x)
|
|
// to a relative accuracy better than 2^(-20). Thus, a good
|
|
// initial guess of 1/( cot(B) - tan(x) ) to initiate the iterative
|
|
// division is:
|
|
//
|
|
// 1/(cot(B) - tan(x)) is approximately
|
|
// 1/(cot(B) - x) is
|
|
// tan(B)/(1 - x*tan(B)) is approximately
|
|
// T_hi / ( 1 - T_hi * x ) is approximately
|
|
//
|
|
// T_hi * [ 1 + (Thi * x) + (T_hi * x)^2 ]
|
|
//
|
|
// The calculation of tan(r+c) therefore proceed as follows:
|
|
//
|
|
// Tx := T_hi * x
|
|
// xsq := x * x
|
|
//
|
|
// V_hi := T_hi*(1 + Tx*(1 + Tx))
|
|
// P := xsq * (P1_1 + xsq*(P1_2 + xsq*P1_3))
|
|
// ...V_hi serves as an initial guess of 1/(cot(B) - tan(x))
|
|
// ...good to about 20 bits of accuracy
|
|
//
|
|
// tanx := x + x*P
|
|
// D := C_hi - tanx
|
|
// ...D is a double precision denominator: cot(B) - tan(x)
|
|
//
|
|
// V_hi := V_hi + V_hi*(1 - V_hi*D)
|
|
// ....V_hi approximates 1/(cot(B)-tan(x)) to 40 bits
|
|
//
|
|
// V_lo := V_hi * ( [ (1 - V_hi*C_hi) + V_hi*tanx ]
|
|
// - V_hi*C_lo ) ...observe all order
|
|
// ...V_hi + V_lo approximates 1/(cot(B) - tan(x))
|
|
// ...to extra accuracy
|
|
//
|
|
// ... SC_inv(B) * (x + x*P)
|
|
// ... tan(B) + ------------------------- + CORR
|
|
// ... cot(B) - (x + x*P)
|
|
// ...
|
|
// ... = tan(B) + SC_inv(B)*(x + x*P)*(V_hi + V_lo) + CORR
|
|
// ...
|
|
//
|
|
// Sx := SC_inv * x
|
|
// CORR := sgn_r * c * SC_inv * T_hi
|
|
//
|
|
// ...put the ingredients together to compute
|
|
// ... SC_inv(B) * (x + x*P)
|
|
// ... tan(B) + ------------------------- + CORR
|
|
// ... cot(B) - (x + x*P)
|
|
// ...
|
|
// ... = tan(B) + SC_inv(B)*(x + x*P)*(V_hi + V_lo) + CORR
|
|
// ...
|
|
// ... = T_hi + T_lo + CORR +
|
|
// ... Sx * V_hi + Sx * V_lo + Sx * P *(V_hi + V_lo)
|
|
//
|
|
// CORR := CORR + T_lo
|
|
// tail := V_lo + P*(V_hi + V_lo)
|
|
// tail := Sx * tail + CORR
|
|
// tail := Sx * V_hi + tail
|
|
// T_hi := sgn_r * T_hi
|
|
//
|
|
// ...T_hi + sgn_r*tail now approximate
|
|
// ...sgn_r*(tan(B+x) + CORR) accurately
|
|
//
|
|
// Result := T_hi + sgn_r*tail ...in user-defined
|
|
// ...rounding control
|
|
// ...It is crucial that independent paths be fully
|
|
// ...exploited for performance's sake.
|
|
//
|
|
//
|
|
// Next, we consider the computation of -cot( r + c ). As
|
|
// presented in the previous section,
|
|
//
|
|
// -cot( r + c ) = -cot(r) + c * csc^2(r)
|
|
// = sgn_r * [ -cot(B+x) + CORR ]
|
|
// CORR = sgn_r * c * cot(B) * 1/[sin(B)*cos(B)]
|
|
//
|
|
// because csc^2(r) = csc^(|r|), and B approximate |r| to 6.5 bits.
|
|
//
|
|
// -cot( r + c ) =
|
|
// / (1/[sin(B)*cos(B)]) * tan(x)
|
|
// sgn_r * | -cot(B) + -------------------------------- +
|
|
// \ tan(B) + tan(x)
|
|
// \
|
|
// CORR |
|
|
|
|
// /
|
|
//
|
|
// The values of tan(B), cot(B) and 1/(sin(B)*cos(B)) are
|
|
// calculated beforehand and stored in a table. Specifically,
|
|
// the table values are
|
|
//
|
|
// tan(B) as T_hi + T_lo;
|
|
// cot(B) as C_hi + C_lo;
|
|
// 1/[sin(B)*cos(B)] as SC_inv
|
|
//
|
|
// T_hi, C_hi are in double-precision memory format;
|
|
// T_lo, C_lo are in single-precision memory format;
|
|
// SC_inv is in extended-precision memory format.
|
|
//
|
|
// The value of tan(x) will be approximated by a short polynomial of
|
|
// the form
|
|
//
|
|
// tan(x) as x + x * P, where
|
|
// P = x^2 * (P2_1 + x^2 * (P2_2 + x^2 * P2_3))
|
|
//
|
|
// Because |x| <= 2^(-7), tan(B) + x approximates tan(B) + tan(x)
|
|
// to a relative accuracy better than 2^(-18). Thus, a good
|
|
// initial guess of 1/( tan(B) + tan(x) ) to initiate the iterative
|
|
// division is:
|
|
//
|
|
// 1/(tan(B) + tan(x)) is approximately
|
|
// 1/(tan(B) + x) is
|
|
// cot(B)/(1 + x*cot(B)) is approximately
|
|
// C_hi / ( 1 + C_hi * x ) is approximately
|
|
//
|
|
// C_hi * [ 1 - (C_hi * x) + (C_hi * x)^2 ]
|
|
//
|
|
// The calculation of -cot(r+c) therefore proceed as follows:
|
|
//
|
|
// Cx := C_hi * x
|
|
// xsq := x * x
|
|
//
|
|
// V_hi := C_hi*(1 - Cx*(1 - Cx))
|
|
// P := xsq * (P1_1 + xsq*(P1_2 + xsq*P1_3))
|
|
// ...V_hi serves as an initial guess of 1/(tan(B) + tan(x))
|
|
// ...good to about 18 bits of accuracy
|
|
//
|
|
// tanx := x + x*P
|
|
// D := T_hi + tanx
|
|
// ...D is a double precision denominator: tan(B) + tan(x)
|
|
//
|
|
// V_hi := V_hi + V_hi*(1 - V_hi*D)
|
|
// ....V_hi approximates 1/(tan(B)+tan(x)) to 40 bits
|
|
//
|
|
// V_lo := V_hi * ( [ (1 - V_hi*T_hi) - V_hi*tanx ]
|
|
// - V_hi*T_lo ) ...observe all order
|
|
// ...V_hi + V_lo approximates 1/(tan(B) + tan(x))
|
|
// ...to extra accuracy
|
|
//
|
|
// ... SC_inv(B) * (x + x*P)
|
|
// ... -cot(B) + ------------------------- + CORR
|
|
// ... tan(B) + (x + x*P)
|
|
// ...
|
|
// ... =-cot(B) + SC_inv(B)*(x + x*P)*(V_hi + V_lo) + CORR
|
|
// ...
|
|
//
|
|
// Sx := SC_inv * x
|
|
// CORR := sgn_r * c * SC_inv * C_hi
|
|
//
|
|
// ...put the ingredients together to compute
|
|
// ... SC_inv(B) * (x + x*P)
|
|
// ... -cot(B) + ------------------------- + CORR
|
|
// ... tan(B) + (x + x*P)
|
|
// ...
|
|
// ... =-cot(B) + SC_inv(B)*(x + x*P)*(V_hi + V_lo) + CORR
|
|
// ...
|
|
// ... =-C_hi - C_lo + CORR +
|
|
// ... Sx * V_hi + Sx * V_lo + Sx * P *(V_hi + V_lo)
|
|
//
|
|
// CORR := CORR - C_lo
|
|
// tail := V_lo + P*(V_hi + V_lo)
|
|
// tail := Sx * tail + CORR
|
|
// tail := Sx * V_hi + tail
|
|
// C_hi := -sgn_r * C_hi
|
|
//
|
|
// ...C_hi + sgn_r*tail now approximates
|
|
// ...sgn_r*(-cot(B+x) + CORR) accurately
|
|
//
|
|
// Result := C_hi + sgn_r*tail in user-defined rounding control
|
|
// ...It is crucial that independent paths be fully
|
|
// ...exploited for performance's sake.
|
|
//
|
|
// 3. Implementation Notes
|
|
// =======================
|
|
//
|
|
// Table entries T_hi, T_lo; C_hi, C_lo; SC_inv
|
|
//
|
|
// Recall that 2^(-2) <= |r| <= pi/4;
|
|
//
|
|
// r = sgn_r * 2^k * 1.b_1 b_2 ... b_63
|
|
//
|
|
// and
|
|
//
|
|
// B = 2^k * 1.b_1 b_2 b_3 b_4 b_5 1
|
|
//
|
|
// Thus, for k = -2, possible values of B are
|
|
//
|
|
// B = 2^(-2) * ( 1 + index/32 + 1/64 ),
|
|
// index ranges from 0 to 31
|
|
//
|
|
// For k = -1, however, since |r| <= pi/4 = 0.78...
|
|
// possible values of B are
|
|
//
|
|
// B = 2^(-1) * ( 1 + index/32 + 1/64 )
|
|
// index ranges from 0 to 19.
