mirror of
https://sourceware.org/git/glibc.git
synced 2024-11-22 13:00:06 +00:00
2b778ceb40
I used these shell commands: ../glibc/scripts/update-copyrights $PWD/../gnulib/build-aux/update-copyright (cd ../glibc && git commit -am"[this commit message]") and then ignored the output, which consisted lines saying "FOO: warning: copyright statement not found" for each of 6694 files FOO. I then removed trailing white space from benchtests/bench-pthread-locks.c and iconvdata/tst-iconv-big5-hkscs-to-2ucs4.c, to work around this diagnostic from Savannah: remote: *** pre-commit check failed ... remote: *** error: lines with trailing whitespace found remote: error: hook declined to update refs/heads/master
883 lines
32 KiB
C
883 lines
32 KiB
C
/* Software floating-point emulation.
|
|
Basic four-word fraction declaration and manipulation.
|
|
Copyright (C) 1997-2021 Free Software Foundation, Inc.
|
|
This file is part of the GNU C Library.
|
|
Contributed by Richard Henderson (rth@cygnus.com),
|
|
Jakub Jelinek (jj@ultra.linux.cz),
|
|
David S. Miller (davem@redhat.com) and
|
|
Peter Maydell (pmaydell@chiark.greenend.org.uk).
|
|
|
|
The GNU C Library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Lesser General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
|
|
In addition to the permissions in the GNU Lesser General Public
|
|
License, the Free Software Foundation gives you unlimited
|
|
permission to link the compiled version of this file into
|
|
combinations with other programs, and to distribute those
|
|
combinations without any restriction coming from the use of this
|
|
file. (The Lesser General Public License restrictions do apply in
|
|
other respects; for example, they cover modification of the file,
|
|
and distribution when not linked into a combine executable.)
|
|
|
|
The GNU C Library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
|
License along with the GNU C Library; if not, see
|
|
<https://www.gnu.org/licenses/>. */
|
|
|
|
#ifndef SOFT_FP_OP_4_H
|
|
#define SOFT_FP_OP_4_H 1
|
|
|
|
#define _FP_FRAC_DECL_4(X) _FP_W_TYPE X##_f[4]
|
|
#define _FP_FRAC_COPY_4(D, S) \
|
|
(D##_f[0] = S##_f[0], D##_f[1] = S##_f[1], \
|
|
D##_f[2] = S##_f[2], D##_f[3] = S##_f[3])
|
|
#define _FP_FRAC_SET_4(X, I) __FP_FRAC_SET_4 (X, I)
|
|
#define _FP_FRAC_HIGH_4(X) (X##_f[3])
|
|
#define _FP_FRAC_LOW_4(X) (X##_f[0])
|
|
#define _FP_FRAC_WORD_4(X, w) (X##_f[w])
|
|
|
|
#define _FP_FRAC_SLL_4(X, N) \
