mirror of
https://sourceware.org/git/glibc.git
synced 2024-11-14 09:01:07 +00:00
6f33fd046b
This patch consolidates all the non cancellable nanosleep calls to use the __nanosleep_nocancel identifier. For non cancellable targets it will be just a macro to call the default respective symbol while on Linux will be a internal one. Checked on x86_64-linux-gnu, x86_64-linux-gnu-x32, and i686-linux-gnu. * nptl/pthread_mutex_timedlock.c (__pthread_mutex_timedlock): Replace nanosleep_not_cancel with __nanosleep_nocancel. * sysdeps/generic/not-cancel.h (nanosleep_not_cancel): Remove macro. (__nanosleep_nocancel): New macro. * sysdeps/unix/sysv/linux/nanosleep.c (__nanosleep_nocancel): New function. * sysdeps/unix/sysv/linux/not-cancel.h (nanosleep_not_cancel): Remove macro. (__nanosleep_nocancel): New prototype.
641 lines
18 KiB
C
641 lines
18 KiB
C
/* Copyright (C) 2002-2017 Free Software Foundation, Inc.
|
|
This file is part of the GNU C Library.
|
|
Contributed by Ulrich Drepper <drepper@redhat.com>, 2002.
|
|
|
|
The GNU C Library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Lesser General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
|
|
The GNU C Library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
|
License along with the GNU C Library; if not, see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
#include <assert.h>
|
|
#include <errno.h>
|
|
#include <time.h>
|
|
#include <sys/param.h>
|
|
#include <sys/time.h>
|
|
#include "pthreadP.h"
|
|
#include <atomic.h>
|
|
#include <lowlevellock.h>
|
|
#include <not-cancel.h>
|
|
|
|
#include <stap-probe.h>
|
|
|
|
#ifndef lll_timedlock_elision
|
|
#define lll_timedlock_elision(a,dummy,b,c) lll_timedlock(a, b, c)
|
|
#endif
|
|
|
|
#ifndef lll_trylock_elision
|
|
#define lll_trylock_elision(a,t) lll_trylock(a)
|
|
#endif
|
|
|
|
#ifndef FORCE_ELISION
|
|
#define FORCE_ELISION(m, s)
|
|
#endif
|
|
|
|
int
|
|
__pthread_mutex_timedlock (pthread_mutex_t *mutex,
|
|
const struct timespec *abstime)
|
|
{
|
|
int oldval;
|
|
pid_t id = THREAD_GETMEM (THREAD_SELF, tid);
|
|
int result = 0;
|
|
|
|
LIBC_PROBE (mutex_timedlock_entry, 2, mutex, abstime);
|
|
|
|
/* We must not check ABSTIME here. If the thread does not block
|
|
abstime must not be checked for a valid value. */
|
|
|
|
switch (__builtin_expect (PTHREAD_MUTEX_TYPE_ELISION (mutex),
|
|
PTHREAD_MUTEX_TIMED_NP))
|
|
{
|
|
/* Recursive mutex. */
|
|
case PTHREAD_MUTEX_RECURSIVE_NP|PTHREAD_MUTEX_ELISION_NP:
|
|
case PTHREAD_MUTEX_RECURSIVE_NP:
|
|
/* Check whether we already hold the mutex. */
|
|
if (mutex->__data.__owner == id)
|
|
{
|
|
/* Just bump the counter. */
|
|
if (__glibc_unlikely (mutex->__data.__count + 1 == 0))
|
|
/* Overflow of the counter. */
|
|
return EAGAIN;
|
|
|
|
++mutex->__data.__count;
|
|
|
|
goto out;
|
|
}
|
|
|
|
/* We have to get the mutex. */
|
|
result = lll_timedlock (mutex->__data.__lock, abstime,
|
|
PTHREAD_MUTEX_PSHARED (mutex));
|
|
|
|
if (result != 0)
|
|
goto out;
|
|
|
|
/* Only locked once so far. */
|
|
mutex->__data.__count = 1;
