mirror of
https://sourceware.org/git/glibc.git
synced 2024-11-17 18:40:14 +00:00
235 lines
5.3 KiB
C
235 lines
5.3 KiB
C
/* __mpn_divmod -- Divide natural numbers, producing both remainder and
|
|
quotient.
|
|
|
|
Copyright (C) 1993, 1994 Free Software Foundation, Inc.
|
|
|
|
This file is part of the GNU MP Library.
|
|
|
|
The GNU MP Library is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU Library General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or (at your
|
|
option) any later version.
|
|
|
|
The GNU MP Library is distributed in the hope that it will be useful, but
|
|
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
|
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Library General Public
|
|
License for more details.
|
|
|
|
You should have received a copy of the GNU Library General Public License
|
|
along with the GNU MP Library; see the file COPYING.LIB. If not, write to
|
|
the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
|
|
|
|
#include "gmp.h"
|
|
#include "gmp-impl.h"
|
|
#include "longlong.h"
|
|
|
|
/* Divide num (NUM_PTR/NUM_SIZE) by den (DEN_PTR/DEN_SIZE) and write
|
|
the NUM_SIZE-DEN_SIZE least significant quotient limbs at QUOT_PTR
|
|
and the DEN_SIZE long remainder at NUM_PTR.
|
|
Return the most significant limb of the quotient, this is always 0 or 1.
|
|
|
|
Argument constraints:
|
|
1. The most significant bit of the divisor must be set.
|
|
2. QUOT_PTR must either not overlap with the input operands at all, or
|
|
QUOT_PTR + DEN_SIZE >= NUM_PTR must hold true. (This means that it's
|
|
possible to put the quotient in the high part of NUM, right after the
|
|
remainder in NUM. */
|
|
|
|
mp_limb
|
|
#if __STDC__
|
|
__mpn_divmod (mp_ptr quot_ptr,
|
|
mp_ptr num_ptr, mp_size_t num_size,
|
|
mp_srcptr den_ptr, mp_size_t den_size)
|
|
#else
|
|
__mpn_divmod (quot_ptr, num_ptr, num_size, den_ptr, den_size)
|
|
mp_ptr quot_ptr;
|
|
mp_ptr num_ptr;
|
|
mp_size_t num_size;
|
|
mp_srcptr den_ptr;
|
|
mp_size_t den_size;
|
|
#endif
|
|
{
|
|
mp_limb most_significant_q_limb = 0;
|
|
|
|
switch (den_size)
|
|
{
|
|
case 0:
|
|
/* We are asked to divide by zero, so go ahead and do it! (To make
|
|
the compiler not remove this statement, return the value.) */
|
|
return 1 / den_size;
|
|
|
|
case 1:
|
|
{
|
|
mp_size_t i;
|
|
mp_limb n1, n0;
|
|
mp_limb d;
|
|
|
|
d = den_ptr[0];
|
|
n1 = num_ptr[num_size - 1];
|
|
|
|
if (n1 >= d)
|
|
{
|
|
most_significant_q_limb = 1;
|
|
n1 -= d;
|
|
}
|
|
|
|
for (i = num_size - 2; i >= 0; i--)
|
|
{
|
|
n0 = num_ptr[i];
|
|
udiv_qrnnd (quot_ptr[i], n1, n1, n0, d);
|
|
}
|
|
|
|
num_ptr[0] = n1;
|
|
}
|
|
break;
|
|
|
|
case 2:
|
|
{
|
|
mp_size_t i;
|
|
mp_limb n1, n0, n2;
|
|
mp_limb d1, d0;
|
|
|
|
num_ptr += num_size - 2;
|
|
d1 = den_ptr[1];
|
|
d0 = den_ptr[0];
|
|
n1 = num_ptr[1];