|
|
do \
|
|
{ \
|
|
_FP_I_TYPE _FP_FRAC_SLL_4_up, _FP_FRAC_SLL_4_down; \
|
|
_FP_I_TYPE _FP_FRAC_SLL_4_skip, _FP_FRAC_SLL_4_i; \
|
|
_FP_FRAC_SLL_4_skip = (N) / _FP_W_TYPE_SIZE; \
|
|
_FP_FRAC_SLL_4_up = (N) % _FP_W_TYPE_SIZE; \
|
|
_FP_FRAC_SLL_4_down = _FP_W_TYPE_SIZE - _FP_FRAC_SLL_4_up; \
|
|
if (!_FP_FRAC_SLL_4_up) \
|
|
for (_FP_FRAC_SLL_4_i = 3; \
|
|
_FP_FRAC_SLL_4_i >= _FP_FRAC_SLL_4_skip; \
|
|
--_FP_FRAC_SLL_4_i) \
|
|
X##_f[_FP_FRAC_SLL_4_i] \
|
|
= X##_f[_FP_FRAC_SLL_4_i-_FP_FRAC_SLL_4_skip]; \
|
|
else \
|
|
{ \
|
|
for (_FP_FRAC_SLL_4_i = 3; \
|
|
_FP_FRAC_SLL_4_i > _FP_FRAC_SLL_4_skip; \
|
|
--_FP_FRAC_SLL_4_i) \
|
|
X##_f[_FP_FRAC_SLL_4_i] \
|
|
= ((X##_f[_FP_FRAC_SLL_4_i-_FP_FRAC_SLL_4_skip] \
|
|
<< _FP_FRAC_SLL_4_up) \
|
|
| (X##_f[_FP_FRAC_SLL_4_i-_FP_FRAC_SLL_4_skip-1] \
|
|
>> _FP_FRAC_SLL_4_down)); \
|
|
X##_f[_FP_FRAC_SLL_4_i--] = X##_f[0] << _FP_FRAC_SLL_4_up; \
|
|
} \
|
|
for (; _FP_FRAC_SLL_4_i >= 0; --_FP_FRAC_SLL_4_i) \
|
|
X##_f[_FP_FRAC_SLL_4_i] = 0; \
|
|
} \
|
|
while (0)
|
|
|
|
/* This one was broken too. */
|
|
#define _FP_FRAC_SRL_4(X, N) \
|
|
do \
|
|
{ \
|
|
_FP_I_TYPE _FP_FRAC_SRL_4_up, _FP_FRAC_SRL_4_down; \
|
|
_FP_I_TYPE _FP_FRAC_SRL_4_skip, _FP_FRAC_SRL_4_i; \
|
|
_FP_FRAC_SRL_4_skip = (N) / _FP_W_TYPE_SIZE; \
|
|
_FP_FRAC_SRL_4_down = (N) % _FP_W_TYPE_SIZE; \
|
|
_FP_FRAC_SRL_4_up = _FP_W_TYPE_SIZE - _FP_FRAC_SRL_4_down; \
|
|
if (!_FP_FRAC_SRL_4_down) \
|
|
for (_FP_FRAC_SRL_4_i = 0; \
|
|
_FP_FRAC_SRL_4_i <= 3-_FP_FRAC_SRL_4_skip; \
|
|
++_FP_FRAC_SRL_4_i) \
|
|
X##_f[_FP_FRAC_SRL_4_i] \
|
|
= X##_f[_FP_FRAC_SRL_4_i+_FP_FRAC_SRL_4_skip]; \
|
|
else \
|
|
{ \
|
|
for (_FP_FRAC_SRL_4_i = 0; \
|
|
_FP_FRAC_SRL_4_i < 3-_FP_FRAC_SRL_4_skip; \
|
|
++_FP_FRAC_SRL_4_i) \
|
|
X##_f[_FP_FRAC_SRL_4_i] \
|
|
= ((X##_f[_FP_FRAC_SRL_4_i+_FP_FRAC_SRL_4_skip] \
|
|
>> _FP_FRAC_SRL_4_down) \
|
|
| (X##_f[_FP_FRAC_SRL_4_i+_FP_FRAC_SRL_4_skip+1] \
|
|
<< _FP_FRAC_SRL_4_up)); \
|
|
X##_f[_FP_FRAC_SRL_4_i++] = X##_f[3] >> _FP_FRAC_SRL_4_down; \
|
|
} \
|
|
for (; _FP_FRAC_SRL_4_i < 4; ++_FP_FRAC_SRL_4_i) \
|
|
X##_f[_FP_FRAC_SRL_4_i] = 0; \
|
|
} \
|
|
while (0)
|
|
|
|
|
|
/* Right shift with sticky-lsb.
|
|
What this actually means is that we do a standard right-shift,
|
|
but that if any of the bits that fall off the right hand side
|
|
were one then we always set the LSbit. */
|
|
#define _FP_FRAC_SRST_4(X, S, N, size) \
|
|
do \
|
|
{ \
|
|