|
|
break;
|
|
|
|
/* Error checking mutex. */
|
|
case PTHREAD_MUTEX_ERRORCHECK_NP:
|
|
/* Check whether we already hold the mutex. */
|
|
if (__glibc_unlikely (mutex->__data.__owner == id))
|
|
return EDEADLK;
|
|
|
|
/* Don't do lock elision on an error checking mutex. */
|
|
goto simple;
|
|
|
|
case PTHREAD_MUTEX_TIMED_NP:
|
|
FORCE_ELISION (mutex, goto elision);
|
|
simple:
|
|
/* Normal mutex. */
|
|
result = lll_timedlock (mutex->__data.__lock, abstime,
|
|
PTHREAD_MUTEX_PSHARED (mutex));
|
|
break;
|
|
|
|
case PTHREAD_MUTEX_TIMED_ELISION_NP:
|
|
elision: __attribute__((unused))
|
|
/* Don't record ownership */
|
|
return lll_timedlock_elision (mutex->__data.__lock,
|
|
mutex->__data.__spins,
|
|
abstime,
|
|
PTHREAD_MUTEX_PSHARED (mutex));
|
|
|
|
|
|
case PTHREAD_MUTEX_ADAPTIVE_NP:
|
|
if (! __is_smp)
|
|
goto simple;
|
|
|
|
if (lll_trylock (mutex->__data.__lock) != 0)
|
|
{
|
|
int cnt = 0;
|
|
int max_cnt = MIN (MAX_ADAPTIVE_COUNT,
|
|
mutex->__data.__spins * 2 + 10);
|
|
do
|
|
{
|
|
if (cnt++ >= max_cnt)
|
|
{
|
|
result = lll_timedlock (mutex->__data.__lock, abstime,
|
|
PTHREAD_MUTEX_PSHARED (mutex));
|
|
break;
|
|
}
|
|
atomic_spin_nop ();
|
|
}
|
|
while (lll_trylock (mutex->__data.__lock) != 0);
|
|
|
|
mutex->__data.__spins += (cnt - mutex->__data.__spins) / 8;
|
|
}
|
|
break;
|
|
|
|
case PTHREAD_MUTEX_ROBUST_RECURSIVE_NP:
|
|
case PTHREAD_MUTEX_ROBUST_ERRORCHECK_NP:
|
|
case PTHREAD_MUTEX_ROBUST_NORMAL_NP:
|
|
case PTHREAD_MUTEX_ROBUST_ADAPTIVE_NP:
|
|
THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending,
|
|
&mutex->__data.__list.__next);
|
|
/* We need to set op_pending before starting the operation. Also
|
|
see comments at ENQUEUE_MUTEX. */
|
|
__asm ("" ::: "memory");
|
|
|
|
oldval = mutex->__data.__lock;
|
|
/* This is set to FUTEX_WAITERS iff we might have shared the
|
|
FUTEX_WAITERS flag with other threads, and therefore need to keep it
|
|
set to avoid lost wake-ups. We have the same requirement in the
|
|
simple mutex algorithm. */
|
|
unsigned int assume_other_futex_waiters = 0;
|
|
while (1)
|
|
{
|
|
/* Try to acquire the lock through a CAS from 0 (not acquired) to
|
|
our TID | assume_other_futex_waiters. */
|
|
if (__glibc_likely (oldval == 0))
|
|
{
|
|
oldval
|
|
= atomic_compare_and_exchange_val_acq (&mutex->__data.__lock,
|
|
id | assume_other_futex_waiters, 0);
|
|
if (__glibc_likely (oldval == 0))
|
|
break;
|
|
}
|
|
|
|
if ((oldval & FUTEX_OWNER_DIED) != 0)
|
|
{
|
|
/* The previous owner died. Try locking the mutex. */
|
|
int newval = id | (oldval & FUTEX_WAITERS)
|
|
| assume_other_futex_waiters;
|
|
|
|
newval
|
|
= atomic_compare_and_exchange_val_acq (&mutex->__data.__lock,
|
|
newval, oldval);
|
|
if (newval != oldval)
|
|
{
|
|
oldval = newval;
|
|
continue;
|
|
}
|
|
|
|
/* We got the mutex. */
|
|
mutex->__data.__count = 1;
|
|
/* But it is inconsistent unless marked otherwise. */
|
|
mutex->__data.__owner = PTHREAD_MUTEX_INCONSISTENT;
|
|
|
|
/* We must not enqueue the mutex before we have acquired it.