|
|
//
|
|
//
|
|
|
|
#include "libm_support.h"
|
|
|
|
#ifdef _LIBC
|
|
.rodata
|
|
#else
|
|
.data
|
|
#endif
|
|
|
|
.align 128
|
|
|
|
TAN_BASE_CONSTANTS:
|
|
.type TAN_BASE_CONSTANTS, @object
|
|
data4 0x4B800000, 0xCB800000, 0x38800000, 0xB8800000 // two**24, -two**24
|
|
// two**-14, -two**-14
|
|
data4 0x4E44152A, 0xA2F9836E, 0x00003FFE, 0x00000000 // two_by_pi
|
|
data4 0xCE81B9F1, 0xC84D32B0, 0x00004016, 0x00000000 // P_0
|
|
data4 0x2168C235, 0xC90FDAA2, 0x00003FFF, 0x00000000 // P_1
|
|
data4 0xFC8F8CBB, 0xECE675D1, 0x0000BFBD, 0x00000000 // P_2
|
|
data4 0xACC19C60, 0xB7ED8FBB, 0x0000BF7C, 0x00000000 // P_3
|
|
data4 0x5F000000, 0xDF000000, 0x00000000, 0x00000000 // two_to_63, -two_to_63
|
|
data4 0x6EC6B45A, 0xA397E504, 0x00003FE7, 0x00000000 // Inv_P_0
|
|
data4 0xDBD171A1, 0x8D848E89, 0x0000BFBF, 0x00000000 // d_1
|
|
data4 0x18A66F8E, 0xD5394C36, 0x0000BF7C, 0x00000000 // d_2
|
|
data4 0x2168C234, 0xC90FDAA2, 0x00003FFE, 0x00000000 // PI_BY_4
|
|
data4 0x2168C234, 0xC90FDAA2, 0x0000BFFE, 0x00000000 // MPI_BY_4
|
|
data4 0x3E800000, 0xBE800000, 0x00000000, 0x00000000 // two**-2, -two**-2
|
|
data4 0x2F000000, 0xAF000000, 0x00000000, 0x00000000 // two**-33, -two**-33
|
|
data4 0xAAAAAABD, 0xAAAAAAAA, 0x00003FFD, 0x00000000 // P1_1
|
|
data4 0x88882E6A, 0x88888888, 0x00003FFC, 0x00000000 // P1_2
|
|
data4 0x0F0177B6, 0xDD0DD0DD, 0x00003FFA, 0x00000000 // P1_3
|
|
data4 0x646B8C6D, 0xB327A440, 0x00003FF9, 0x00000000 // P1_4
|
|
data4 0x1D5F7D20, 0x91371B25, 0x00003FF8, 0x00000000 // P1_5
|
|
data4 0x61C67914, 0xEB69A5F1, 0x00003FF6, 0x00000000 // P1_6
|
|
data4 0x019318D2, 0xBEDD37BE, 0x00003FF5, 0x00000000 // P1_7
|
|
data4 0x3C794015, 0x9979B146, 0x00003FF4, 0x00000000 // P1_8
|
|
data4 0x8C6EB58A, 0x8EBD21A3, 0x00003FF3, 0x00000000 // P1_9
|
|
data4 0xAAAAAAB4, 0xAAAAAAAA, 0x00003FFD, 0x00000000 // Q1_1
|
|
data4 0x0B5FC93E, 0xB60B60B6, 0x00003FF9, 0x00000000 // Q1_2
|
|
data4 0x0C9BBFBF, 0x8AB355E0, 0x00003FF6, 0x00000000 // Q1_3
|
|
data4 0xCBEE3D4C, 0xDDEBBC89, 0x00003FF2, 0x00000000 // Q1_4
|
|
data4 0x5F80BBB6, 0xB3548A68, 0x00003FEF, 0x00000000 // Q1_5
|
|
data4 0x4CED5BF1, 0x91362560, 0x00003FEC, 0x00000000 // Q1_6
|
|
data4 0x8EE92A83, 0xF189D95A, 0x00003FE8, 0x00000000 // Q1_7
|
|
data4 0xAAAB362F, 0xAAAAAAAA, 0x00003FFD, 0x00000000 // P2_1
|
|
data4 0xE97A6097, 0x88888886, 0x00003FFC, 0x00000000 // P2_2
|
|
data4 0x25E716A1, 0xDD108EE0, 0x00003FFA, 0x00000000 // P2_3
|
|
//
|
|
// Entries T_hi double-precision memory format
|
|
// Index = 0,1,...,31 B = 2^(-2)*(1+Index/32+1/64)
|
|
// Entries T_lo single-precision memory format
|
|
// Index = 0,1,...,31 B = 2^(-2)*(1+Index/32+1/64)
|
|
//
|
|
data4 0x62400794, 0x3FD09BC3, 0x23A05C32, 0x00000000
|
|
data4 0xDFFBC074, 0x3FD124A9, 0x240078B2, 0x00000000
|
|
data4 0x5BD4920F, 0x3FD1AE23, 0x23826B8E, 0x00000000
|
|
data4 0x15E2701D, 0x3FD23835, 0x22D31154, 0x00000000
|
|
data4 0x63739C2D, 0x3FD2C2E4, 0x2265C9E2, 0x00000000
|
|
data4 0xAFEEA48B, 0x3FD34E36, 0x245C05EB, 0x00000000
|
|
data4 0x7DBB35D1, 0x3FD3DA31, 0x24749F2D, 0x00000000
|
|
data4 0x67321619, 0x3FD466DA, 0x2462CECE, 0x00000000
|
|
data4 0x1F94A4D5, 0x3FD4F437, 0x246D0DF1, 0x00000000
|
|
data4 0x740C3E6D, 0x3FD5824D, 0x240A85B5, 0x00000000
|
|
data4 0x4CB1E73D, 0x3FD61123, 0x23F96E33, 0x00000000
|
|
data4 0xAD9EA64B, 0x3FD6A0BE, 0x247C5393, 0x00000000
|
|
data4 0xB804FD01, 0x3FD73125, 0x241F3B29, 0x00000000
|
|
data4 0xAB53EE83, 0x3FD7C25E, 0x2479989B, 0x00000000
|
|
data4 0xE6640EED, 0x3FD8546F, 0x23B343BC, 0x00000000
|
|
data4 0xE8AF1892, 0x3FD8E75F, 0x241454D1, 0x00000000
|
|
data4 0x53928BDA, 0x3FD97B35, 0x238613D9, 0x00000000
|
|
data4 0xEB9DE4DE, 0x3FDA0FF6, 0x22859FA7, 0x00000000
|
|
data4 0x99ECF92D, 0x3FDAA5AB, 0x237A6D06, 0x00000000
|
|
data4 0x6D8F1796, 0x3FDB3C5A, 0x23952F6C, 0x00000000
|
|
data4 0x9CFB8BE4, 0x3FDBD40A, 0x2280FC95, 0x00000000
|
|
data4 0x87943100, 0x3FDC6CC3, 0x245D2EC0, 0x00000000
|
|
data4 0xB736C500, 0x3FDD068C, 0x23C4AD7D, 0x00000000
|
|
data4 0xE1DDBC31, 0x3FDDA16D, 0x23D076E6, 0x00000000
|
|
data4 0xEB515A93, 0x3FDE3D6E, 0x244809A6, 0x00000000
|
|
data4 0xE6E9E5F1, 0x3FDEDA97, 0x220856C8, 0x00000000
|
|
data4 0x1963CE69, 0x3FDF78F1, 0x244BE993, 0x00000000
|
|
data4 0x7D635BCE, 0x3FE00C41, 0x23D21799, 0x00000000
|
|
data4 0x1C302CD3, 0x3FE05CAB, 0x248A1B1D, 0x00000000
|
|
data4 0xDB6A1FA0, 0x3FE0ADB9, 0x23D53E33, 0x00000000
|
|
data4 0x4A20BA81, 0x3FE0FF72, 0x24DB9ED5, 0x00000000
|
|
data4 0x153FA6F5, 0x3FE151D9, 0x24E9E451, 0x00000000
|
|
//
|
|
// Entries T_hi double-precision memory format
|
|
// Index = 0,1,...,19 B = 2^(-1)*(1+Index/32+1/64)
|
|
// Entries T_lo single-precision memory format
|
|
// Index = 0,1,...,19 B = 2^(-1)*(1+Index/32+1/64)
|
|
//
|
|
data4 0xBA1BE39E, 0x3FE1CEC4, 0x24B60F9E, 0x00000000
|
|
data4 0x5ABD9B2D, 0x3FE277E4, 0x248C2474, 0x00000000
|
|
data4 0x0272B110, 0x3FE32418, 0x247B8311, 0x00000000
|
|
data4 0x890E2DF0, 0x3FE3D38B, 0x24C55751, 0x00000000
|
|
data4 0x46236871, 0x3FE4866D, 0x24E5BC34, 0x00000000
|
|
data4 0x45E044B0, 0x3FE53CEE, 0x24001BA4, 0x00000000
|
|
data4 0x82EC06E4, 0x3FE5F742, 0x24B973DC, 0x00000000
|
|
data4 0x25DF43F9, 0x3FE6B5A1, 0x24895440, 0x00000000
|
|
data4 0xCAFD348C, 0x3FE77844, 0x240021CA, 0x00000000
|
|
data4 0xCEED6B92, 0x3FE83F6B, 0x24C45372, 0x00000000
|
|
data4 0xA34F3665, 0x3FE90B58, 0x240DAD33, 0x00000000
|
|
data4 0x2C1E56B4, 0x3FE9DC52, 0x24F846CE, 0x00000000
|
|
data4 0x27041578, 0x3FEAB2A4, 0x2323FB6E, 0x00000000
|
|
data4 0x9DD8C373, 0x3FEB8E9F, 0x24B3090B, 0x00000000
|
|
data4 0x65C9AA7B, 0x3FEC709B, 0x2449F611, 0x00000000
|
|
data4 0xACCF8435, 0x3FED58F4, 0x23616A7E, 0x00000000
|
|
data4 0x97635082, 0x3FEE480F, 0x24C2FEAE, 0x00000000
|
|
data4 0xF0ACC544, 0x3FEF3E57, 0x242CE964, 0x00000000
|
|
data4 0xF7E06E4B, 0x3FF01E20, 0x2480D3EE, 0x00000000
|
|
data4 0x8A798A69, 0x3FF0A125, 0x24DB8967, 0x00000000
|
|
//
|
|
// Entries C_hi double-precision memory format
|
|
// Index = 0,1,...,31 B = 2^(-2)*(1+Index/32+1/64)
|
|
// Entries C_lo single-precision memory format
|
|
// Index = 0,1,...,31 B = 2^(-2)*(1+Index/32+1/64)
|
|
//
|
|
data4 0xE63EFBD0, 0x400ED3E2, 0x259D94D4, 0x00000000
|
|
data4 0xC515DAB5, 0x400DDDB4, 0x245F0537, 0x00000000
|
|
data4 0xBE19A79F, 0x400CF57A, 0x25D4EA9F, 0x00000000
|
|
data4 0xD15298ED, 0x400C1A06, 0x24AE40A0, 0x00000000
|
|
data4 0x164B2708, 0x400B4A4C, 0x25A5AAB6, 0x00000000
|
|
data4 0x5285B068, 0x400A855A, 0x25524F18, 0x00000000
|
|
data4 0x3FFA549F, 0x4009CA5A, 0x24C999C0, 0x00000000
|
|
data4 0x646AF623, 0x4009188A, 0x254FD801, 0x00000000
|
|
data4 0x6084D0E7, 0x40086F3C, 0x2560F5FD, 0x00000000
|
|
data4 0xA29A76EE, 0x4007CDD2, 0x255B9D19, 0x00000000
|
|
data4 0x6C8ECA95, 0x400733BE, 0x25CB021B, 0x00000000
|
|
data4 0x1F8DDC52, 0x4006A07E, 0x24AB4722, 0x00000000
|
|
data4 0xC298AD58, 0x4006139B, 0x252764E2, 0x00000000
|
|
data4 0xBAD7164B, 0x40058CAB, 0x24DAF5DB, 0x00000000
|
|
data4 0xAE31A5D3, 0x40050B4B, 0x25EA20F4, 0x00000000
|
|
data4 0x89F85A8A, 0x40048F21, 0x2583A3E8, 0x00000000
|
|
data4 0xA862380D, 0x400417DA, 0x25DCC4CC, 0x00000000
|
|
data4 0x1088FCFE, 0x4003A52B, 0x2430A492, 0x00000000
|
|
data4 0xCD3527D5, 0x400336CC, 0x255F77CF, 0x00000000
|
|
data4 0x5760766D, 0x4002CC7F, 0x25DA0BDA, 0x00000000
|
|
data4 0x11CE02E3, 0x40026607, 0x256FF4A2, 0x00000000
|
|
data4 0xD37BBE04, 0x4002032C, 0x25208AED, 0x00000000
|
|
data4 0x7F050775, 0x4001A3BD, 0x24B72DD6, 0x00000000
|
|
data4 0xA554848A, 0x40014789, 0x24AB4DAA, 0x00000000
|
|
data4 0x323E81B7, 0x4000EE65, 0x2584C440, 0x00000000
|
|
data4 0x21CF1293, 0x40009827, 0x25C9428D, 0x00000000
|
|