_FP_I_TYPE _FP_FRAC_SRST_4_up, _FP_FRAC_SRST_4_down; \
|
|
_FP_I_TYPE _FP_FRAC_SRST_4_skip, _FP_FRAC_SRST_4_i; \
|
|
_FP_W_TYPE _FP_FRAC_SRST_4_s; \
|
|
_FP_FRAC_SRST_4_skip = (N) / _FP_W_TYPE_SIZE; \
|
|
_FP_FRAC_SRST_4_down = (N) % _FP_W_TYPE_SIZE; \
|
|
_FP_FRAC_SRST_4_up = _FP_W_TYPE_SIZE - _FP_FRAC_SRST_4_down; \
|
|
for (_FP_FRAC_SRST_4_s = _FP_FRAC_SRST_4_i = 0; \
|
|
_FP_FRAC_SRST_4_i < _FP_FRAC_SRST_4_skip; \
|
|
++_FP_FRAC_SRST_4_i) \
|
|
_FP_FRAC_SRST_4_s |= X##_f[_FP_FRAC_SRST_4_i]; \
|
|
if (!_FP_FRAC_SRST_4_down) \
|
|
for (_FP_FRAC_SRST_4_i = 0; \
|
|
_FP_FRAC_SRST_4_i <= 3-_FP_FRAC_SRST_4_skip; \
|
|
++_FP_FRAC_SRST_4_i) \
|
|
X##_f[_FP_FRAC_SRST_4_i] \
|
|
= X##_f[_FP_FRAC_SRST_4_i+_FP_FRAC_SRST_4_skip]; \
|
|
else \
|
|
{ \
|
|
_FP_FRAC_SRST_4_s \
|
|
|= X##_f[_FP_FRAC_SRST_4_i] << _FP_FRAC_SRST_4_up; \
|
|
for (_FP_FRAC_SRST_4_i = 0; \
|
|
_FP_FRAC_SRST_4_i < 3-_FP_FRAC_SRST_4_skip; \
|
|
++_FP_FRAC_SRST_4_i) \
|
|
X##_f[_FP_FRAC_SRST_4_i] \
|
|
= ((X##_f[_FP_FRAC_SRST_4_i+_FP_FRAC_SRST_4_skip] \
|
|
>> _FP_FRAC_SRST_4_down) \
|
|
| (X##_f[_FP_FRAC_SRST_4_i+_FP_FRAC_SRST_4_skip+1] \
|
|
<< _FP_FRAC_SRST_4_up)); \
|
|
X##_f[_FP_FRAC_SRST_4_i++] \
|
|
= X##_f[3] >> _FP_FRAC_SRST_4_down; \
|
|
} \
|
|
for (; _FP_FRAC_SRST_4_i < 4; ++_FP_FRAC_SRST_4_i) \
|
|
X##_f[_FP_FRAC_SRST_4_i] = 0; \
|
|
S = (_FP_FRAC_SRST_4_s != 0); \
|
|
} \
|
|
while (0)
|
|
|
|
#define _FP_FRAC_SRS_4(X, N, size) \
|
|
do \
|
|
{ \
|
|
int _FP_FRAC_SRS_4_sticky; \
|
|
_FP_FRAC_SRST_4 (X, _FP_FRAC_SRS_4_sticky, (N), (size)); \
|
|
X##_f[0] |= _FP_FRAC_SRS_4_sticky; \
|
|
} \
|
|
while (0)
|
|
|
|
#define _FP_FRAC_ADD_4(R, X, Y) \
|
|
__FP_FRAC_ADD_4 (R##_f[3], R##_f[2], R##_f[1], R##_f[0], \
|
|
X##_f[3], X##_f[2], X##_f[1], X##_f[0], \
|
|
Y##_f[3], Y##_f[2], Y##_f[1], Y##_f[0])
|
|
|
|
#define _FP_FRAC_SUB_4(R, X, Y) \
|
|
__FP_FRAC_SUB_4 (R##_f[3], R##_f[2], R##_f[1], R##_f[0], \
|
|
X##_f[3], X##_f[2], X##_f[1], X##_f[0], \
|
|
Y##_f[3], Y##_f[2], Y##_f[1], Y##_f[0])
|
|
|
|
#define _FP_FRAC_DEC_4(X, Y) \
|
|
__FP_FRAC_DEC_4 (X##_f[3], X##_f[2], X##_f[1], X##_f[0], \
|
|
Y##_f[3], Y##_f[2], Y##_f[1], Y##_f[0])
|
|
|
|
#define _FP_FRAC_ADDI_4(X, I) \
|
|
__FP_FRAC_ADDI_4 (X##_f[3], X##_f[2], X##_f[1], X##_f[0], I)
|
|
|
|
#define _FP_ZEROFRAC_4 0, 0, 0, 0
|
|
#define _FP_MINFRAC_4 0, 0, 0, 1
|
|
#define _FP_MAXFRAC_4 (~(_FP_WS_TYPE) 0), (~(_FP_WS_TYPE) 0), (~(_FP_WS_TYPE) 0), (~(_FP_WS_TYPE) 0)
|
|
|
|