|
|
Also see comments at ENQUEUE_MUTEX. */
|
|
__asm ("" ::: "memory");
|
|
ENQUEUE_MUTEX (mutex);
|
|
/* We need to clear op_pending after we enqueue the mutex. */
|
|
__asm ("" ::: "memory");
|
|
THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL);
|
|
|
|
/* Note that we deliberately exit here. If we fall
|
|
through to the end of the function __nusers would be
|
|
incremented which is not correct because the old
|
|
owner has to be discounted. */
|
|
return EOWNERDEAD;
|
|
}
|
|
|
|
/* Check whether we already hold the mutex. */
|
|
if (__glibc_unlikely ((oldval & FUTEX_TID_MASK) == id))
|
|
{
|
|
int kind = PTHREAD_MUTEX_TYPE (mutex);
|
|
if (kind == PTHREAD_MUTEX_ROBUST_ERRORCHECK_NP)
|
|
{
|
|
/* We do not need to ensure ordering wrt another memory
|
|
access. Also see comments at ENQUEUE_MUTEX. */
|
|
THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending,
|
|
NULL);
|
|
return EDEADLK;
|
|
}
|
|
|
|
if (kind == PTHREAD_MUTEX_ROBUST_RECURSIVE_NP)
|
|
{
|
|
/* We do not need to ensure ordering wrt another memory
|
|
access. */
|
|
THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending,
|
|
NULL);
|
|
|
|
/* Just bump the counter. */
|
|
if (__glibc_unlikely (mutex->__data.__count + 1 == 0))
|
|
/* Overflow of the counter. */
|
|
return EAGAIN;
|
|
|
|
++mutex->__data.__count;
|
|
|
|
LIBC_PROBE (mutex_timedlock_acquired, 1, mutex);
|
|
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* We are about to block; check whether the timeout is invalid. */
|
|
if (abstime->tv_nsec < 0 || abstime->tv_nsec >= 1000000000)
|
|
return EINVAL;
|
|
/* Work around the fact that the kernel rejects negative timeout
|
|
values despite them being valid. */
|
|
if (__glibc_unlikely (abstime->tv_sec < 0))
|
|
return ETIMEDOUT;
|
|
#if (!defined __ASSUME_FUTEX_CLOCK_REALTIME \
|
|
|| !defined lll_futex_timed_wait_bitset)
|
|
struct timeval tv;
|
|
struct timespec rt;
|
|
|
|
/* Get the current time. */
|
|
(void) __gettimeofday (&tv, NULL);
|
|
|
|
/* Compute relative timeout. */
|
|
rt.tv_sec = abstime->tv_sec - tv.tv_sec;
|
|
rt.tv_nsec = abstime->tv_nsec - tv.tv_usec * 1000;
|
|
if (rt.tv_nsec < 0)
|
|
{
|
|
rt.tv_nsec += 1000000000;
|
|
--rt.tv_sec;
|
|
}
|
|
|
|
/* Already timed out? */
|
|
if (rt.tv_sec < 0)
|
|
return ETIMEDOUT;
|
|
#endif
|
|
|
|
/* We cannot acquire the mutex nor has its owner died. Thus, try
|
|
to block using futexes. Set FUTEX_WAITERS if necessary so that
|
|
other threads are aware that there are potentially threads
|
|
blocked on the futex. Restart if oldval changed in the
|
|
meantime. */
|
|