data4 0x3D415EEB, 0x400044A9, 0x25DC8482, 0x00000000
|
|
data4 0xBD72C577, 0x3FFFE78F, 0x257F5070, 0x00000000
|
|
data4 0x75EFD28E, 0x3FFF4AC3, 0x23EBBF7A, 0x00000000
|
|
data4 0x60B52DDE, 0x3FFEB2AF, 0x22EECA07, 0x00000000
|
|
data4 0x35204180, 0x3FFE1F19, 0x24191079, 0x00000000
|
|
data4 0x54F7E60A, 0x3FFD8FCA, 0x248D3058, 0x00000000
|
|
//
|
|
// Entries C_hi double-precision memory format
|
|
// Index = 0,1,...,19 B = 2^(-1)*(1+Index/32+1/64)
|
|
// Entries C_lo single-precision memory format
|
|
// Index = 0,1,...,19 B = 2^(-1)*(1+Index/32+1/64)
|
|
//
|
|
data4 0x79F6FADE, 0x3FFCC06A, 0x239C7886, 0x00000000
|
|
data4 0x891662A6, 0x3FFBB91F, 0x250BD191, 0x00000000
|
|
data4 0x529F155D, 0x3FFABFB6, 0x256CC3E6, 0x00000000
|
|
data4 0x2E964AE9, 0x3FF9D300, 0x250843E3, 0x00000000
|
|
data4 0x89DCB383, 0x3FF8F1EF, 0x2277C87E, 0x00000000
|
|
data4 0x7C87DBD6, 0x3FF81B93, 0x256DA6CF, 0x00000000
|
|
data4 0x1042EDE4, 0x3FF74F14, 0x2573D28A, 0x00000000
|
|
data4 0x1784B360, 0x3FF68BAF, 0x242E489A, 0x00000000
|
|
data4 0x7C923C4C, 0x3FF5D0B5, 0x2532D940, 0x00000000
|
|
data4 0xF418EF20, 0x3FF51D88, 0x253C7DD6, 0x00000000
|
|
data4 0x02F88DAE, 0x3FF4719A, 0x23DB59BF, 0x00000000
|
|
data4 0x49DA0788, 0x3FF3CC66, 0x252B4756, 0x00000000
|
|
data4 0x0B980DB8, 0x3FF32D77, 0x23FE585F, 0x00000000
|
|
data4 0xE56C987A, 0x3FF2945F, 0x25378A63, 0x00000000
|
|
data4 0xB16523F6, 0x3FF200BD, 0x247BB2E0, 0x00000000
|
|
data4 0x8CE27778, 0x3FF17235, 0x24446538, 0x00000000
|
|
data4 0xFDEFE692, 0x3FF0E873, 0x2514638F, 0x00000000
|
|
data4 0x33154062, 0x3FF0632C, 0x24A7FC27, 0x00000000
|
|
data4 0xB3EF115F, 0x3FEFC42E, 0x248FD0FE, 0x00000000
|
|
data4 0x135D26F6, 0x3FEEC9E8, 0x2385C719, 0x00000000
|
|
//
|
|
// Entries SC_inv in Swapped IEEE format (extended)
|
|
// Index = 0,1,...,31 B = 2^(-2)*(1+Index/32+1/64)
|
|
//
|
|
data4 0x1BF30C9E, 0x839D6D4A, 0x00004001, 0x00000000
|
|
data4 0x554B0EB0, 0x80092804, 0x00004001, 0x00000000
|
|
data4 0xA1CF0DE9, 0xF959F94C, 0x00004000, 0x00000000
|
|
data4 0x77378677, 0xF3086BA0, 0x00004000, 0x00000000
|
|
data4 0xCCD4723C, 0xED154515, 0x00004000, 0x00000000
|
|
data4 0x1C27CF25, 0xE7790944, 0x00004000, 0x00000000
|
|
data4 0x8DDACB88, 0xE22D037D, 0x00004000, 0x00000000
|
|
data4 0x89C73522, 0xDD2B2D8A, 0x00004000, 0x00000000
|
|
data4 0xBB2C1171, 0xD86E1A23, 0x00004000, 0x00000000
|
|
data4 0xDFF5E0F9, 0xD3F0E288, 0x00004000, 0x00000000
|
|
data4 0x283BEBD5, 0xCFAF16B1, 0x00004000, 0x00000000
|
|
data4 0x0D88DD53, 0xCBA4AFAA, 0x00004000, 0x00000000
|
|
data4 0xCA67C43D, 0xC7CE03CC, 0x00004000, 0x00000000
|
|
data4 0x0CA0DDB0, 0xC427BC82, 0x00004000, 0x00000000
|
|
data4 0xF13D8CAB, 0xC0AECD57, 0x00004000, 0x00000000
|
|
data4 0x71ECE6B1, 0xBD606C38, 0x00004000, 0x00000000
|
|
data4 0xA44C4929, 0xBA3A0A96, 0x00004000, 0x00000000
|
|
data4 0xE5CCCEC1, 0xB7394F6F, 0x00004000, 0x00000000
|
|
data4 0x9637D8BC, 0xB45C1203, 0x00004000, 0x00000000
|
|
data4 0x92CB051B, 0xB1A05528, 0x00004000, 0x00000000
|
|
data4 0x6BA2FFD0, 0xAF04432B, 0x00004000, 0x00000000
|
|
data4 0x7221235F, 0xAC862A23, 0x00004000, 0x00000000
|
|
data4 0x5F00A9D1, 0xAA2478AF, 0x00004000, 0x00000000
|
|
data4 0x81E082BF, 0xA7DDBB0C, 0x00004000, 0x00000000
|
|
data4 0x45684FEE, 0xA5B0987D, 0x00004000, 0x00000000
|
|
data4 0x627A8F53, 0xA39BD0F5, 0x00004000, 0x00000000
|
|
data4 0x6EC5C8B0, 0xA19E3B03, 0x00004000, 0x00000000
|
|
data4 0x91CD7C66, 0x9FB6C1F0, 0x00004000, 0x00000000
|
|
data4 0x1FA3DF8A, 0x9DE46410, 0x00004000, 0x00000000
|
|
data4 0xA8F6B888, 0x9C263139, 0x00004000, 0x00000000
|
|
data4 0xC27B0450, 0x9A7B4968, 0x00004000, 0x00000000
|
|
data4 0x5EE614EE, 0x98E2DB7E, 0x00004000, 0x00000000
|
|
//
|
|
// Entries SC_inv in Swapped IEEE format (extended)
|
|
// Index = 0,1,...,19 B = 2^(-1)*(1+Index/32+1/64)
|
|
//
|
|
data4 0x13B2B5BA, 0x969F335C, 0x00004000, 0x00000000
|
|
data4 0xD4C0F548, 0x93D446D9, 0x00004000, 0x00000000
|
|
data4 0x61B798AF, 0x9147094F, 0x00004000, 0x00000000
|
|
data4 0x758787AC, 0x8EF317CC, 0x00004000, 0x00000000
|
|
data4 0xB99EEFDB, 0x8CD498B3, 0x00004000, 0x00000000
|
|
data4 0xDFF8BC37, 0x8AE82A7D, 0x00004000, 0x00000000
|
|
data4 0xE3C55D42, 0x892AD546, 0x00004000, 0x00000000
|
|
data4 0xD15573C1, 0x8799FEA9, 0x00004000, 0x00000000
|
|
data4 0x435A4B4C, 0x86335F88, 0x00004000, 0x00000000
|
|
data4 0x3E93A87B, 0x84F4FB6E, 0x00004000, 0x00000000
|
|
data4 0x80A382FB, 0x83DD1952, 0x00004000, 0x00000000
|
|
data4 0xA4CB8C9E, 0x82EA3D7F, 0x00004000, 0x00000000
|
|
data4 0x6861D0A8, 0x821B247C, 0x00004000, 0x00000000
|
|
data4 0x63E8D244, 0x816EBED1, 0x00004000, 0x00000000
|
|
data4 0x27E4CFC6, 0x80E42D91, 0x00004000, 0x00000000
|
|
data4 0x28E64AFD, 0x807ABF8D, 0x00004000, 0x00000000
|
|
data4 0x863B4FD8, 0x8031EF26, 0x00004000, 0x00000000
|
|
data4 0xAE8C11FD, 0x800960AD, 0x00004000, 0x00000000
|
|
data4 0x5FDBEC21, 0x8000E147, 0x00004000, 0x00000000
|
|
data4 0xA07791FA, 0x80186650, 0x00004000, 0x00000000
|
|
|
|
Arg = f8
|
|
Result = f8
|
|
fp_tmp = f9
|
|
U_2 = f10
|
|
rsq = f11
|
|
C_hi = f12
|
|
C_lo = f13
|
|
T_hi = f14
|
|
T_lo = f15
|
|
|
|
N_0 = f32
|
|
d_1 = f33
|
|
MPI_BY_4 = f34
|
|
tail = f35
|
|
tanx = f36
|
|
Cx = f37
|
|
Sx = f38
|
|
sgn_r = f39
|
|
CORR = f40
|
|
P = f41
|
|
D = f42
|
|
ArgPrime = f43
|
|
P_0 = f44
|
|
|
|
P2_1 = f45
|
|
P2_2 = f46
|
|
P2_3 = f47
|
|
|
|
P1_1 = f45
|
|
P1_2 = f46
|
|
P1_3 = f47
|
|
|
|
P1_4 = f48
|
|
P1_5 = f49
|
|
P1_6 = f50
|
|
P1_7 = f51
|
|
P1_8 = f52
|
|
P1_9 = f53
|
|
|
|
TWO_TO_63 = f54
|
|
NEGTWO_TO_63 = f55
|
|
x = f56
|
|
xsq = f57
|
|
Tx = f58
|
|
Tx1 = f59
|
|
Set = f60
|
|
poly1 = f61
|
|
poly2 = f62
|
|
Poly = f63
|
|
Poly1 = f64
|
|
Poly2 = f65
|
|
r_to_the_8 = f66
|
|
B = f67
|
|
SC_inv = f68
|
|
Pos_r = f69
|
|
N_0_fix = f70
|
|
PI_BY_4 = f71
|
|
NEGTWO_TO_NEG2 = f72
|
|
TWO_TO_24 = f73
|
|
TWO_TO_NEG14 = f74
|
|
TWO_TO_NEG33 = f75
|
|
NEGTWO_TO_24 = f76
|
|
NEGTWO_TO_NEG14 = f76
|
|
NEGTWO_TO_NEG33 = f77
|
|
two_by_PI = f78
|
|
N = f79
|
|
N_fix = f80
|
|
P_1 = f81
|
|
P_2 = f82
|
|
P_3 = f83
|
|
s_val = f84
|
|
w = f85
|
|
c = f86
|
|
r = f87
|
|
Z = f88
|
|
A = f89
|
|
a = f90
|
|
t = f91
|
|
U_1 = f92
|
|
d_2 = f93
|
|
TWO_TO_NEG2 = f94
|
|
Q1_1 = f95
|
|
Q1_2 = f96
|
|
Q1_3 = f97
|
|
Q1_4 = f98
|
|
Q1_5 = f99
|
|
Q1_6 = f100
|
|
Q1_7 = f101
|
|
Q1_8 = f102
|
|
S_hi = f103
|
|
S_lo = f104
|
|
V_hi = f105
|
|
V_lo = f106
|
|
U_hi = f107
|
|
U_lo = f108
|
|
U_hiabs = f109
|
|
V_hiabs = f110
|
|
V = f111
|
|
Inv_P_0 = f112
|
|
|
|
GR_SAVE_B0 = r33
|
|
GR_SAVE_GP = r34
|
|
GR_SAVE_PFS = r35
|
|
|
|
delta1 = r36
|
|
table_ptr1 = r37
|
|
table_ptr2 = r38
|
|
i_0 = r39
|
|
i_1 = r40
|
|
N_fix_gr = r41
|
|
N_inc = r42
|
|
exp_Arg = r43
|
|
exp_r = r44
|
|
sig_r = r45
|
|
lookup = r46
|
|
table_offset = r47
|
|
Create_B = r48
|
|
gr_tmp = r49
|
|
|
|
GR_Parameter_X = r49
|
|
GR_Parameter_r = r50
|
|
|
|
|
|
|
|
.global __libm_tan
|
|
.section .text
|
|
.proc __libm_tan
|
|
|
|
|
|
__libm_tan:
|
|
|
|
{ .mfi
|
|
alloc r32 = ar.pfs, 0,17,2,0
|
|
(p0) fclass.m.unc p6,p0 = Arg, 0x1E7
|
|
addl gr_tmp = -1,r0
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p0) fclass.nm.unc p7,p0 = Arg, 0x1FF
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
(p0) addl table_ptr1 = @ltoff(TAN_BASE_CONSTANTS), gp
|
|
nop.f 999
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mmi
|
|
ld8 table_ptr1 = [table_ptr1]
|
|
setf.sig fp_tmp = gr_tmp // Make a constant so fmpy produces inexact
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
//
|
|
// Check for NatVals, Infs , NaNs, and Zeros
|
|
// Check for everything - if false, then must be pseudo-zero
|
|
// or pseudo-nan.