#define _FP_FRAC_ZEROP_4(X) ((X##_f[0] | X##_f[1] | X##_f[2] | X##_f[3]) == 0)
|
|
#define _FP_FRAC_NEGP_4(X) ((_FP_WS_TYPE) X##_f[3] < 0)
|
|
#define _FP_FRAC_OVERP_4(fs, X) (_FP_FRAC_HIGH_##fs (X) & _FP_OVERFLOW_##fs)
|
|
#define _FP_FRAC_HIGHBIT_DW_4(fs, X) \
|
|
(_FP_FRAC_HIGH_DW_##fs (X) & _FP_HIGHBIT_DW_##fs)
|
|
#define _FP_FRAC_CLEAR_OVERP_4(fs, X) (_FP_FRAC_HIGH_##fs (X) &= ~_FP_OVERFLOW_##fs)
|
|
|
|
#define _FP_FRAC_EQ_4(X, Y) \
|
|
(X##_f[0] == Y##_f[0] && X##_f[1] == Y##_f[1] \
|
|
&& X##_f[2] == Y##_f[2] && X##_f[3] == Y##_f[3])
|
|
|
|
#define _FP_FRAC_GT_4(X, Y) \
|
|
(X##_f[3] > Y##_f[3] \
|
|
|| (X##_f[3] == Y##_f[3] \
|
|
&& (X##_f[2] > Y##_f[2] \
|
|
|| (X##_f[2] == Y##_f[2] \
|
|
&& (X##_f[1] > Y##_f[1] \
|
|
|| (X##_f[1] == Y##_f[1] \
|
|
&& X##_f[0] > Y##_f[0]))))))
|
|
|
|
#define _FP_FRAC_GE_4(X, Y) \
|
|
(X##_f[3] > Y##_f[3] \
|
|
|| (X##_f[3] == Y##_f[3] \
|
|
&& (X##_f[2] > Y##_f[2] \
|
|
|| (X##_f[2] == Y##_f[2] \
|
|
&& (X##_f[1] > Y##_f[1] \
|
|
|| (X##_f[1] == Y##_f[1] \
|
|
&& X##_f[0] >= Y##_f[0]))))))
|
|
|
|
|
|
#define _FP_FRAC_CLZ_4(R, X) \
|
|
do \
|
|
{ \
|
|
if (X##_f[3]) \
|
|
__FP_CLZ ((R), X##_f[3]); \
|
|
else if (X##_f[2]) \
|
|
{ \
|
|
__FP_CLZ ((R), X##_f[2]); \
|
|
(R) += _FP_W_TYPE_SIZE; \
|
|
} \
|
|
else if (X##_f[1]) \
|
|
{ \
|
|
__FP_CLZ ((R), X##_f[1]); \
|
|
(R) += _FP_W_TYPE_SIZE*2; \
|
|
} \
|
|
else \
|
|
{ \
|
|
__FP_CLZ ((R), X##_f[0]); \
|
|
(R) += _FP_W_TYPE_SIZE*3; \
|
|
} \
|
|
} \
|
|
while (0)
|
|
|
|
|
|
#define _FP_UNPACK_RAW_4(fs, X, val) \
|
|
do \
|
|
{ \
|
|
union _FP_UNION_##fs _FP_UNPACK_RAW_4_flo; \
|
|
_FP_UNPACK_RAW_4_flo.flt = (val); \
|
|
X##_f[0] = _FP_UNPACK_RAW_4_flo.bits.frac0; \
|
|
X##_f[1] = _FP_UNPACK_RAW_4_flo.bits.frac1; \
|
|
X##_f[2] = _FP_UNPACK_RAW_4_flo.bits.frac2; \
|
|
X##_f[3] = _FP_UNPACK_RAW_4_flo.bits.frac3; \
|
|
X##_e = _FP_UNPACK_RAW_4_flo.bits.exp; \
|
|
X##_s = _FP_UNPACK_RAW_4_flo.bits.sign; \
|
|
} \
|
|
while (0)
|
|
|
|
#define _FP_UNPACK_RAW_4_P(fs, X, val) \
|
|
do \
|
|
{ \
|
|
union _FP_UNION_##fs *_FP_UNPACK_RAW_4_P_flo \
|
|
= (union _FP_UNION_##fs *) (val); \
|
|
\
|
|
X##_f[0] = _FP_UNPACK_RAW_4_P_flo->bits.frac0; \
|
|
X##_f[1] = _FP_UNPACK_RAW_4_P_flo->bits.frac1; \
|
|
X##_f[2] = _FP_UNPACK_RAW_4_P_flo->bits.frac2; \
|
|
X##_f[3] = _FP_UNPACK_RAW_4_P_flo->bits.frac3; \
|
|
X##_e = _FP_UNPACK_RAW_4_P_flo->bits.exp; \
|
|
X##_s = _FP_UNPACK_RAW_4_P_flo->bits.sign; \
|
|
} \
|
|
while (0)