if ((oldval & FUTEX_WAITERS) == 0)
|
|
{
|
|
if (atomic_compare_and_exchange_bool_acq (&mutex->__data.__lock,
|
|
oldval | FUTEX_WAITERS,
|
|
oldval)
|
|
!= 0)
|
|
{
|
|
oldval = mutex->__data.__lock;
|
|
continue;
|
|
}
|
|
oldval |= FUTEX_WAITERS;
|
|
}
|
|
|
|
/* It is now possible that we share the FUTEX_WAITERS flag with
|
|
another thread; therefore, update assume_other_futex_waiters so
|
|
that we do not forget about this when handling other cases
|
|
above and thus do not cause lost wake-ups. */
|
|
assume_other_futex_waiters |= FUTEX_WAITERS;
|
|
|
|
/* Block using the futex. */
|
|
#if (!defined __ASSUME_FUTEX_CLOCK_REALTIME \
|
|
|| !defined lll_futex_timed_wait_bitset)
|
|
lll_futex_timed wait (&mutex->__data.__lock, oldval,
|
|
&rt, PTHREAD_ROBUST_MUTEX_PSHARED (mutex));
|
|
#else
|
|
int err = lll_futex_timed_wait_bitset (&mutex->__data.__lock,
|
|
oldval, abstime, FUTEX_CLOCK_REALTIME,
|
|
PTHREAD_ROBUST_MUTEX_PSHARED (mutex));
|
|
/* The futex call timed out. */
|
|
if (err == -ETIMEDOUT)
|
|
return -err;
|
|
#endif
|
|
/* Reload current lock value. */
|
|
oldval = mutex->__data.__lock;
|
|
}
|
|
|
|
/* We have acquired the mutex; check if it is still consistent. */
|
|
if (__builtin_expect (mutex->__data.__owner
|
|
== PTHREAD_MUTEX_NOTRECOVERABLE, 0))
|
|
{
|
|
/* This mutex is now not recoverable. */
|
|
mutex->__data.__count = 0;
|
|
int private = PTHREAD_ROBUST_MUTEX_PSHARED (mutex);
|
|
lll_unlock (mutex->__data.__lock, private);
|
|
/* FIXME This violates the mutex destruction requirements. See
|
|
__pthread_mutex_unlock_full. */
|
|
THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL);
|
|
return ENOTRECOVERABLE;
|
|
}
|
|
|
|
mutex->__data.__count = 1;
|
|
/* We must not enqueue the mutex before we have acquired it.
|
|
Also see comments at ENQUEUE_MUTEX. */
|
|
__asm ("" ::: "memory");
|
|
ENQUEUE_MUTEX (mutex);
|
|
/* We need to clear op_pending after we enqueue the mutex. */
|
|
__asm ("" ::: "memory");
|
|
THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL);
|
|
break;
|
|
|
|
/* The PI support requires the Linux futex system call. If that's not
|
|
available, pthread_mutex_init should never have allowed the type to
|
|
be set. So it will get the default case for an invalid type. */
|
|
#ifdef __NR_futex
|
|
case PTHREAD_MUTEX_PI_RECURSIVE_NP:
|
|
case PTHREAD_MUTEX_PI_ERRORCHECK_NP:
|
|
case PTHREAD_MUTEX_PI_NORMAL_NP:
|
|
case PTHREAD_MUTEX_PI_ADAPTIVE_NP:
|
|
case PTHREAD_MUTEX_PI_ROBUST_RECURSIVE_NP:
|
|
case PTHREAD_MUTEX_PI_ROBUST_ERRORCHECK_NP:
|
|
case PTHREAD_MUTEX_PI_ROBUST_NORMAL_NP:
