mirror of
https://sourceware.org/git/glibc.git
synced 2024-11-25 22:40:05 +00:00
256 lines
6.8 KiB
C
256 lines
6.8 KiB
C
/* Configuration for double precision math routines.
|
|
Copyright (C) 2018-2024 Free Software Foundation, Inc.
|
|
This file is part of the GNU C Library.
|
|
|
|
The GNU C Library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Lesser General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
|
|
The GNU C Library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
|
License along with the GNU C Library; if not, see
|
|
<https://www.gnu.org/licenses/>. */
|
|
|
|
#ifndef _MATH_CONFIG_H
|
|
#define _MATH_CONFIG_H
|
|
|
|
#include <math.h>
|
|
#include <math_private.h>
|
|
#include <nan-high-order-bit.h>
|
|
#include <stdint.h>
|
|
|
|
#ifndef WANT_ROUNDING
|
|
/* Correct special case results in non-nearest rounding modes. */
|
|
# define WANT_ROUNDING 1
|
|
#endif
|
|
#ifndef WANT_ERRNO
|
|
/* Set errno according to ISO C with (math_errhandling & MATH_ERRNO) != 0. */
|
|
# define WANT_ERRNO 1
|
|
#endif
|
|
#ifndef WANT_ERRNO_UFLOW
|
|
/* Set errno to ERANGE if result underflows to 0 (in all rounding modes). */
|
|
# define WANT_ERRNO_UFLOW (WANT_ROUNDING && WANT_ERRNO)
|
|
#endif
|
|
|
|
#ifndef TOINT_INTRINSICS
|
|
/* When set, the roundtoint and converttoint functions are provided with
|
|
the semantics documented below. */
|
|
# define TOINT_INTRINSICS 0
|
|
#endif
|
|
|
|
static inline int
|
|
clz_uint64 (uint64_t x)
|
|
{
|
|
if (sizeof (uint64_t) == sizeof (unsigned long))
|
|
return __builtin_clzl (x);
|
|
else
|
|
return __builtin_clzll (x);
|
|
}
|
|
|
|
static inline int
|
|
ctz_uint64 (uint64_t x)
|
|
{
|
|
if (sizeof (uint64_t) == sizeof (unsigned long))
|
|
return __builtin_ctzl (x);
|
|
else
|
|
return __builtin_ctzll (x);
|
|
}
|
|
|
|
#if TOINT_INTRINSICS
|
|
/* Round x to nearest int in all rounding modes, ties have to be rounded
|
|
consistently with converttoint so the results match. If the result
|
|
would be outside of [-2^31, 2^31-1] then the semantics is unspecified. */
|
|
static inline double_t
|
|
roundtoint (double_t x);
|
|
|
|
/* Convert x to nearest int in all rounding modes, ties have to be rounded
|
|
consistently with roundtoint. If the result is not representible in an
|
|
int32_t then the semantics is unspecified. */
|
|
static inline int32_t
|
|
converttoint (double_t x);
|
|
#endif
|
|
|
|
static inline uint64_t
|
|
asuint64 (double f)
|
|
{
|
|
union
|
|
{
|
|
double f;
|
|
uint64_t i;
|
|
} u = {f};
|
|
return u.i;
|
|
}
|
|
|
|
static inline double
|
|
asdouble (uint64_t i)
|
|
{
|
|
union
|
|
{
|
|
uint64_t i;
|
|
double f;
|
|
} u = {i};
|
|
return u.f;
|
|
}
|
|
|
|
static inline int
|
|
issignaling_inline (double x)
|
|
{
|
|
uint64_t ix = asuint64 (x);
|
|
if (HIGH_ORDER_BIT_IS_SET_FOR_SNAN)
|
|
return (ix & 0x7ff8000000000000) == 0x7ff8000000000000;
|
|
return 2 * (ix ^ 0x0008000000000000) > 2 * 0x7ff8000000000000ULL;
|
|
}
|
|
|
|
#define BIT_WIDTH 64
|
|
#define MANTISSA_WIDTH 52
|
|
#define EXPONENT_WIDTH 11
|
|
#define MANTISSA_MASK UINT64_C(0x000fffffffffffff)
|
|
#define EXPONENT_MASK UINT64_C(0x7ff0000000000000)
|
|
#define EXP_MANT_MASK UINT64_C(0x7fffffffffffffff)
|
|
#define QUIET_NAN_MASK UINT64_C(0x0008000000000000)
|
|
#define SIGN_MASK UINT64_C(0x8000000000000000)
|
|
|
|
static inline bool
|
|
is_nan (uint64_t x)
|
|
{
|
|
return (x & EXP_MANT_MASK) > EXPONENT_MASK;
|
|
}
|
|
|
|
static inline uint64_t
|
|
get_mantissa (uint64_t x)
|
|
{
|
|
return x & MANTISSA_MASK;
|
|
}
|
|
|
|
/* Convert integer number X, unbiased exponent EP, and sign S to double:
|
|
|
|
result = X * 2^(EP+1 - exponent_bias)
|
|
|
|
NB: zero is not supported. */
|
|
static inline double
|
|
make_double (uint64_t x, int64_t ep, uint64_t s)
|
|
{
|
|
int lz = clz_uint64 (x) - EXPONENT_WIDTH;
|
|
x <<= lz;
|
|
ep -= lz;
|
|
|
|
if (__glibc_unlikely (ep < 0 || x == 0))
|
|
{
|
|
x >>= -ep;
|
|
ep = 0;
|
|
}
|
|
|
|
return asdouble (s + x + (ep << MANTISSA_WIDTH));
|
|
}
|
|
|
|
/* Error handling tail calls for special cases, with a sign argument.