|
|
// Local table pointer
|
|
//
|
|
|
|
{ .mbb
|
|
(p0) add table_ptr2 = 96, table_ptr1
|
|
(p6) br.cond.spnt __libm_TAN_SPECIAL
|
|
(p7) br.cond.spnt __libm_TAN_SPECIAL ;;
|
|
}
|
|
//
|
|
// Point to Inv_P_0
|
|
// Branch out to deal with unsupporteds and special values.
|
|
//
|
|
|
|
{ .mmf
|
|
(p0) ldfs TWO_TO_24 = [table_ptr1],4
|
|
(p0) ldfs TWO_TO_63 = [table_ptr2],4
|
|
//
|
|
// Load -2**24, load -2**63.
|
|
//
|
|
(p0) fcmp.eq.s0 p0, p6 = Arg, f1 ;;
|
|
}
|
|
|
|
{ .mfi
|
|
(p0) ldfs NEGTWO_TO_63 = [table_ptr2],12
|
|
(p0) fnorm.s1 Arg = Arg
|
|
nop.i 999
|
|
}
|
|
//
|
|
// Load 2**24, Load 2**63.
|
|
//
|
|
|
|
{ .mmi
|
|
(p0) ldfs NEGTWO_TO_24 = [table_ptr1],12 ;;
|
|
//
|
|
// Do fcmp to generate Denormal exception
|
|
// - can't do FNORM (will generate Underflow when U is unmasked!)
|
|
// Normalize input argument.
|
|
//
|
|
(p0) ldfe two_by_PI = [table_ptr1],16
|
|
nop.i 999
|
|
}
|
|
|
|
{ .mmi
|
|
(p0) ldfe Inv_P_0 = [table_ptr2],16 ;;
|
|
(p0) ldfe d_1 = [table_ptr2],16
|
|
nop.i 999
|
|
}
|
|
//
|
|
// Decide about the paths to take:
|
|
// PR_1 and PR_3 set if -2**24 < Arg < 2**24 - CASE 1 OR 2
|
|
// OTHERWISE - CASE 3 OR 4
|
|
// Load inverse of P_0 .
|
|
// Set PR_6 if Arg <= -2**63
|
|
// Are there any Infs, NaNs, or zeros?
|
|
//
|
|
|
|
{ .mmi
|
|
(p0) ldfe P_0 = [table_ptr1],16 ;;
|
|
(p0) ldfe d_2 = [table_ptr2],16
|
|
nop.i 999
|
|
}
|
|
//
|
|
// Set PR_8 if Arg <= -2**24
|
|
// Set PR_6 if Arg >= 2**63
|
|
//
|
|
|
|
{ .mmi
|
|
(p0) ldfe P_1 = [table_ptr1],16 ;;
|
|
(p0) ldfe PI_BY_4 = [table_ptr2],16
|
|
nop.i 999
|
|
}
|
|
//
|
|
// Set PR_8 if Arg >= 2**24
|
|
//
|
|
|
|
{ .mmi
|
|
(p0) ldfe P_2 = [table_ptr1],16 ;;
|
|
(p0) ldfe MPI_BY_4 = [table_ptr2],16
|
|
nop.i 999
|
|
}
|
|
//
|
|
// Load P_2 and PI_BY_4
|
|
//
|
|
|
|
{ .mfi
|
|
(p0) ldfe P_3 = [table_ptr1],16
|
|
nop.f 999
|
|
nop.i 999 ;;
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p0) fcmp.le.unc.s1 p6,p7 = Arg,NEGTWO_TO_63
|
|
nop.i 999
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p0) fcmp.le.unc.s1 p8,p9 = Arg,NEGTWO_TO_24
|
|
nop.i 999 ;;
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p7) fcmp.ge.s1 p6,p0 = Arg,TWO_TO_63
|
|
nop.i 999
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p9) fcmp.ge.s1 p8,p0 = Arg,TWO_TO_24
|
|
nop.i 999 ;;
|
|
}
|
|
|
|
{ .mib
|
|
nop.m 999
|
|
nop.i 999
|
|
//
|
|
// Load P_3 and -PI_BY_4
|
|
//
|
|
(p6) br.cond.spnt TAN_ARG_TOO_LARGE ;;
|
|
}
|
|
|
|
{ .mib
|
|
nop.m 999
|
|
nop.i 999
|
|
//
|
|
// Load 2**(-2).
|
|
// Load -2**(-2).
|
|
// Branch out if we have a special argument.
|
|
// Branch out if the magnitude of the input argument is too large
|
|
// - do this branch before the next.
|
|
//
|
|
(p8) br.cond.spnt TAN_LARGER_ARG ;;
|
|
}
|
|
//
|
|
// Branch to Cases 3 or 4 if Arg <= -2**24 or Arg >= 2**24
|
|
//
|
|
|
|
{ .mfi
|
|
(p0) ldfs TWO_TO_NEG2 = [table_ptr2],4
|
|
// ARGUMENT REDUCTION CODE - CASE 1 and 2
|
|
// Load 2**(-2).
|
|
// Load -2**(-2).
|
|
(p0) fmpy.s1 N = Arg,two_by_PI
|
|
nop.i 999 ;;
|
|
}
|
|
|
|
{ .mfi
|
|
(p0) ldfs NEGTWO_TO_NEG2 = [table_ptr2],12
|
|
//
|
|
// N = Arg * 2/pi
|
|
//
|
|
(p0) fcmp.lt.unc.s1 p8,p9= Arg,PI_BY_4
|
|
nop.i 999 ;;
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// if Arg < pi/4, set PR_8.
|
|
//
|
|
(p8) fcmp.gt.s1 p8,p9= Arg,MPI_BY_4
|
|
nop.i 999 ;;
|
|
}
|
|
//
|
|
// Case 1: Is |r| < 2**(-2).
|
|
// Arg is the same as r in this case.
|
|
// r = Arg
|
|
// c = 0
|
|
//
|
|
|
|
{ .mfi
|
|
(p8) mov N_fix_gr = r0
|
|
//
|
|
// if Arg > -pi/4, reset PR_8.
|
|
// Select the case when |Arg| < pi/4 - set PR[8] = true.
|
|
// Else Select the case when |Arg| >= pi/4 - set PR[9] = true.
|
|
//
|
|
(p0) fcvt.fx.s1 N_fix = N
|
|
nop.i 999 ;;
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// Grab the integer part of N .
|
|
//
|
|
(p8) mov r = Arg
|
|
nop.i 999
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p8) mov c = f0
|
|
nop.i 999 ;;
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p8) fcmp.lt.unc.s1 p10, p11 = Arg, TWO_TO_NEG2
|
|
nop.i 999 ;;
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p10) fcmp.gt.s1 p10,p0 = Arg, NEGTWO_TO_NEG2
|
|
nop.i 999 ;;
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// Case 2: Place integer part of N in GP register.
|
|
//
|
|
(p9) fcvt.xf N = N_fix
|
|
nop.i 999 ;;
|
|
}
|
|
|
|
{ .mib
|
|
(p9) getf.sig N_fix_gr = N_fix
|
|
nop.i 999
|
|
//
|
|
// Case 2: Convert integer N_fix back to normalized floating-point value.
|
|
//
|
|
(p10) br.cond.spnt TAN_SMALL_R ;;
|
|
}
|
|
|
|
{ .mib
|
|
nop.m 999
|
|
nop.i 999
|
|
(p8) br.cond.sptk TAN_NORMAL_R ;;
|
|
}
|
|
//
|
|
// Case 1: PR_3 is only affected when PR_1 is set.
|
|
//
|
|
|
|
{ .mmi
|
|
(p9) ldfs TWO_TO_NEG33 = [table_ptr2], 4 ;;
|
|
//
|
|
// Case 2: Load 2**(-33).
|
|
//
|
|
(p9) ldfs NEGTWO_TO_NEG33 = [table_ptr2], 4
|
|
nop.i 999 ;;
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// Case 2: Load -2**(-33).
|
|
//
|
|
(p9) fnma.s1 s_val = N, P_1, Arg
|
|
nop.i 999
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p9) fmpy.s1 w = N, P_2
|
|
nop.i 999 ;;
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// Case 2: w = N * P_2
|
|
// Case 2: s_val = -N * P_1 + Arg
|
|
//
|
|
(p0) fcmp.lt.unc.s1 p9,p8 = s_val, TWO_TO_NEG33
|
|
nop.i 999 ;;
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// Decide between case_1 and case_2 reduce:
|
|
//
|
|
(p9) fcmp.gt.s1 p9, p8 = s_val, NEGTWO_TO_NEG33
|
|
nop.i 999 ;;
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// Case 1_reduce: s <= -2**(-33) or s >= 2**(-33)
|
|
// Case 2_reduce: -2**(-33) < s < 2**(-33)
|
|
//
|
|
(p8) fsub.s1 r = s_val, w
|
|
nop.i 999
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p9) fmpy.s1 w = N, P_3
|
|
nop.i 999 ;;
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p9) fma.s1 U_1 = N, P_2, w
|
|
nop.i 999
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// Case 1_reduce: Is |r| < 2**(-2), if so set PR_10
|
|
// else set PR_11.
|
|
//
|
|
(p8) fsub.s1 c = s_val, r
|
|
nop.i 999 ;;
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// Case 1_reduce: r = s + w (change sign)
|
|
// Case 2_reduce: w = N * P_3 (change sign)
|
|
//
|
|
(p8) fcmp.lt.unc.s1 p10, p11 = r, TWO_TO_NEG2
|
|
nop.i 999 ;;
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p10) fcmp.gt.s1 p10, p11 = r, NEGTWO_TO_NEG2
|
|
nop.i 999 ;;
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p9) fsub.s1 r = s_val, U_1
|
|
nop.i 999
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// Case 1_reduce: c is complete here.
|
|
// c = c + w (w has not been negated.)
|
|
// Case 2_reduce: r is complete here - continue to calculate c .
|
|
// r = s - U_1
|
|
//
|
|
(p9) fms.s1 U_2 = N, P_2, U_1
|
|
nop.i 999 ;;
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// Case 1_reduce: c = s - r
|
|
// Case 2_reduce: U_1 = N * P_2 + w
|
|
//
|
|
(p8) fsub.s1 c = c, w
|
|
nop.i 999 ;;
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p9) fsub.s1 s_val = s_val, r
|
|
nop.i 999
|
|
}
|
|
|
|
{ .mfb
|
|
nop.m 999
|
|
//
|
|
// Case 2_reduce:
|
|
// U_2 = N * P_2 - U_1
|
|
// Not needed until later.
|
|
//
|
|
(p9) fadd.s1 U_2 = U_2, w
|
|
//
|
|
// Case 2_reduce:
|
|
// s = s - r
|
|
// U_2 = U_2 + w
|
|
//
|
|
(p10) br.cond.spnt TAN_SMALL_R ;;
|
|
}
|
|
|
|
{ .mib
|
|
nop.m 999
|
|
nop.i 999
|
|
(p11) br.cond.sptk TAN_NORMAL_R ;;
|
|
}
|
|
|
|
{ .mii
|
|
nop.m 999
|
|
//
|
|
// Case 2_reduce:
|
|
// c = c - U_2
|
|
// c is complete here
|
|
// Argument reduction ends here.
|
|
//
|
|
(p9) extr.u i_1 = N_fix_gr, 0, 1 ;;
|
|
(p9) cmp.eq.unc p11, p12 = 0x0000,i_1 ;;
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// Is i_1 even or odd?
|
|
// if i_1 == 0, set p11, else set p12.
|
|
//
|
|
(p11) fmpy.s1 rsq = r, Z
|
|
nop.i 999 ;;
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p12) frcpa.s1 S_hi,p0 = f1, r
|
|
nop.i 999
|
|
}
|
|
|
|
//
|
|
// Case 1: Branch to SMALL_R or NORMAL_R.