|
|
case PTHREAD_MUTEX_PI_ROBUST_ADAPTIVE_NP:
|
|
{
|
|
int kind = mutex->__data.__kind & PTHREAD_MUTEX_KIND_MASK_NP;
|
|
int robust = mutex->__data.__kind & PTHREAD_MUTEX_ROBUST_NORMAL_NP;
|
|
|
|
if (robust)
|
|
{
|
|
/* Note: robust PI futexes are signaled by setting bit 0. */
|
|
THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending,
|
|
(void *) (((uintptr_t) &mutex->__data.__list.__next)
|
|
| 1));
|
|
/* We need to set op_pending before starting the operation. Also
|
|
see comments at ENQUEUE_MUTEX. */
|
|
__asm ("" ::: "memory");
|
|
}
|
|
|
|
oldval = mutex->__data.__lock;
|
|
|
|
/* Check whether we already hold the mutex. */
|
|
if (__glibc_unlikely ((oldval & FUTEX_TID_MASK) == id))
|
|
{
|
|
if (kind == PTHREAD_MUTEX_ERRORCHECK_NP)
|
|
{
|
|
/* We do not need to ensure ordering wrt another memory
|
|
access. */
|
|
THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL);
|
|
return EDEADLK;
|
|
}
|
|
|
|
if (kind == PTHREAD_MUTEX_RECURSIVE_NP)
|
|
{
|
|
/* We do not need to ensure ordering wrt another memory
|
|
access. */
|
|
THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL);
|
|
|
|
/* Just bump the counter. */
|
|
if (__glibc_unlikely (mutex->__data.__count + 1 == 0))
|
|
/* Overflow of the counter. */
|
|
return EAGAIN;
|
|
|
|
++mutex->__data.__count;
|
|
|
|
LIBC_PROBE (mutex_timedlock_acquired, 1, mutex);
|
|
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
oldval = atomic_compare_and_exchange_val_acq (&mutex->__data.__lock,
|
|
id, 0);
|
|
|
|
if (oldval != 0)
|
|
{
|
|
/* The mutex is locked. The kernel will now take care of
|
|
everything. The timeout value must be a relative value.
|
|
Convert it. */
|
|
int private = (robust
|
|
? PTHREAD_ROBUST_MUTEX_PSHARED (mutex)
|
|
: PTHREAD_MUTEX_PSHARED (mutex));
|
|
INTERNAL_SYSCALL_DECL (__err);
|
|
|
|
int e = INTERNAL_SYSCALL (futex, __err, 4, &mutex->__data.__lock,
|
|
__lll_private_flag (FUTEX_LOCK_PI,
|
|
private), 1,
|
|
abstime);
|
|
if (INTERNAL_SYSCALL_ERROR_P (e, __err))
|
|
{
|
|
if (INTERNAL_SYSCALL_ERRNO (e, __err) == ETIMEDOUT)
|
|
return ETIMEDOUT;
|
|
|
|
if (INTERNAL_SYSCALL_ERRNO (e, __err) == ESRCH
|
|
|| INTERNAL_SYSCALL_ERRNO (e, __err) == EDEADLK)
|
|
{
|
|
assert (INTERNAL_SYSCALL_ERRNO (e, __err) != EDEADLK
|
|
|| (kind != PTHREAD_MUTEX_ERRORCHECK_NP
|
|
&& kind != PTHREAD_MUTEX_RECURSIVE_NP));
|
|
/* ESRCH can happen only for non-robust PI mutexes where
|
|
the owner of the lock died. */
|
|
assert (INTERNAL_SYSCALL_ERRNO (e, __err) != ESRCH
|
|
|| !robust);
|
|
|
|
/* Delay the thread until the timeout is reached.