|
|
n0 = num_ptr[0];
|
|
|
|
if (n1 >= d1 && (n1 > d1 || n0 >= d0))
|
|
{
|
|
most_significant_q_limb = 1;
|
|
sub_ddmmss (n1, n0, n1, n0, d1, d0);
|
|
}
|
|
|
|
for (i = num_size - den_size - 1; i >= 0; i--)
|
|
{
|
|
mp_limb q;
|
|
mp_limb r;
|
|
|
|
num_ptr--;
|
|
if (n1 == d1)
|
|
{
|
|
/* Q should be either 111..111 or 111..110. Need special
|
|
treatment of this rare case as normal division would
|
|
give overflow. */
|
|
q = ~(mp_limb) 0;
|
|
|
|
r = n0 + d1;
|
|
if (r < d1) /* Carry in the addition? */
|
|
{
|
|
add_ssaaaa (n1, n0, r - d0, num_ptr[0], 0, d0);
|
|
quot_ptr[i] = q;
|
|
continue;
|
|
}
|
|
n1 = d0 - (d0 != 0);
|
|
n0 = -d0;
|
|
}
|
|
else
|
|
{
|
|
udiv_qrnnd (q, r, n1, n0, d1);
|
|
umul_ppmm (n1, n0, d0, q);
|
|
}
|
|
|
|
n2 = num_ptr[0];
|
|
q_test:
|
|
if (n1 > r || (n1 == r && n0 > n2))
|
|
{
|
|
/* The estimated Q was too large. */
|
|
q--;
|
|
|
|
sub_ddmmss (n1, n0, n1, n0, 0, d0);
|
|
r += d1;
|
|
if (r >= d1) /* If not carry, test Q again. */
|
|
goto q_test;
|
|
}
|
|
|
|
quot_ptr[i] = q;
|
|
sub_ddmmss (n1, n0, r, n2, n1, n0);
|
|
}
|
|
num_ptr[1] = n1;
|
|
num_ptr[0] = n0;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
{
|
|
mp_size_t i;
|
|
mp_limb dX, d1, n0;
|
|
|
|
num_ptr += num_size;
|
|
den_ptr += den_size;
|
|
dX = den_ptr[-1];
|
|
d1 = den_ptr[-2];
|
|
n0 = num_ptr[-1];
|
|
|
|
if (n0 >= dX)
|
|
{
|
|
if (n0 > dX
|
|
|| __mpn_cmp (num_ptr - den_size, den_ptr - den_size,
|
|
den_size - 1) >= 0)
|
|
{
|
|
__mpn_sub_n (num_ptr - den_size,
|
|
num_ptr - den_size, den_ptr - den_size,
|
|
den_size);
|
|
most_significant_q_limb = 1;
|
|
}
|
|
|
|
n0 = num_ptr[-1];
|
|
}
|
|
|
|
for (i = num_size - den_size - 1; i >= 0; i--)
|
|
{
|
|
mp_limb q;
|
|
mp_limb n1;
|
|
mp_limb cy_limb;
|
|
|
|
num_ptr--;
|
|
if (n0 == dX)
|
|
/* This might over-estimate q, but it's probably not worth
|
|
the extra code here to find out. */
|
|
q = ~(mp_limb) 0;
|
|
else
|
|
{
|
|
mp_limb r;
|
|
|
|
udiv_qrnnd (q, r, n0, num_ptr[-1], dX);
|
|
umul_ppmm (n1, n0, d1, q);
|
|
|
|
while (n1 > r || (n1 == r && n0 > num_ptr[-2]))
|
|
{
|
|
q--;
|
|
r += dX;
|
|
if (r < dX) /* I.e. "carry in previous addition?" */
|
|
break;
|
|
n1 -= n0 < d1;
|
|
n0 -= d1;
|
|
}
|
|
}
|
|
|
|
/* Possible optimization: We already have (q * n0) and (1 * n1)
|
|
after the calculation of q. Taking advantage of that, we
|
|
could make this loop make two iterations less. */
|
|
|
|
cy_limb = __mpn_submul_1 (num_ptr - den_size,
|
|
den_ptr - den_size, den_size, q);
|
|
|
|
if (num_ptr[0] != cy_limb)
|
|
{
|
|
mp_limb cy;
|
|
cy = __mpn_add_n (num_ptr - den_size,
|
|
num_ptr - den_size,
|
|
den_ptr - den_size, den_size);
|
|
if (cy == 0)
|
|
abort ();
|
|
q--;
|
|
}
|
|
|
|
quot_ptr[i] = q;
|
|
n0 = num_ptr[-1];
|
|
}
|
|
}
|
|
}
|
|
|
|
return most_significant_q_limb;
|
|
}
|