|
|
The sign of the return value is set if the argument is non-zero. */
|
|
|
|
/* The result overflows. */
|
|
attribute_hidden double __math_oflow (uint32_t);
|
|
/* The result underflows to 0 in nearest rounding mode. */
|
|
attribute_hidden double __math_uflow (uint32_t);
|
|
/* The result underflows to 0 in some directed rounding mode only. */
|
|
attribute_hidden double __math_may_uflow (uint32_t);
|
|
/* Division by zero. */
|
|
attribute_hidden double __math_divzero (uint32_t);
|
|
|
|
/* Error handling using input checking. */
|
|
|
|
/* Invalid input unless it is a quiet NaN. */
|
|
attribute_hidden double __math_invalid (double);
|
|
|
|
/* Error handling using output checking, only for errno setting. */
|
|
|
|
/* Check if the result generated a demain error. */
|
|
attribute_hidden double __math_edom (double x);
|
|
|
|
/* Check if the result overflowed to infinity. */
|
|
attribute_hidden double __math_check_oflow (double);
|
|
/* Check if the result underflowed to 0. */
|
|
attribute_hidden double __math_check_uflow (double);
|
|
|
|
/* Check if the result overflowed to infinity. */
|
|
static inline double
|
|
check_oflow (double x)
|
|
{
|
|
return WANT_ERRNO ? __math_check_oflow (x) : x;
|
|
}
|
|
|
|
/* Check if the result underflowed to 0. */
|
|
static inline double
|
|
check_uflow (double x)
|
|
{
|
|
return WANT_ERRNO ? __math_check_uflow (x) : x;
|
|
}
|
|
|
|
#define EXP_TABLE_BITS 7
|
|
#define EXP_POLY_ORDER 5
|
|
#define EXP2_POLY_ORDER 5
|
|
extern const struct exp_data
|
|
{
|
|
double invln2N;
|
|
double shift;
|
|
double negln2hiN;
|
|
double negln2loN;
|
|
double poly[4]; /* Last four coefficients. */
|
|
double exp2_shift;
|
|
double exp2_poly[EXP2_POLY_ORDER];
|
|
double invlog10_2N;
|
|
double neglog10_2hiN;
|
|
double neglog10_2loN;
|
|
double exp10_poly[5];
|
|
uint64_t tab[2*(1 << EXP_TABLE_BITS)];
|
|
} __exp_data attribute_hidden;
|
|
|
|
#define LOG_TABLE_BITS 7
|
|
#define LOG_POLY_ORDER 6
|
|
#define LOG_POLY1_ORDER 12
|
|
extern const struct log_data
|
|
{
|
|
double ln2hi;
|
|
double ln2lo;
|
|
double poly[LOG_POLY_ORDER - 1]; /* First coefficient is 1. */
|
|
double poly1[LOG_POLY1_ORDER - 1];
|
|
/* See e_log_data.c for details. */
|
|
struct {double invc, logc;} tab[1 << LOG_TABLE_BITS];
|
|
#ifndef __FP_FAST_FMA
|
|
struct {double chi, clo;} tab2[1 << LOG_TABLE_BITS];
|
|
#endif
|
|
} __log_data attribute_hidden;
|
|
|
|
#define LOG2_TABLE_BITS 6
|
|
#define LOG2_POLY_ORDER 7
|
|
#define LOG2_POLY1_ORDER 11
|
|
extern const struct log2_data
|
|
{
|
|
double invln2hi;
|
|
double invln2lo;
|
|
double poly[LOG2_POLY_ORDER - 1];
|
|
double poly1[LOG2_POLY1_ORDER - 1];
|
|
/* See e_log2_data.c for details. */
|
|
struct {double invc, logc;} tab[1 << LOG2_TABLE_BITS];
|
|
#ifndef __FP_FAST_FMA
|
|
struct {double chi, clo;} tab2[1 << LOG2_TABLE_BITS];
|
|
#endif
|
|
} __log2_data attribute_hidden;
|
|
|
|
#define POW_LOG_TABLE_BITS 7
|
|
#define POW_LOG_POLY_ORDER 8
|
|
extern const struct pow_log_data
|
|
{
|
|
double ln2hi;
|
|
double ln2lo;
|
|
double poly[POW_LOG_POLY_ORDER - 1]; /* First coefficient is 1. */
|
|
/* Note: the pad field is unused, but allows slightly faster indexing. */
|
|
/* See e_pow_log_data.c for details. */
|
|
struct {double invc, pad, logc, logctail;} tab[1 << POW_LOG_TABLE_BITS];
|
|
} __pow_log_data attribute_hidden;
|
|
|
|
#endif
|