|
|
// Case 1 is done now.
|
|
//
|
|
|
|
{ .mfi
|
|
(p9) addl table_ptr1 = @ltoff(TAN_BASE_CONSTANTS), gp
|
|
(p9) fsub.s1 c = s_val, U_1
|
|
nop.i 999 ;;
|
|
}
|
|
;;
|
|
|
|
{ .mmi
|
|
(p9) ld8 table_ptr1 = [table_ptr1]
|
|
nop.m 999
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mmi
|
|
(p9) add table_ptr1 = 224, table_ptr1 ;;
|
|
(p9) ldfe P1_1 = [table_ptr1],144
|
|
nop.i 999 ;;
|
|
}
|
|
//
|
|
// Get [i_1] - lsb of N_fix_gr .
|
|
// Load P1_1 and point to Q1_1 .
|
|
//
|
|
|
|
{ .mfi
|
|
(p9) ldfe Q1_1 = [table_ptr1] , 0
|
|
//
|
|
// N even: rsq = r * Z
|
|
// N odd: S_hi = frcpa(r)
|
|
//
|
|
(p12) fmerge.ns S_hi = S_hi, S_hi
|
|
nop.i 999
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// Case 2_reduce:
|
|
// c = s - U_1
|
|
//
|
|
(p9) fsub.s1 c = c, U_2
|
|
nop.i 999 ;;
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p12) fma.s1 poly1 = S_hi, r, f1
|
|
nop.i 999 ;;
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// N odd: Change sign of S_hi
|
|
//
|
|
(p11) fmpy.s1 rsq = rsq, P1_1
|
|
nop.i 999 ;;
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p12) fma.s1 S_hi = S_hi, poly1, S_hi
|
|
nop.i 999 ;;
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// N even: rsq = rsq * P1_1
|
|
// N odd: poly1 = 1.0 + S_hi * r 16 bits partial account for necessary
|
|
//
|
|
(p11) fma.s1 Result = r, rsq, c
|
|
nop.i 999 ;;
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// N even: Result = c + r * rsq
|
|
// N odd: S_hi = S_hi + S_hi*poly1 16 bits account for necessary
|
|
//
|
|
(p12) fma.s1 poly1 = S_hi, r, f1
|
|
nop.i 999 ;;
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// N even: Result = Result + r
|
|
// N odd: poly1 = 1.0 + S_hi * r 32 bits partial
|
|
//
|
|
(p11) fadd.s0 Result = r, Result
|
|
nop.i 999 ;;
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p12) fma.s1 S_hi = S_hi, poly1, S_hi
|
|
nop.i 999 ;;
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// N even: Result1 = Result + r
|
|
// N odd: S_hi = S_hi * poly1 + S_hi 32 bits
|
|
//
|
|
(p12) fma.s1 poly1 = S_hi, r, f1
|
|
nop.i 999 ;;
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// N odd: poly1 = S_hi * r + 1.0 64 bits partial
|
|
//
|
|
(p12) fma.s1 S_hi = S_hi, poly1, S_hi
|
|
nop.i 999 ;;
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// N odd: poly1 = S_hi * poly + 1.0 64 bits
|
|
//
|
|
(p12) fma.s1 poly1 = S_hi, r, f1
|
|
nop.i 999 ;;
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// N odd: poly1 = S_hi * r + 1.0
|
|
//
|
|
(p12) fma.s1 poly1 = S_hi, c, poly1
|
|
nop.i 999 ;;
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// N odd: poly1 = S_hi * c + poly1
|
|
//
|
|
(p12) fmpy.s1 S_lo = S_hi, poly1
|
|
nop.i 999 ;;
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// N odd: S_lo = S_hi * poly1
|
|
//
|
|
(p12) fma.s1 S_lo = Q1_1, r, S_lo
|
|
nop.i 999
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// N odd: Result = S_hi + S_lo
|
|
//
|
|
(p0) fmpy.s0 fp_tmp = fp_tmp, fp_tmp // Dummy mult to set inexact
|
|
nop.i 999 ;;
|
|
}
|
|
|
|
{ .mfb
|
|
nop.m 999
|
|
//
|
|
// N odd: S_lo = S_lo + Q1_1 * r
|
|
//
|
|
(p12) fadd.s0 Result = S_hi, S_lo
|
|
(p0) br.ret.sptk b0 ;;
|
|
}
|
|
|
|
|
|
TAN_LARGER_ARG:
|
|
|
|
{ .mmf
|
|
(p0) addl table_ptr1 = @ltoff(TAN_BASE_CONSTANTS), gp
|
|
nop.m 999
|
|
(p0) fmpy.s1 N_0 = Arg, Inv_P_0
|
|
}
|
|
;;
|
|
|
|
//
|
|
// ARGUMENT REDUCTION CODE - CASE 3 and 4
|
|
//
|
|
//
|
|
// Adjust table_ptr1 to beginning of table.
|
|
// N_0 = Arg * Inv_P_0
|
|
//
|
|
|
|
|
|
{ .mmi
|
|
(p0) ld8 table_ptr1 = [table_ptr1]
|
|
nop.m 999
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
|
|
{ .mmi
|
|
(p0) add table_ptr1 = 8, table_ptr1 ;;
|
|
//
|
|
// Point to 2*-14
|
|
//
|
|
(p0) ldfs TWO_TO_NEG14 = [table_ptr1], 4
|
|
nop.i 999 ;;
|
|
}
|
|
//
|
|
// Load 2**(-14).
|
|
//
|
|
|
|
{ .mmi
|
|
(p0) ldfs NEGTWO_TO_NEG14 = [table_ptr1], 180 ;;
|
|
//
|
|
// N_0_fix = integer part of N_0 .
|
|
// Adjust table_ptr1 to beginning of table.
|
|
//
|
|
(p0) ldfs TWO_TO_NEG2 = [table_ptr1], 4
|
|
nop.i 999 ;;
|
|
}
|
|
//
|
|
// Make N_0 the integer part.
|
|
//
|
|
|
|
{ .mfi
|
|
(p0) ldfs NEGTWO_TO_NEG2 = [table_ptr1]
|
|
//
|
|
// Load -2**(-14).
|
|
//
|
|
(p0) fcvt.fx.s1 N_0_fix = N_0
|
|
nop.i 999 ;;
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p0) fcvt.xf N_0 = N_0_fix
|
|
nop.i 999 ;;
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p0) fnma.s1 ArgPrime = N_0, P_0, Arg
|
|
nop.i 999
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p0) fmpy.s1 w = N_0, d_1
|
|
nop.i 999 ;;
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// ArgPrime = -N_0 * P_0 + Arg
|
|
// w = N_0 * d_1
|
|
//
|
|
(p0) fmpy.s1 N = ArgPrime, two_by_PI
|
|
nop.i 999 ;;
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// N = ArgPrime * 2/pi
|
|
//
|
|
(p0) fcvt.fx.s1 N_fix = N
|
|
nop.i 999 ;;
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// N_fix is the integer part.
|
|
//
|
|
(p0) fcvt.xf N = N_fix
|
|
nop.i 999 ;;
|
|
}
|
|
|
|
{ .mfi
|
|
(p0) getf.sig N_fix_gr = N_fix
|
|
nop.f 999
|
|
nop.i 999 ;;
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// N is the integer part of the reduced-reduced argument.
|
|
// Put the integer in a GP register.
|
|
//
|
|
(p0) fnma.s1 s_val = N, P_1, ArgPrime
|
|
nop.i 999
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p0) fnma.s1 w = N, P_2, w
|
|
nop.i 999 ;;
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// s_val = -N*P_1 + ArgPrime
|
|
// w = -N*P_2 + w
|
|
//
|
|
(p0) fcmp.lt.unc.s1 p11, p10 = s_val, TWO_TO_NEG14
|
|
nop.i 999 ;;
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p11) fcmp.gt.s1 p11, p10 = s_val, NEGTWO_TO_NEG14
|
|
nop.i 999 ;;
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// Case 3: r = s_val + w (Z complete)
|
|
// Case 4: U_hi = N_0 * d_1
|
|
//
|
|
(p10) fmpy.s1 V_hi = N, P_2
|
|
nop.i 999
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p11) fmpy.s1 U_hi = N_0, d_1
|
|
nop.i 999 ;;
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// Case 3: r = s_val + w (Z complete)
|
|
// Case 4: U_hi = N_0 * d_1
|
|
//
|
|
(p11) fmpy.s1 V_hi = N, P_2
|
|
nop.i 999
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p11) fmpy.s1 U_hi = N_0, d_1
|
|
nop.i 999 ;;
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// Decide between case 3 and 4:
|
|
// Case 3: s <= -2**(-14) or s >= 2**(-14)
|
|
// Case 4: -2**(-14) < s < 2**(-14)
|
|
//
|
|
(p10) fadd.s1 r = s_val, w
|
|
nop.i 999
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p11) fmpy.s1 w = N, P_3
|
|
nop.i 999 ;;
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// Case 4: We need abs of both U_hi and V_hi - dont
|
|
// worry about switched sign of V_hi .
|
|
//
|
|
(p11) fsub.s1 A = U_hi, V_hi
|
|
nop.i 999
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// Case 4: A = U_hi + V_hi
|
|
// Note: Worry about switched sign of V_hi, so subtract instead of add.
|
|
//
|
|
(p11) fnma.s1 V_lo = N, P_2, V_hi
|
|
nop.i 999 ;;
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p11) fms.s1 U_lo = N_0, d_1, U_hi
|
|
nop.i 999 ;;
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p11) fabs V_hiabs = V_hi
|
|
nop.i 999
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// Case 4: V_hi = N * P_2
|
|
// w = N * P_3
|
|
// Note the product does not include the (-) as in the writeup
|
|
// so (-) missing for V_hi and w .
|
|
(p10) fadd.s1 r = s_val, w
|
|
nop.i 999 ;;
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// Case 3: c = s_val - r
|
|
// Case 4: U_lo = N_0 * d_1 - U_hi
|
|
//
|
|
(p11) fabs U_hiabs = U_hi
|
|
nop.i 999
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p11) fmpy.s1 w = N, P_3
|
|
nop.i 999 ;;
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// Case 4: Set P_12 if U_hiabs >= V_hiabs
|
|
//
|
|
(p11) fadd.s1 C_hi = s_val, A
|
|
nop.i 999 ;;
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// Case 4: C_hi = s_val + A
|
|
//
|
|
(p11) fadd.s1 t = U_lo, V_lo
|
|
nop.i 999 ;;
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// Case 3: Is |r| < 2**(-2), if so set PR_7
|
|
// else set PR_8.
|
|
// Case 3: If PR_7 is set, prepare to branch to Small_R.
|
|
// Case 3: If PR_8 is set, prepare to branch to Normal_R.
|
|
//
|
|
(p10) fsub.s1 c = s_val, r
|
|
nop.i 999 ;;
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// Case 3: c = (s - r) + w (c complete)
|
|
//
|
|
(p11) fcmp.ge.unc.s1 p12, p13 = U_hiabs, V_hiabs
|
|
nop.i 999
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p11) fms.s1 w = N_0, d_2, w
|
|
nop.i 999 ;;
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// Case 4: V_hi = N * P_2
|
|
// w = N * P_3
|
|
// Note the product does not include the (-) as in the writeup
|
|
// so (-) missing for V_hi and w .
|
|
//
|
|
(p10) fcmp.lt.unc.s1 p14, p15 = r, TWO_TO_NEG2
|
|
nop.i 999 ;;
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p14) fcmp.gt.s1 p14, p15 = r, NEGTWO_TO_NEG2
|
|
nop.i 999 ;;
|
|
}
|
|
|
|
{ .mfb
|
|
nop.m 999
|
|
//
|
|
// Case 4: V_lo = -N * P_2 - V_hi (U_hi is in place of V_hi in writeup)
|
|
// Note: the (-) is still missing for V_hi .