|
|
Then return ETIMEDOUT. */
|
|
struct timespec reltime;
|
|
struct timespec now;
|
|
|
|
INTERNAL_SYSCALL (clock_gettime, __err, 2, CLOCK_REALTIME,
|
|
&now);
|
|
reltime.tv_sec = abstime->tv_sec - now.tv_sec;
|
|
reltime.tv_nsec = abstime->tv_nsec - now.tv_nsec;
|
|
if (reltime.tv_nsec < 0)
|
|
{
|
|
reltime.tv_nsec += 1000000000;
|
|
--reltime.tv_sec;
|
|
}
|
|
if (reltime.tv_sec >= 0)
|
|
while (__nanosleep_nocancel (&reltime, &reltime) != 0)
|
|
continue;
|
|
|
|
return ETIMEDOUT;
|
|
}
|
|
|
|
return INTERNAL_SYSCALL_ERRNO (e, __err);
|
|
}
|
|
|
|
oldval = mutex->__data.__lock;
|
|
|
|
assert (robust || (oldval & FUTEX_OWNER_DIED) == 0);
|
|
}
|
|
|
|
if (__glibc_unlikely (oldval & FUTEX_OWNER_DIED))
|
|
{
|
|
atomic_and (&mutex->__data.__lock, ~FUTEX_OWNER_DIED);
|
|
|
|
/* We got the mutex. */
|
|
mutex->__data.__count = 1;
|
|
/* But it is inconsistent unless marked otherwise. */
|
|
mutex->__data.__owner = PTHREAD_MUTEX_INCONSISTENT;
|
|
|
|
/* We must not enqueue the mutex before we have acquired it.
|
|
Also see comments at ENQUEUE_MUTEX. */
|
|
__asm ("" ::: "memory");
|
|
ENQUEUE_MUTEX_PI (mutex);
|
|
/* We need to clear op_pending after we enqueue the mutex. */
|
|
__asm ("" ::: "memory");
|
|
THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL);
|
|
|
|
/* Note that we deliberately exit here. If we fall
|
|
through to the end of the function __nusers would be
|
|
incremented which is not correct because the old owner
|
|
has to be discounted. */
|
|
return EOWNERDEAD;
|
|
}
|
|
|
|
if (robust
|
|
&& __builtin_expect (mutex->__data.__owner
|
|
== PTHREAD_MUTEX_NOTRECOVERABLE, 0))
|
|
{
|
|
/* This mutex is now not recoverable. */
|
|
mutex->__data.__count = 0;
|
|
|
|
INTERNAL_SYSCALL_DECL (__err);
|
|
INTERNAL_SYSCALL (futex, __err, 4, &mutex->__data.__lock,
|
|
__lll_private_flag (FUTEX_UNLOCK_PI,
|
|
PTHREAD_ROBUST_MUTEX_PSHARED (mutex)),
|
|
0, 0);
|
|
|
|
/* To the kernel, this will be visible after the kernel has
|
|
acquired the mutex in the syscall. */
|
|
THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL);
|
|
return ENOTRECOVERABLE;
|
|
}
|
|
|
|
mutex->__data.__count = 1;
|
|
if (robust)
|
|
{
|
|
/* We must not enqueue the mutex before we have acquired it.
|
|
Also see comments at ENQUEUE_MUTEX. */
|
|
__asm ("" ::: "memory");
|
|
ENQUEUE_MUTEX_PI (mutex);
|
|
/* We need to clear op_pending after we enqueue the mutex. */
|
|
__asm ("" ::: "memory");
|
|
THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL);
|
|
}
|
|
}
|
|
break;
|
|
#endif /* __NR_futex. */
|
|
|
|
case PTHREAD_MUTEX_PP_RECURSIVE_NP:
|
|
case PTHREAD_MUTEX_PP_ERRORCHECK_NP:
|
|
case PTHREAD_MUTEX_PP_NORMAL_NP:
|
|
case PTHREAD_MUTEX_PP_ADAPTIVE_NP:
|
|
{
|
|
int kind = mutex->__data.__kind & PTHREAD_MUTEX_KIND_MASK_NP;
|
|
|
|
oldval = mutex->__data.__lock;
|
|
|
|