|
|
|
|
#define _FP_PACK_RAW_4(fs, val, X) \
|
|
do \
|
|
{ \
|
|
union _FP_UNION_##fs _FP_PACK_RAW_4_flo; \
|
|
_FP_PACK_RAW_4_flo.bits.frac0 = X##_f[0]; \
|
|
_FP_PACK_RAW_4_flo.bits.frac1 = X##_f[1]; \
|
|
_FP_PACK_RAW_4_flo.bits.frac2 = X##_f[2]; \
|
|
_FP_PACK_RAW_4_flo.bits.frac3 = X##_f[3]; \
|
|
_FP_PACK_RAW_4_flo.bits.exp = X##_e; \
|
|
_FP_PACK_RAW_4_flo.bits.sign = X##_s; \
|
|
(val) = _FP_PACK_RAW_4_flo.flt; \
|
|
} \
|
|
while (0)
|
|
|
|
#define _FP_PACK_RAW_4_P(fs, val, X) \
|
|
do \
|
|
{ \
|
|
union _FP_UNION_##fs *_FP_PACK_RAW_4_P_flo \
|
|
= (union _FP_UNION_##fs *) (val); \
|
|
\
|
|
_FP_PACK_RAW_4_P_flo->bits.frac0 = X##_f[0]; \
|
|
_FP_PACK_RAW_4_P_flo->bits.frac1 = X##_f[1]; \
|
|
_FP_PACK_RAW_4_P_flo->bits.frac2 = X##_f[2]; \
|
|
_FP_PACK_RAW_4_P_flo->bits.frac3 = X##_f[3]; \
|
|
_FP_PACK_RAW_4_P_flo->bits.exp = X##_e; \
|
|
_FP_PACK_RAW_4_P_flo->bits.sign = X##_s; \
|
|
} \
|
|
while (0)
|
|
|
|
/* Multiplication algorithms: */
|
|
|
|
/* Given a 1W * 1W => 2W primitive, do the extended multiplication. */
|
|
|
|
#define _FP_MUL_MEAT_DW_4_wide(wfracbits, R, X, Y, doit) \
|
|
do \
|
|
{ \
|
|
_FP_FRAC_DECL_2 (_FP_MUL_MEAT_DW_4_wide_b); \
|
|
_FP_FRAC_DECL_2 (_FP_MUL_MEAT_DW_4_wide_c); \
|
|
_FP_FRAC_DECL_2 (_FP_MUL_MEAT_DW_4_wide_d); \
|
|
_FP_FRAC_DECL_2 (_FP_MUL_MEAT_DW_4_wide_e); \
|
|
_FP_FRAC_DECL_2 (_FP_MUL_MEAT_DW_4_wide_f); \
|
|
\
|
|
doit (_FP_FRAC_WORD_8 (R, 1), _FP_FRAC_WORD_8 (R, 0), \
|
|
X##_f[0], Y##_f[0]); \
|
|
doit (_FP_MUL_MEAT_DW_4_wide_b_f1, _FP_MUL_MEAT_DW_4_wide_b_f0, \
|
|
X##_f[0], Y##_f[1]); \
|
|
doit (_FP_MUL_MEAT_DW_4_wide_c_f1, _FP_MUL_MEAT_DW_4_wide_c_f0, \
|
|
X##_f[1], Y##_f[0]); \
|
|
doit (_FP_MUL_MEAT_DW_4_wide_d_f1, _FP_MUL_MEAT_DW_4_wide_d_f0, \
|
|
X##_f[1], Y##_f[1]); \
|
|
doit (_FP_MUL_MEAT_DW_4_wide_e_f1, _FP_MUL_MEAT_DW_4_wide_e_f0, \
|
|
X##_f[0], Y##_f[2]); \
|
|
doit (_FP_MUL_MEAT_DW_4_wide_f_f1, _FP_MUL_MEAT_DW_4_wide_f_f0, \
|
|
X##_f[2], Y##_f[0]); \
|
|
__FP_FRAC_ADD_3 (_FP_FRAC_WORD_8 (R, 3), _FP_FRAC_WORD_8 (R, 2), \
|
|
_FP_FRAC_WORD_8 (R, 1), 0, \
|
|
_FP_MUL_MEAT_DW_4_wide_b_f1, \
|
|
_FP_MUL_MEAT_DW_4_wide_b_f0, \
|
|
0, 0, _FP_FRAC_WORD_8 (R, 1)); \
|
|
__FP_FRAC_ADD_3 (_FP_FRAC_WORD_8 (R, 3), _FP_FRAC_WORD_8 (R, 2), \
|
|
_FP_FRAC_WORD_8 (R, 1), 0, \
|
|
_FP_MUL_MEAT_DW_4_wide_c_f1, \
|
|
_FP_MUL_MEAT_DW_4_wide_c_f0, \
|
|
_FP_FRAC_WORD_8 (R, 3), _FP_FRAC_WORD_8 (R, 2), \
|
|
_FP_FRAC_WORD_8 (R, 1)); \
|
|