|
|
// Case 4: w = w + N_0 * d_2
|
|
// Note: the (-) is now incorporated in w .
|
|
//
|
|
(p10) fadd.s1 c = c, w
|
|
//
|
|
// Case 4: t = U_lo + V_lo
|
|
// Note: remember V_lo should be (-), subtract instead of add. NO
|
|
//
|
|
(p14) br.cond.spnt TAN_SMALL_R ;;
|
|
}
|
|
|
|
{ .mib
|
|
nop.m 999
|
|
nop.i 999
|
|
(p15) br.cond.spnt TAN_NORMAL_R ;;
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// Case 3: Vector off when |r| < 2**(-2). Recall that PR_3 will be true.
|
|
// The remaining stuff is for Case 4.
|
|
//
|
|
(p12) fsub.s1 a = U_hi, A
|
|
(p11) extr.u i_1 = N_fix_gr, 0, 1 ;;
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// Case 4: C_lo = s_val - C_hi
|
|
//
|
|
(p11) fadd.s1 t = t, w
|
|
nop.i 999
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p13) fadd.s1 a = V_hi, A
|
|
nop.i 999 ;;
|
|
}
|
|
|
|
//
|
|
// Case 4: a = U_hi - A
|
|
// a = V_hi - A (do an add to account for missing (-) on V_hi
|
|
//
|
|
|
|
{ .mfi
|
|
(p11) addl table_ptr1 = @ltoff(TAN_BASE_CONSTANTS), gp
|
|
(p11) fsub.s1 C_lo = s_val, C_hi
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mmi
|
|
(p11) ld8 table_ptr1 = [table_ptr1]
|
|
nop.m 999
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
//
|
|
// Case 4: a = (U_hi - A) + V_hi
|
|
// a = (V_hi - A) + U_hi
|
|
// In each case account for negative missing form V_hi .
|
|
//
|
|
//
|
|
// Case 4: C_lo = (s_val - C_hi) + A
|
|
//
|
|
|
|
{ .mmi
|
|
(p11) add table_ptr1 = 224, table_ptr1 ;;
|
|
(p11) ldfe P1_1 = [table_ptr1], 16
|
|
nop.i 999 ;;
|
|
}
|
|
|
|
{ .mfi
|
|
(p11) ldfe P1_2 = [table_ptr1], 128
|
|
//
|
|
// Case 4: w = U_lo + V_lo + w
|
|
//
|
|
(p12) fsub.s1 a = a, V_hi
|
|
nop.i 999 ;;
|
|
}
|
|
//
|
|
// Case 4: r = C_hi + C_lo
|
|
//
|
|
|
|
{ .mfi
|
|
(p11) ldfe Q1_1 = [table_ptr1], 16
|
|
(p11) fadd.s1 C_lo = C_lo, A
|
|
nop.i 999 ;;
|
|
}
|
|
//
|
|
// Case 4: c = C_hi - r
|
|
// Get [i_1] - lsb of N_fix_gr.
|
|
//
|
|
|
|
{ .mfi
|
|
(p11) ldfe Q1_2 = [table_ptr1], 16
|
|
nop.f 999
|
|
nop.i 999 ;;
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p13) fsub.s1 a = U_hi, a
|
|
nop.i 999 ;;
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p11) fadd.s1 t = t, a
|
|
nop.i 999 ;;
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// Case 4: t = t + a
|
|
//
|
|
(p11) fadd.s1 C_lo = C_lo, t
|
|
nop.i 999 ;;
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// Case 4: C_lo = C_lo + t
|
|
//
|
|
(p11) fadd.s1 r = C_hi, C_lo
|
|
nop.i 999 ;;
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p11) fsub.s1 c = C_hi, r
|
|
nop.i 999
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// Case 4: c = c + C_lo finished.
|
|
// Is i_1 even or odd?
|
|
// if i_1 == 0, set PR_4, else set PR_5.
|
|
//
|
|
// r and c have been computed.
|
|
// We known whether this is the sine or cosine routine.
|
|
// Make sure ftz mode is set - should be automatic when using wre
|
|
(p0) fmpy.s1 rsq = r, r
|
|
nop.i 999 ;;
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p11) fadd.s1 c = c , C_lo
|
|
(p11) cmp.eq.unc p11, p12 = 0x0000, i_1 ;;
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p12) frcpa.s1 S_hi, p0 = f1, r
|
|
nop.i 999
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// N odd: Change sign of S_hi
|
|
//
|
|
(p11) fma.s1 Result = rsq, P1_2, P1_1
|
|
nop.i 999 ;;
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p12) fma.s1 P = rsq, Q1_2, Q1_1
|
|
nop.i 999
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// N odd: Result = S_hi + S_lo (User supplied rounding mode for C1)
|
|
//
|
|
(p0) fmpy.s0 fp_tmp = fp_tmp, fp_tmp // Dummy mult to set inexact
|
|
nop.i 999 ;;
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// N even: rsq = r * r
|
|
// N odd: S_hi = frcpa(r)
|
|
//
|
|
(p12) fmerge.ns S_hi = S_hi, S_hi
|
|
nop.i 999
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// N even: rsq = rsq * P1_2 + P1_1
|
|
// N odd: poly1 = 1.0 + S_hi * r 16 bits partial account for necessary
|
|
//
|
|
(p11) fmpy.s1 Result = rsq, Result
|
|
nop.i 999 ;;
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p12) fma.s1 poly1 = S_hi, r,f1
|
|
nop.i 999
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// N even: Result = Result * rsq
|
|
// N odd: S_hi = S_hi + S_hi*poly1 16 bits account for necessary
|
|
//
|
|
(p11) fma.s1 Result = r, Result, c
|
|
nop.i 999 ;;
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p12) fma.s1 S_hi = S_hi, poly1, S_hi
|
|
nop.i 999
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// N odd: S_hi = S_hi * poly1 + S_hi 32 bits
|
|
//
|
|
(p11) fadd.s0 Result= r, Result
|
|
nop.i 999 ;;
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p12) fma.s1 poly1 = S_hi, r, f1
|
|
nop.i 999 ;;
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// N even: Result = Result * r + c
|
|
// N odd: poly1 = 1.0 + S_hi * r 32 bits partial
|
|
//
|
|
(p12) fma.s1 S_hi = S_hi, poly1, S_hi
|
|
nop.i 999 ;;
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p12) fma.s1 poly1 = S_hi, r, f1
|
|
nop.i 999 ;;
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// N even: Result1 = Result + r (Rounding mode S0)
|
|
// N odd: poly1 = S_hi * r + 1.0 64 bits partial
|
|
//
|
|
(p12) fma.s1 S_hi = S_hi, poly1, S_hi
|
|
nop.i 999 ;;
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// N odd: poly1 = S_hi * poly + S_hi 64 bits
|
|
//
|
|
(p12) fma.s1 poly1 = S_hi, r, f1
|
|
nop.i 999 ;;
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// N odd: poly1 = S_hi * r + 1.0
|
|
//
|
|
(p12) fma.s1 poly1 = S_hi, c, poly1
|
|
nop.i 999 ;;
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// N odd: poly1 = S_hi * c + poly1
|
|
//
|
|
(p12) fmpy.s1 S_lo = S_hi, poly1
|
|
nop.i 999 ;;
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// N odd: S_lo = S_hi * poly1
|
|
//
|
|
(p12) fma.s1 S_lo = P, r, S_lo
|
|
nop.i 999 ;;
|
|
}
|
|
|
|
{ .mfb
|
|
nop.m 999
|
|
//
|
|
// N odd: S_lo = S_lo + r * P
|
|
//
|
|
(p12) fadd.s0 Result = S_hi, S_lo
|
|
(p0) br.ret.sptk b0 ;;
|
|
}
|
|
|
|
|
|
TAN_SMALL_R:
|
|
|
|
{ .mii
|
|
nop.m 999
|
|
(p0) extr.u i_1 = N_fix_gr, 0, 1 ;;
|
|
(p0) cmp.eq.unc p11, p12 = 0x0000, i_1
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p0) fmpy.s1 rsq = r, r
|
|
nop.i 999 ;;
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p12) frcpa.s1 S_hi, p0 = f1, r
|
|
nop.i 999
|
|
}
|
|
|
|
{ .mfi
|
|
(p0) addl table_ptr1 = @ltoff(TAN_BASE_CONSTANTS), gp
|
|
nop.f 999
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mmi
|
|
(p0) ld8 table_ptr1 = [table_ptr1]
|
|
nop.m 999
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
// *****************************************************************
|
|
// *****************************************************************
|
|
// *****************************************************************
|
|
|
|
{ .mmi
|
|
(p0) add table_ptr1 = 224, table_ptr1 ;;
|
|
(p0) ldfe P1_1 = [table_ptr1], 16
|
|
nop.i 999 ;;
|
|
}
|
|
// r and c have been computed.
|
|
// We known whether this is the sine or cosine routine.
|
|
// Make sure ftz mode is set - should be automatic when using wre
|
|
// |r| < 2**(-2)
|
|
|
|
{ .mfi
|
|
(p0) ldfe P1_2 = [table_ptr1], 16
|
|
(p11) fmpy.s1 r_to_the_8 = rsq, rsq
|
|
nop.i 999 ;;
|
|
}
|
|
//
|
|
// Set table_ptr1 to beginning of constant table.
|
|
// Get [i_1] - lsb of N_fix_gr.
|
|
//
|
|
|
|
{ .mfi
|
|
(p0) ldfe P1_3 = [table_ptr1], 96
|
|
//
|
|
// N even: rsq = r * r
|
|
// N odd: S_hi = frcpa(r)
|
|
//
|
|
(p12) fmerge.ns S_hi = S_hi, S_hi
|
|
nop.i 999 ;;
|
|
}
|
|
//
|
|
// Is i_1 even or odd?
|
|
// if i_1 == 0, set PR_11.
|
|
// if i_1 != 0, set PR_12.