/* Check whether we already hold the mutex. */
|
|
if (mutex->__data.__owner == id)
|
|
{
|
|
if (kind == PTHREAD_MUTEX_ERRORCHECK_NP)
|
|
return EDEADLK;
|
|
|
|
if (kind == PTHREAD_MUTEX_RECURSIVE_NP)
|
|
{
|
|
/* Just bump the counter. */
|
|
if (__glibc_unlikely (mutex->__data.__count + 1 == 0))
|
|
/* Overflow of the counter. */
|
|
return EAGAIN;
|
|
|
|
++mutex->__data.__count;
|
|
|
|
LIBC_PROBE (mutex_timedlock_acquired, 1, mutex);
|
|
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
int oldprio = -1, ceilval;
|
|
do
|
|
{
|
|
int ceiling = (oldval & PTHREAD_MUTEX_PRIO_CEILING_MASK)
|
|
>> PTHREAD_MUTEX_PRIO_CEILING_SHIFT;
|
|
|
|
if (__pthread_current_priority () > ceiling)
|
|
{
|
|
result = EINVAL;
|
|
failpp:
|
|
if (oldprio != -1)
|
|
__pthread_tpp_change_priority (oldprio, -1);
|
|
return result;
|
|
}
|
|
|
|
result = __pthread_tpp_change_priority (oldprio, ceiling);
|
|
if (result)
|
|
return result;
|
|
|
|
ceilval = ceiling << PTHREAD_MUTEX_PRIO_CEILING_SHIFT;
|
|
oldprio = ceiling;
|
|
|
|
oldval
|
|
= atomic_compare_and_exchange_val_acq (&mutex->__data.__lock,
|
|
ceilval | 1, ceilval);
|
|
|
|
if (oldval == ceilval)
|
|
break;
|
|
|
|
do
|
|
{
|
|
oldval
|
|
= atomic_compare_and_exchange_val_acq (&mutex->__data.__lock,
|
|
ceilval | 2,
|
|
ceilval | 1);
|
|
|
|
if ((oldval & PTHREAD_MUTEX_PRIO_CEILING_MASK) != ceilval)
|
|
break;
|
|
|
|
if (oldval != ceilval)
|
|
{
|
|
/* Reject invalid timeouts. */
|
|
if (abstime->tv_nsec < 0 || abstime->tv_nsec >= 1000000000)
|
|
{
|
|
result = EINVAL;
|
|
goto failpp;
|
|
}
|
|
|
|
struct timeval tv;
|
|
struct timespec rt;
|
|
|
|
/* Get the current time. */
|
|
(void) __gettimeofday (&tv, NULL);
|
|
|
|
/* Compute relative timeout. */
|
|
rt.tv_sec = abstime->tv_sec - tv.tv_sec;
|
|
rt.tv_nsec = abstime->tv_nsec - tv.tv_usec * 1000;
|
|
if (rt.tv_nsec < 0)
|
|
{
|
|
rt.tv_nsec += 1000000000;
|
|
--rt.tv_sec;
|
|
}
|
|
|
|
/* Already timed out? */
|
|
if (rt.tv_sec < 0)
|
|
{
|
|
result = ETIMEDOUT;
|
|
goto failpp;
|
|
}
|
|
|
|
lll_futex_timed_wait (&mutex->__data.__lock,
|
|
ceilval | 2, &rt,
|
|
PTHREAD_MUTEX_PSHARED (mutex));
|
|
}
|
|
}
|
|
while (atomic_compare_and_exchange_val_acq (&mutex->__data.__lock,
|
|
ceilval | 2, ceilval)
|
|
!= ceilval);
|
|
}
|
|
while ((oldval & PTHREAD_MUTEX_PRIO_CEILING_MASK) != ceilval);
|
|
|
|
assert (mutex->__data.__owner == 0);
|
|
mutex->__data.__count = 1;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
/* Correct code cannot set any other type. */
|
|
return EINVAL;
|
|
}
|
|
|
|
if (result == 0)
|
|
{
|
|
/* Record the ownership. */
|
|
mutex->__data.__owner = id;
|
|
++mutex->__data.__nusers;
|
|
|
|
LIBC_PROBE (mutex_timedlock_acquired, 1, mutex);
|
|
}
|
|
|
|
out:
|
|
return result;
|
|
}
|
|
weak_alias (__pthread_mutex_timedlock, pthread_mutex_timedlock)
|