__FP_FRAC_ADD_3 (_FP_FRAC_WORD_8 (R, 4), _FP_FRAC_WORD_8 (R, 3), \
|
|
_FP_FRAC_WORD_8 (R, 2), 0, \
|
|
_FP_MUL_MEAT_DW_4_wide_d_f1, \
|
|
_FP_MUL_MEAT_DW_4_wide_d_f0, \
|
|
0, _FP_FRAC_WORD_8 (R, 3), _FP_FRAC_WORD_8 (R, 2)); \
|
|
__FP_FRAC_ADD_3 (_FP_FRAC_WORD_8 (R, 4), _FP_FRAC_WORD_8 (R, 3), \
|
|
_FP_FRAC_WORD_8 (R, 2), 0, \
|
|
_FP_MUL_MEAT_DW_4_wide_e_f1, \
|
|
_FP_MUL_MEAT_DW_4_wide_e_f0, \
|
|
_FP_FRAC_WORD_8 (R, 4), _FP_FRAC_WORD_8 (R, 3), \
|
|
_FP_FRAC_WORD_8 (R, 2)); \
|
|
__FP_FRAC_ADD_3 (_FP_FRAC_WORD_8 (R, 4), _FP_FRAC_WORD_8 (R, 3), \
|
|
_FP_FRAC_WORD_8 (R, 2), 0, \
|
|
_FP_MUL_MEAT_DW_4_wide_f_f1, \
|
|
_FP_MUL_MEAT_DW_4_wide_f_f0, \
|
|
_FP_FRAC_WORD_8 (R, 4), _FP_FRAC_WORD_8 (R, 3), \
|
|
_FP_FRAC_WORD_8 (R, 2)); \
|
|
doit (_FP_MUL_MEAT_DW_4_wide_b_f1, \
|
|
_FP_MUL_MEAT_DW_4_wide_b_f0, X##_f[0], Y##_f[3]); \
|
|
doit (_FP_MUL_MEAT_DW_4_wide_c_f1, \
|
|
_FP_MUL_MEAT_DW_4_wide_c_f0, X##_f[3], Y##_f[0]); \
|
|
doit (_FP_MUL_MEAT_DW_4_wide_d_f1, _FP_MUL_MEAT_DW_4_wide_d_f0, \
|
|
X##_f[1], Y##_f[2]); \
|
|
doit (_FP_MUL_MEAT_DW_4_wide_e_f1, _FP_MUL_MEAT_DW_4_wide_e_f0, \
|
|
X##_f[2], Y##_f[1]); \
|
|
__FP_FRAC_ADD_3 (_FP_FRAC_WORD_8 (R, 5), _FP_FRAC_WORD_8 (R, 4), \
|
|
_FP_FRAC_WORD_8 (R, 3), 0, \
|
|
_FP_MUL_MEAT_DW_4_wide_b_f1, \
|
|
_FP_MUL_MEAT_DW_4_wide_b_f0, \
|
|
0, _FP_FRAC_WORD_8 (R, 4), _FP_FRAC_WORD_8 (R, 3)); \
|
|
__FP_FRAC_ADD_3 (_FP_FRAC_WORD_8 (R, 5), _FP_FRAC_WORD_8 (R, 4), \
|
|
_FP_FRAC_WORD_8 (R, 3), 0, \
|
|
_FP_MUL_MEAT_DW_4_wide_c_f1, \
|
|
_FP_MUL_MEAT_DW_4_wide_c_f0, \
|
|
_FP_FRAC_WORD_8 (R, 5), _FP_FRAC_WORD_8 (R, 4), \
|
|
_FP_FRAC_WORD_8 (R, 3)); \
|
|
__FP_FRAC_ADD_3 (_FP_FRAC_WORD_8 (R, 5), _FP_FRAC_WORD_8 (R, 4), \
|
|
_FP_FRAC_WORD_8 (R, 3), 0, \
|
|
_FP_MUL_MEAT_DW_4_wide_d_f1, \
|
|
_FP_MUL_MEAT_DW_4_wide_d_f0, \
|
|
_FP_FRAC_WORD_8 (R, 5), _FP_FRAC_WORD_8 (R, 4), \
|
|
_FP_FRAC_WORD_8 (R, 3)); \
|
|
__FP_FRAC_ADD_3 (_FP_FRAC_WORD_8 (R, 5), _FP_FRAC_WORD_8 (R, 4), \
|
|
_FP_FRAC_WORD_8 (R, 3), 0, \
|
|
_FP_MUL_MEAT_DW_4_wide_e_f1, \
|
|
_FP_MUL_MEAT_DW_4_wide_e_f0, \
|
|
_FP_FRAC_WORD_8 (R, 5), _FP_FRAC_WORD_8 (R, 4), \
|
|
_FP_FRAC_WORD_8 (R, 3)); \
|
|
doit (_FP_MUL_MEAT_DW_4_wide_b_f1, _FP_MUL_MEAT_DW_4_wide_b_f0, \
|
|
X##_f[2], Y##_f[2]); \
|
|
doit (_FP_MUL_MEAT_DW_4_wide_c_f1, _FP_MUL_MEAT_DW_4_wide_c_f0, \
|
|
X##_f[1], Y##_f[3]); \
|
|
doit (_FP_MUL_MEAT_DW_4_wide_d_f1, _FP_MUL_MEAT_DW_4_wide_d_f0, \
|
|
X##_f[3], Y##_f[1]); \
|
|