|
|
//
|
|
|
|
{ .mfi
|
|
(p11) ldfe P1_9 = [table_ptr1], -16
|
|
//
|
|
// N even: Poly2 = P1_7 + Poly2 * rsq
|
|
// N odd: poly2 = Q1_5 + poly2 * rsq
|
|
//
|
|
(p11) fadd.s1 CORR = rsq, f1
|
|
nop.i 999 ;;
|
|
}
|
|
|
|
{ .mmi
|
|
(p11) ldfe P1_8 = [table_ptr1], -16 ;;
|
|
//
|
|
// N even: Poly1 = P1_2 + P1_3 * rsq
|
|
// N odd: poly1 = 1.0 + S_hi * r
|
|
// 16 bits partial account for necessary (-1)
|
|
//
|
|
(p11) ldfe P1_7 = [table_ptr1], -16
|
|
nop.i 999 ;;
|
|
}
|
|
//
|
|
// N even: Poly1 = P1_1 + Poly1 * rsq
|
|
// N odd: S_hi = S_hi + S_hi * poly1) 16 bits account for necessary
|
|
//
|
|
|
|
{ .mfi
|
|
(p11) ldfe P1_6 = [table_ptr1], -16
|
|
//
|
|
// N even: Poly2 = P1_5 + Poly2 * rsq
|
|
// N odd: poly2 = Q1_3 + poly2 * rsq
|
|
//
|
|
(p11) fmpy.s1 r_to_the_8 = r_to_the_8, r_to_the_8
|
|
nop.i 999 ;;
|
|
}
|
|
//
|
|
// N even: Poly1 = Poly1 * rsq
|
|
// N odd: poly1 = 1.0 + S_hi * r 32 bits partial
|
|
//
|
|
|
|
{ .mfi
|
|
(p11) ldfe P1_5 = [table_ptr1], -16
|
|
(p12) fma.s1 poly1 = S_hi, r, f1
|
|
nop.i 999 ;;
|
|
}
|
|
//
|
|
// N even: CORR = CORR * c
|
|
// N odd: S_hi = S_hi * poly1 + S_hi 32 bits
|
|
//
|
|
|
|
//
|
|
// N even: Poly2 = P1_6 + Poly2 * rsq
|
|
// N odd: poly2 = Q1_4 + poly2 * rsq
|
|
//
|
|
{ .mmf
|
|
(p0) addl table_ptr2 = @ltoff(TAN_BASE_CONSTANTS), gp
|
|
(p11) ldfe P1_4 = [table_ptr1], -16
|
|
(p11) fmpy.s1 CORR = CORR, c
|
|
}
|
|
;;
|
|
|
|
|
|
{ .mmi
|
|
(p0) ld8 table_ptr2 = [table_ptr2]
|
|
nop.m 999
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
|
|
{ .mii
|
|
(p0) add table_ptr2 = 464, table_ptr2
|
|
nop.i 999 ;;
|
|
nop.i 999
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p11) fma.s1 Poly1 = P1_3, rsq, P1_2
|
|
nop.i 999 ;;
|
|
}
|
|
|
|
{ .mfi
|
|
(p0) ldfe Q1_7 = [table_ptr2], -16
|
|
(p12) fma.s1 S_hi = S_hi, poly1, S_hi
|
|
nop.i 999 ;;
|
|
}
|
|
|
|
{ .mfi
|
|
(p0) ldfe Q1_6 = [table_ptr2], -16
|
|
(p11) fma.s1 Poly2 = P1_9, rsq, P1_8
|
|
nop.i 999 ;;
|
|
}
|
|
|
|
{ .mmi
|
|
(p0) ldfe Q1_5 = [table_ptr2], -16 ;;
|
|
(p12) ldfe Q1_4 = [table_ptr2], -16
|
|
nop.i 999 ;;
|
|
}
|
|
|
|
{ .mfi
|
|
(p12) ldfe Q1_3 = [table_ptr2], -16
|
|
//
|
|
// N even: Poly2 = P1_8 + P1_9 * rsq
|
|
// N odd: poly2 = Q1_6 + Q1_7 * rsq
|
|
//
|
|
(p11) fma.s1 Poly1 = Poly1, rsq, P1_1
|
|
nop.i 999 ;;
|
|
}
|
|
|
|
{ .mfi
|
|
(p12) ldfe Q1_2 = [table_ptr2], -16
|
|
(p12) fma.s1 poly1 = S_hi, r, f1
|
|
nop.i 999 ;;
|
|
}
|
|
|
|
{ .mfi
|
|
(p12) ldfe Q1_1 = [table_ptr2], -16
|
|
(p11) fma.s1 Poly2 = Poly2, rsq, P1_7
|
|
nop.i 999 ;;
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// N even: CORR = rsq + 1
|
|
// N even: r_to_the_8 = rsq * rsq
|
|
//
|
|
(p11) fmpy.s1 Poly1 = Poly1, rsq
|
|
nop.i 999 ;;
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p12) fma.s1 S_hi = S_hi, poly1, S_hi
|
|
nop.i 999
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p12) fma.s1 poly2 = Q1_7, rsq, Q1_6
|
|
nop.i 999 ;;
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p11) fma.s1 Poly2 = Poly2, rsq, P1_6
|
|
nop.i 999 ;;
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p12) fma.s1 poly1 = S_hi, r, f1
|
|
nop.i 999
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p12) fma.s1 poly2 = poly2, rsq, Q1_5
|
|
nop.i 999 ;;
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p11) fma.s1 Poly2= Poly2, rsq, P1_5
|
|
nop.i 999 ;;
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p12) fma.s1 S_hi = S_hi, poly1, S_hi
|
|
nop.i 999
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p12) fma.s1 poly2 = poly2, rsq, Q1_4
|
|
nop.i 999 ;;
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// N even: r_to_the_8 = r_to_the_8 * r_to_the_8
|
|
// N odd: poly1 = S_hi * r + 1.0 64 bits partial
|
|
//
|
|
(p11) fma.s1 Poly2 = Poly2, rsq, P1_4
|
|
nop.i 999 ;;
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// N even: Result = CORR + Poly * r
|
|
// N odd: P = Q1_1 + poly2 * rsq
|
|
//
|
|
(p12) fma.s1 poly1 = S_hi, r, f1
|
|
nop.i 999
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p12) fma.s1 poly2 = poly2, rsq, Q1_3
|
|
nop.i 999 ;;
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// N even: Poly2 = P1_4 + Poly2 * rsq
|
|
// N odd: poly2 = Q1_2 + poly2 * rsq
|
|
//
|
|
(p11) fma.s1 Poly = Poly2, r_to_the_8, Poly1
|
|
nop.i 999 ;;
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p12) fma.s1 poly1 = S_hi, c, poly1
|
|
nop.i 999
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p12) fma.s1 poly2 = poly2, rsq, Q1_2
|
|
nop.i 999 ;;
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// N even: Poly = Poly1 + Poly2 * r_to_the_8
|
|
// N odd: S_hi = S_hi * poly1 + S_hi 64 bits
|
|
//
|
|
(p11) fma.s1 Result = Poly, r, CORR
|
|
nop.i 999 ;;
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// N even: Result = r + Result (User supplied rounding mode)
|
|
// N odd: poly1 = S_hi * c + poly1
|
|
//
|
|
(p12) fmpy.s1 S_lo = S_hi, poly1
|
|
nop.i 999
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p12) fma.s1 P = poly2, rsq, Q1_1
|
|
nop.i 999 ;;
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// N odd: poly1 = S_hi * r + 1.0
|
|
//
|
|
(p11) fadd.s0 Result = Result, r
|
|
nop.i 999 ;;
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// N odd: S_lo = S_hi * poly1
|
|
//
|
|
(p12) fma.s1 S_lo = Q1_1, c, S_lo
|
|
nop.i 999
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// N odd: Result = Result + S_hi (user supplied rounding mode)
|
|
//
|
|
(p0) fmpy.s0 fp_tmp = fp_tmp, fp_tmp // Dummy mult to set inexact
|
|
nop.i 999 ;;
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// N odd: S_lo = Q1_1 * c + S_lo
|
|
//
|
|
(p12) fma.s1 Result = P, r, S_lo
|
|
nop.i 999 ;;
|
|
}
|
|
|
|
{ .mfb
|
|
nop.m 999
|
|
//
|
|
// N odd: Result = S_lo + r * P
|
|
//
|
|
(p12) fadd.s0 Result = Result, S_hi
|
|
(p0) br.ret.sptk b0 ;;
|
|
}
|
|
|
|
|
|
TAN_NORMAL_R:
|
|
|
|
{ .mfi
|
|
(p0) getf.sig sig_r = r
|
|
// *******************************************************************
|
|
// *******************************************************************
|
|
// *******************************************************************
|
|
//
|
|
// r and c have been computed.
|
|
// Make sure ftz mode is set - should be automatic when using wre
|
|
//
|
|
//
|
|
// Get [i_1] - lsb of N_fix_gr alone.
|
|
//
|
|
(p0) fmerge.s Pos_r = f1, r
|
|
(p0) extr.u i_1 = N_fix_gr, 0, 1 ;;
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p0) fmerge.s sgn_r = r, f1
|
|
(p0) cmp.eq.unc p11, p12 = 0x0000, i_1 ;;
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
nop.f 999
|
|
(p0) extr.u lookup = sig_r, 58, 5
|
|
}
|
|
|
|
{ .mlx
|
|
nop.m 999
|
|
(p0) movl Create_B = 0x8200000000000000 ;;
|
|
}
|
|
|
|
{ .mfi
|
|
(p0) addl table_ptr1 = @ltoff(TAN_BASE_CONSTANTS), gp
|
|
nop.f 999
|
|
(p0) dep Create_B = lookup, Create_B, 58, 5
|
|
}
|
|
;;
|
|
|
|
//
|
|
// Get [i_1] - lsb of N_fix_gr alone.
|
|
// Pos_r = abs (r)
|
|
//
|
|
|
|
|
|
{ .mmi
|
|
ld8 table_ptr1 = [table_ptr1]
|
|
nop.m 999
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
|
|
{ .mmi
|
|
nop.m 999
|
|
(p0) setf.sig B = Create_B
|
|
//
|
|
// Set table_ptr1 and table_ptr2 to base address of
|
|
// constant table.
|
|
//
|
|
(p0) add table_ptr1 = 480, table_ptr1 ;;
|
|
}
|
|
|
|
{ .mmb
|
|
nop.m 999
|
|
//
|
|
// Is i_1 or i_0 == 0 ?
|
|
// Create the constant 1 00000 1000000000000000000000...
|
|
//
|
|
(p0) ldfe P2_1 = [table_ptr1], 16
|
|
nop.b 999
|
|
}
|
|
|
|
{ .mmi
|
|
nop.m 999 ;;
|
|
(p0) getf.exp exp_r = Pos_r
|
|
nop.i 999
|
|
}
|
|
//
|
|
// Get r's exponent
|
|
// Get r's significand
|
|
//
|
|
|
|
{ .mmi
|
|
(p0) ldfe P2_2 = [table_ptr1], 16 ;;
|
|
//
|
|
// Get the 5 bits or r for the lookup. 1.xxxxx ....
|
|
// from sig_r.
|
|
// Grab lsb of exp of B
|
|
//
|
|
(p0) ldfe P2_3 = [table_ptr1], 16
|
|
nop.i 999 ;;
|
|
}
|
|
|
|
{ .mii
|
|
nop.m 999
|
|
(p0) andcm table_offset = 0x0001, exp_r ;;
|
|
(p0) shl table_offset = table_offset, 9 ;;
|
|
}
|
|
|
|
{ .mii
|
|
nop.m 999
|
|
//
|
|
// Deposit 0 00000 1000000000000000000000... on
|
|
// 1 xxxxx yyyyyyyyyyyyyyyyyyyyyy...,
|
|
// getting rid of the ys.
|
|
// Is B = 2** -2 or B= 2** -1? If 2**-1, then
|
|
// we want an offset of 512 for table addressing.
|
|
//
|
|
(p0) shladd table_offset = lookup, 4, table_offset ;;
|
|
//
|
|
// B = ........ 1xxxxx 1000000000000000000...
|
|
//
|
|
(p0) add table_ptr1 = table_ptr1, table_offset ;;
|
|
}
|
|
|
|
{ .mmb
|
|
nop.m 999
|
|
//
|
|
// B = ........ 1xxxxx 1000000000000000000...
|
|
// Convert B so it has the same exponent as Pos_r
|
|
//
|
|
(p0) ldfd T_hi = [table_ptr1], 8
|
|
nop.b 999 ;;
|
|
}
|
|
|
|
//
|
|
// x = |r| - B
|
|
// Load T_hi.
|
|
// Load C_hi.
|
|
//
|
|
|
|
{ .mmf
|
|
(p0) addl table_ptr2 = @ltoff(TAN_BASE_CONSTANTS), gp
|
|
(p0) ldfs T_lo = [table_ptr1]
|
|
(p0) fmerge.se B = Pos_r, B
|
|
}
|
|
;;
|
|
|
|
{ .mmi
|
|
ld8 table_ptr2 = [table_ptr2]
|
|
nop.m 999
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mii
|
|
(p0) add table_ptr2 = 1360, table_ptr2
|
|
nop.i 999 ;;
|
|
(p0) add table_ptr2 = table_ptr2, table_offset ;;
|
|
}
|
|
|
|
{ .mfi
|
|
(p0) ldfd C_hi = [table_ptr2], 8
|
|
(p0) fsub.s1 x = Pos_r, B
|
|
nop.i 999 ;;
|
|
}
|
|
|
|
{ .mii
|
|
(p0) ldfs C_lo = [table_ptr2],255
|
|
nop.i 999 ;;
|
|
//
|
|
// xsq = x * x
|
|
// N even: Tx = T_hi * x
|
|
// Load T_lo.
|
|
// Load C_lo - increment pointer to get SC_inv
|
|
// - cant get all the way, do an add later.
