glibc/sysdeps/ieee754/flt-32/e_log2f.c
Szabolcs Nagy bd4430c2a6 Do not wrap logf, log2f and powf
The new generic logf, log2f and powf code don't need wrappers any more,
they set errno inline so only use the wrappers on targets that need it.

	* sysdeps/ieee754/flt-32/e_log2f.c (__log2f): Define without wrapper.
	* sysdeps/ieee754/flt-32/e_logf.c (__logf): Likewise
	* sysdeps/ieee754/flt-32/e_powf.c (__powf): Likewise
	* sysdeps/ieee754/flt-32/w_log2f.c: New file.
	* sysdeps/ieee754/flt-32/w_logf.c: New file.
	* sysdeps/ieee754/flt-32/w_powf.c: New file.
	* sysdeps/i386/fpu/w_log2f.c: New file.
	* sysdeps/i386/fpu/w_logf.c: New file.
	* sysdeps/i386/fpu/w_powf.c: New file.
	* sysdeps/m68k/m680x0/fpu/w_log2f.c: New file.
	* sysdeps/m68k/m680x0/fpu/w_logf.c: New file.
	* sysdeps/m68k/m680x0/fpu/w_powf.c: New file.
2017-10-02 14:39:38 +01:00

94 lines
2.7 KiB
C

/* Single-precision log2 function.
Copyright (C) 2017 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
#include <math.h>
#include <stdint.h>
#include <shlib-compat.h>
#include "math_config.h"
/*
LOG2F_TABLE_BITS = 4
LOG2F_POLY_ORDER = 4
ULP error: 0.752 (nearest rounding.)
Relative error: 1.9 * 2^-26 (before rounding.)
*/
#define N (1 << LOG2F_TABLE_BITS)
#define T __log2f_data.tab
#define A __log2f_data.poly
#define OFF 0x3f330000
float
__log2f (float x)
{
/* double_t for better performance on targets with FLT_EVAL_METHOD==2. */
double_t z, r, r2, p, y, y0, invc, logc;
uint32_t ix, iz, top, tmp;
int k, i;
ix = asuint (x);
#if WANT_ROUNDING
/* Fix sign of zero with downward rounding when x==1. */
if (__glibc_unlikely (ix == 0x3f800000))
return 0;
#endif
if (__glibc_unlikely (ix - 0x00800000 >= 0x7f800000 - 0x00800000))
{
/* x < 0x1p-126 or inf or nan. */
if (ix * 2 == 0)
return __math_divzerof (1);
if (ix == 0x7f800000) /* log2(inf) == inf. */
return x;
if ((ix & 0x80000000) || ix * 2 >= 0xff000000)
return __math_invalidf (x);
/* x is subnormal, normalize it. */
ix = asuint (x * 0x1p23f);
ix -= 23 << 23;
}
/* x = 2^k z; where z is in range [OFF,2*OFF] and exact.
The range is split into N subintervals.
The ith subinterval contains z and c is near its center. */
tmp = ix - OFF;
i = (tmp >> (23 - LOG2F_TABLE_BITS)) % N;
top = tmp & 0xff800000;
iz = ix - top;
k = (int32_t) tmp >> 23; /* arithmetic shift */
invc = T[i].invc;
logc = T[i].logc;
z = (double_t) asfloat (iz);
/* log2(x) = log1p(z/c-1)/ln2 + log2(c) + k */
r = z * invc - 1;
y0 = logc + (double_t) k;
/* Pipelined polynomial evaluation to approximate log1p(r)/ln2. */
r2 = r * r;
y = A[1] * r + A[2];
y = A[0] * r2 + y;
p = A[3] * r + y0;
y = y * r2 + p;
return (float) y;
}
#ifndef __log2f
strong_alias (__log2f, __ieee754_log2f)
strong_alias (__log2f, __log2f_finite)
versioned_symbol (libm, __log2f, log2f, GLIBC_2_27);
#endif