doit (_FP_MUL_MEAT_DW_4_wide_e_f1, _FP_MUL_MEAT_DW_4_wide_e_f0, \
|
|
X##_f[2], Y##_f[3]); \
|
|
doit (_FP_MUL_MEAT_DW_4_wide_f_f1, _FP_MUL_MEAT_DW_4_wide_f_f0, \
|
|
X##_f[3], Y##_f[2]); \
|
|
__FP_FRAC_ADD_3 (_FP_FRAC_WORD_8 (R, 6), _FP_FRAC_WORD_8 (R, 5), \
|
|
_FP_FRAC_WORD_8 (R, 4), 0, \
|
|
_FP_MUL_MEAT_DW_4_wide_b_f1, \
|
|
_FP_MUL_MEAT_DW_4_wide_b_f0, \
|
|
0, _FP_FRAC_WORD_8 (R, 5), _FP_FRAC_WORD_8 (R, 4)); \
|
|
__FP_FRAC_ADD_3 (_FP_FRAC_WORD_8 (R, 6), _FP_FRAC_WORD_8 (R, 5), \
|
|
_FP_FRAC_WORD_8 (R, 4), 0, \
|
|
_FP_MUL_MEAT_DW_4_wide_c_f1, \
|
|
_FP_MUL_MEAT_DW_4_wide_c_f0, \
|
|
_FP_FRAC_WORD_8 (R, 6), _FP_FRAC_WORD_8 (R, 5), \
|
|
_FP_FRAC_WORD_8 (R, 4)); \
|
|
__FP_FRAC_ADD_3 (_FP_FRAC_WORD_8 (R, 6), _FP_FRAC_WORD_8 (R, 5), \
|
|
_FP_FRAC_WORD_8 (R, 4), 0, \
|
|
_FP_MUL_MEAT_DW_4_wide_d_f1, \
|
|
_FP_MUL_MEAT_DW_4_wide_d_f0, \
|
|
_FP_FRAC_WORD_8 (R, 6), _FP_FRAC_WORD_8 (R, 5), \
|
|
_FP_FRAC_WORD_8 (R, 4)); \
|
|
__FP_FRAC_ADD_3 (_FP_FRAC_WORD_8 (R, 7), _FP_FRAC_WORD_8 (R, 6), \
|
|
_FP_FRAC_WORD_8 (R, 5), 0, \
|
|
_FP_MUL_MEAT_DW_4_wide_e_f1, \
|
|
_FP_MUL_MEAT_DW_4_wide_e_f0, \
|
|
0, _FP_FRAC_WORD_8 (R, 6), _FP_FRAC_WORD_8 (R, 5)); \
|
|
__FP_FRAC_ADD_3 (_FP_FRAC_WORD_8 (R, 7), _FP_FRAC_WORD_8 (R, 6), \
|
|
_FP_FRAC_WORD_8 (R, 5), 0, \
|
|
_FP_MUL_MEAT_DW_4_wide_f_f1, \
|
|
_FP_MUL_MEAT_DW_4_wide_f_f0, \
|
|
_FP_FRAC_WORD_8 (R, 7), _FP_FRAC_WORD_8 (R, 6), \
|
|
_FP_FRAC_WORD_8 (R, 5)); \
|
|
doit (_FP_MUL_MEAT_DW_4_wide_b_f1, _FP_MUL_MEAT_DW_4_wide_b_f0, \
|
|
X##_f[3], Y##_f[3]); \
|
|
__FP_FRAC_ADD_2 (_FP_FRAC_WORD_8 (R, 7), _FP_FRAC_WORD_8 (R, 6), \
|
|
_FP_MUL_MEAT_DW_4_wide_b_f1, \
|
|
_FP_MUL_MEAT_DW_4_wide_b_f0, \
|
|
_FP_FRAC_WORD_8 (R, 7), _FP_FRAC_WORD_8 (R, 6)); \
|
|
} \
|
|
while (0)
|
|
|
|
#define _FP_MUL_MEAT_4_wide(wfracbits, R, X, Y, doit) \
|
|
do \
|
|
{ \
|
|
_FP_FRAC_DECL_8 (_FP_MUL_MEAT_4_wide_z); \
|
|
\
|
|
_FP_MUL_MEAT_DW_4_wide ((wfracbits), _FP_MUL_MEAT_4_wide_z, \
|
|
X, Y, doit); \
|
|
\
|
|
/* Normalize since we know where the msb of the multiplicands \
|
|
were (bit B), we know that the msb of the of the product is \
|
|
at either 2B or 2B-1. */ \
|
|
_FP_FRAC_SRS_8 (_FP_MUL_MEAT_4_wide_z, (wfracbits)-1, \
|
|
2*(wfracbits)); \
|
|
__FP_FRAC_SET_4 (R, _FP_FRAC_WORD_8 (_FP_MUL_MEAT_4_wide_z, 3), \
|
|
_FP_FRAC_WORD_8 (_FP_MUL_MEAT_4_wide_z, 2), \
|
|
_FP_FRAC_WORD_8 (_FP_MUL_MEAT_4_wide_z, 1), \
|
|
_FP_FRAC_WORD_8 (_FP_MUL_MEAT_4_wide_z, 0)); \