|
|
//
|
|
(p0) add table_ptr2 = 569, table_ptr2 ;;
|
|
}
|
|
//
|
|
// N even: Tx1 = Tx + 1
|
|
// N odd: Cx1 = 1 - Cx
|
|
//
|
|
|
|
{ .mfi
|
|
(p0) ldfe SC_inv = [table_ptr2], 0
|
|
nop.f 999
|
|
nop.i 999 ;;
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p0) fmpy.s1 xsq = x, x
|
|
nop.i 999
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p11) fmpy.s1 Tx = T_hi, x
|
|
nop.i 999 ;;
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p12) fmpy.s1 Cx = C_hi, x
|
|
nop.i 999 ;;
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// N odd: Cx = C_hi * x
|
|
//
|
|
(p0) fma.s1 P = P2_3, xsq, P2_2
|
|
nop.i 999
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// N even and odd: P = P2_3 + P2_2 * xsq
|
|
//
|
|
(p11) fadd.s1 Tx1 = Tx, f1
|
|
nop.i 999 ;;
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// N even: D = C_hi - tanx
|
|
// N odd: D = T_hi + tanx
|
|
//
|
|
(p11) fmpy.s1 CORR = SC_inv, T_hi
|
|
nop.i 999
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p0) fmpy.s1 Sx = SC_inv, x
|
|
nop.i 999 ;;
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p12) fmpy.s1 CORR = SC_inv, C_hi
|
|
nop.i 999 ;;
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p12) fsub.s1 V_hi = f1, Cx
|
|
nop.i 999 ;;
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p0) fma.s1 P = P, xsq, P2_1
|
|
nop.i 999
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// N even and odd: P = P2_1 + P * xsq
|
|
//
|
|
(p11) fma.s1 V_hi = Tx, Tx1, f1
|
|
nop.i 999 ;;
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// N even: Result = sgn_r * tail + T_hi (user rounding mode for C1)
|
|
// N odd: Result = sgn_r * tail + C_hi (user rounding mode for C1)
|
|
//
|
|
(p0) fmpy.s0 fp_tmp = fp_tmp, fp_tmp // Dummy mult to set inexact
|
|
nop.i 999 ;;
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p0) fmpy.s1 CORR = CORR, c
|
|
nop.i 999 ;;
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p12) fnma.s1 V_hi = Cx,V_hi,f1
|
|
nop.i 999 ;;
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// N even: V_hi = Tx * Tx1 + 1
|
|
// N odd: Cx1 = 1 - Cx * Cx1
|
|
//
|
|
(p0) fmpy.s1 P = P, xsq
|
|
nop.i 999
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// N even and odd: P = P * xsq
|
|
//
|
|
(p11) fmpy.s1 V_hi = V_hi, T_hi
|
|
nop.i 999 ;;
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// N even and odd: tail = P * tail + V_lo
|
|
//
|
|
(p11) fmpy.s1 T_hi = sgn_r, T_hi
|
|
nop.i 999 ;;
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p0) fmpy.s1 CORR = CORR, sgn_r
|
|
nop.i 999 ;;
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p12) fmpy.s1 V_hi = V_hi,C_hi
|
|
nop.i 999 ;;
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// N even: V_hi = T_hi * V_hi
|
|
// N odd: V_hi = C_hi * V_hi
|
|
//
|
|
(p0) fma.s1 tanx = P, x, x
|
|
nop.i 999
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p12) fnmpy.s1 C_hi = sgn_r, C_hi
|
|
nop.i 999 ;;
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// N even: V_lo = 1 - V_hi + C_hi
|
|
// N odd: V_lo = 1 - V_hi + T_hi
|
|
//
|
|
(p11) fadd.s1 CORR = CORR, T_lo
|
|
nop.i 999
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p12) fsub.s1 CORR = CORR, C_lo
|
|
nop.i 999 ;;
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// N even and odd: tanx = x + x * P
|
|
// N even and odd: Sx = SC_inv * x
|
|
//
|
|
(p11) fsub.s1 D = C_hi, tanx
|
|
nop.i 999
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p12) fadd.s1 D = T_hi, tanx
|
|
nop.i 999 ;;
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// N odd: CORR = SC_inv * C_hi
|
|
// N even: CORR = SC_inv * T_hi
|
|
//
|
|
(p0) fnma.s1 D = V_hi, D, f1
|
|
nop.i 999 ;;
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// N even and odd: D = 1 - V_hi * D
|
|
// N even and odd: CORR = CORR * c
|
|
//
|
|
(p0) fma.s1 V_hi = V_hi, D, V_hi
|
|
nop.i 999 ;;
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// N even and odd: V_hi = V_hi + V_hi * D
|
|
// N even and odd: CORR = sgn_r * CORR
|
|
//
|
|
(p11) fnma.s1 V_lo = V_hi, C_hi, f1
|
|
nop.i 999
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p12) fnma.s1 V_lo = V_hi, T_hi, f1
|
|
nop.i 999 ;;
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// N even: CORR = COOR + T_lo
|
|
// N odd: CORR = CORR - C_lo
|
|
//
|
|
(p11) fma.s1 V_lo = tanx, V_hi, V_lo
|
|
nop.i 999
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p12) fnma.s1 V_lo = tanx, V_hi, V_lo
|
|
nop.i 999 ;;
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// N even: V_lo = V_lo + V_hi * tanx
|
|
// N odd: V_lo = V_lo - V_hi * tanx
|
|
//
|
|
(p11) fnma.s1 V_lo = C_lo, V_hi, V_lo
|
|
nop.i 999
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p12) fnma.s1 V_lo = T_lo, V_hi, V_lo
|
|
nop.i 999 ;;
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// N even: V_lo = V_lo - V_hi * C_lo
|
|
// N odd: V_lo = V_lo - V_hi * T_lo
|
|
//
|
|
(p0) fmpy.s1 V_lo = V_hi, V_lo
|
|
nop.i 999 ;;
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// N even and odd: V_lo = V_lo * V_hi
|
|
//
|
|
(p0) fadd.s1 tail = V_hi, V_lo
|
|
nop.i 999 ;;
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// N even and odd: tail = V_hi + V_lo
|
|
//
|
|
(p0) fma.s1 tail = tail, P, V_lo
|
|
nop.i 999 ;;
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// N even: T_hi = sgn_r * T_hi
|
|
// N odd : C_hi = -sgn_r * C_hi
|
|
//
|
|
(p0) fma.s1 tail = tail, Sx, CORR
|
|
nop.i 999 ;;
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// N even and odd: tail = Sx * tail + CORR
|
|
//
|
|
(p0) fma.s1 tail = V_hi, Sx, tail
|
|
nop.i 999 ;;
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// N even an odd: tail = Sx * V_hi + tail
|
|
//
|
|
(p11) fma.s0 Result = sgn_r, tail, T_hi
|
|
nop.i 999
|
|
}
|
|
|
|
{ .mfb
|
|
nop.m 999
|
|
(p12) fma.s0 Result = sgn_r, tail, C_hi
|
|
(p0) br.ret.sptk b0 ;;
|
|
}
|
|
|
|
.endp __libm_tan
|
|
ASM_SIZE_DIRECTIVE(__libm_tan)
|
|
|
|
|
|
|
|
// *******************************************************************
|
|
// *******************************************************************
|
|
// *******************************************************************
|
|
//
|
|
// Special Code to handle very large argument case.
|
|
// Call int pi_by_2_reduce(&x,&r)
|
|
// for |arguments| >= 2**63
|
|
// (Arg or x) is in f8
|
|
// Address to save r and c as double
|
|
|
|
// (1) (2) (3) (call) (4)
|
|
// sp -> + psp -> + psp -> + sp -> +
|
|
// | | | |
|
|
// | r50 ->| <- r50 f0 ->| r50 -> | -> c
|
|
// | | | |
|
|
// sp-32 -> | <- r50 f0 ->| f0 ->| <- r50 r49 -> | -> r
|
|
// | | | |
|
|
// | r49 ->| <- r49 Arg ->| <- r49 | -> x
|
|
// | | | |
|
|
// sp -64 ->| sp -64 ->| sp -64 ->| |
|
|
//
|
|
// save pfs save b0 restore gp
|
|
// save gp restore b0
|
|
// restore pfs
|
|
|
|
|
|
|
|
.proc __libm_callout
|
|
__libm_callout:
|
|
TAN_ARG_TOO_LARGE:
|
|
.prologue
|
|
// (1)
|
|
{ .mfi
|
|
add GR_Parameter_r =-32,sp // Parameter: r address
|
|
nop.f 0
|
|
.save ar.pfs,GR_SAVE_PFS
|
|
mov GR_SAVE_PFS=ar.pfs // Save ar.pfs
|
|
}
|
|
{ .mfi
|
|
.fframe 64
|
|
add sp=-64,sp // Create new stack
|
|
nop.f 0
|
|
mov GR_SAVE_GP=gp // Save gp
|
|
};;
|
|
|
|
// (2)
|
|
{ .mmi
|
|
stfe [GR_Parameter_r ] = f0,16 // Clear Parameter r on stack
|
|
add GR_Parameter_X = 16,sp // Parameter x address
|
|
.save b0, GR_SAVE_B0
|
|
mov GR_SAVE_B0=b0 // Save b0
|
|
};;
|
|
|
|
// (3)
|
|
.body
|
|
{ .mib
|
|
stfe [GR_Parameter_r ] = f0,-16 // Clear Parameter c on stack
|
|
nop.i 0
|
|
nop.b 0
|
|
}
|
|
{ .mib
|
|
stfe [GR_Parameter_X] = Arg // Store Parameter x on stack
|
|
nop.i 0
|
|
(p0) br.call.sptk b0=__libm_pi_by_2_reduce#
|
|
}
|
|
;;
|
|
|
|
|
|
// (4)
|
|
{ .mmi
|
|
mov gp = GR_SAVE_GP // Restore gp
|
|
(p0) mov N_fix_gr = r8
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mmi
|
|
(p0) ldfe Arg =[GR_Parameter_X],16
|
|
(p0) ldfs TWO_TO_NEG2 = [table_ptr2],4
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
|
|
{ .mmb
|
|
(p0) ldfe r =[GR_Parameter_r ],16
|
|
(p0) ldfs NEGTWO_TO_NEG2 = [table_ptr2],4
|
|
nop.b 999 ;;
|
|
}
|
|
|
|
{ .mfi
|
|
(p0) ldfe c =[GR_Parameter_r ]
|
|
nop.f 999
|
|
nop.i 999 ;;
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// Is |r| < 2**(-2)
|
|
//
|
|
(p0) fcmp.lt.unc.s1 p6, p0 = r, TWO_TO_NEG2
|
|
mov b0 = GR_SAVE_B0 // Restore return address
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p6) fcmp.gt.unc.s1 p6, p0 = r, NEGTWO_TO_NEG2
|
|
mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs
|
|
}
|
|
;;
|
|
|
|
{ .mbb
|
|
.restore sp
|
|
add sp = 64,sp // Restore stack pointer
|
|
(p6) br.cond.spnt TAN_SMALL_R
|
|
(p0) br.cond.sptk TAN_NORMAL_R
|
|
}
|
|
;;
|
|
.endp __libm_callout
|
|
ASM_SIZE_DIRECTIVE(__libm_callout)
|
|
|
|
|
|
.proc __libm_TAN_SPECIAL
|
|
__libm_TAN_SPECIAL:
|
|
|
|
//
|
|
// Code for NaNs, Unsupporteds, Infs, or +/- zero ?
|
|
// Invalid raised for Infs and SNaNs.
|
|
//
|
|
|
|
{ .mfb
|
|
nop.m 999
|
|
(p0) fmpy.s0 Arg = Arg, f0
|
|
(p0) br.ret.sptk b0
|
|
}
|
|
.endp __libm_TAN_SPECIAL
|
|
ASM_SIZE_DIRECTIVE(__libm_TAN_SPECIAL)
|
|
|
|
|
|
.type __libm_pi_by_2_reduce#,@function
|
|
.global __libm_pi_by_2_reduce#
|