|
|
} \
|
|
while (0)
|
|
|
|
#define _FP_MUL_MEAT_DW_4_gmp(wfracbits, R, X, Y) \
|
|
do \
|
|
{ \
|
|
mpn_mul_n (R##_f, _x_f, _y_f, 4); \
|
|
} \
|
|
while (0)
|
|
|
|
#define _FP_MUL_MEAT_4_gmp(wfracbits, R, X, Y) \
|
|
do \
|
|
{ \
|
|
_FP_FRAC_DECL_8 (_FP_MUL_MEAT_4_gmp_z); \
|
|
\
|
|
_FP_MUL_MEAT_DW_4_gmp ((wfracbits), _FP_MUL_MEAT_4_gmp_z, X, Y); \
|
|
\
|
|
/* Normalize since we know where the msb of the multiplicands \
|
|
were (bit B), we know that the msb of the of the product is \
|
|
at either 2B or 2B-1. */ \
|
|
_FP_FRAC_SRS_8 (_FP_MUL_MEAT_4_gmp_z, (wfracbits)-1, \
|
|
2*(wfracbits)); \
|
|
__FP_FRAC_SET_4 (R, _FP_FRAC_WORD_8 (_FP_MUL_MEAT_4_gmp_z, 3), \
|
|
_FP_FRAC_WORD_8 (_FP_MUL_MEAT_4_gmp_z, 2), \
|
|
_FP_FRAC_WORD_8 (_FP_MUL_MEAT_4_gmp_z, 1), \
|
|
_FP_FRAC_WORD_8 (_FP_MUL_MEAT_4_gmp_z, 0)); \
|
|
} \
|
|
while (0)
|
|
|
|
/* Helper utility for _FP_DIV_MEAT_4_udiv:
|
|
* pppp = m * nnn. */
|
|
#define umul_ppppmnnn(p3, p2, p1, p0, m, n2, n1, n0) \
|
|
do \
|
|
{ \
|
|
UWtype umul_ppppmnnn_t; \
|
|
umul_ppmm (p1, p0, m, n0); \
|
|
umul_ppmm (p2, umul_ppppmnnn_t, m, n1); \
|
|
__FP_FRAC_ADDI_2 (p2, p1, umul_ppppmnnn_t); \
|
|
umul_ppmm (p3, umul_ppppmnnn_t, m, n2); \
|
|
__FP_FRAC_ADDI_2 (p3, p2, umul_ppppmnnn_t); \
|
|
} \
|
|
while (0)
|
|
|
|
/* Division algorithms: */
|
|
|
|
#define _FP_DIV_MEAT_4_udiv(fs, R, X, Y) \
|
|
do \
|
|
{ \
|
|
int _FP_DIV_MEAT_4_udiv_i; \
|
|
_FP_FRAC_DECL_4 (_FP_DIV_MEAT_4_udiv_n); \
|
|
_FP_FRAC_DECL_4 (_FP_DIV_MEAT_4_udiv_m); \
|
|
_FP_FRAC_SET_4 (_FP_DIV_MEAT_4_udiv_n, _FP_ZEROFRAC_4); \
|
|
if (_FP_FRAC_GE_4 (X, Y)) \
|
|
{ \
|
|
_FP_DIV_MEAT_4_udiv_n_f[3] \
|
|
= X##_f[0] << (_FP_W_TYPE_SIZE - 1); \
|
|
_FP_FRAC_SRL_4 (X, 1); \
|
|
} \
|
|
else \
|
|
R##_e--; \
|
|
\
|
|
/* Normalize, i.e. make the most significant bit of the \
|
|
denominator set. */ \
|
|
_FP_FRAC_SLL_4 (Y, _FP_WFRACXBITS_##fs); \
|
|
\
|
|
for (_FP_DIV_MEAT_4_udiv_i = 3; ; _FP_DIV_MEAT_4_udiv_i--) \
|
|
{ \
|
|
if (X##_f[3] == Y##_f[3]) \
|
|
{ \
|
|
/* This is a special case, not an optimization \
|
|
(X##_f[3]/Y##_f[3] would not fit into UWtype). \
|
|
As X## is guaranteed to be < Y, \
|
|
R##_f[_FP_DIV_MEAT_4_udiv_i] can be either \
|
|
(UWtype)-1 or (UWtype)-2. */ \
|
|
R##_f[_FP_DIV_MEAT_4_udiv_i] = -1; \
|
|
if (!_FP_DIV_MEAT_4_udiv_i) \
|
|
break; \
|
|
__FP_FRAC_SUB_4 (X##_f[3], X##_f[2], X##_f[1], X##_f[0], \
|
|
Y##_f[2], Y##_f[1], Y##_f[0], 0, \
|
|
X##_f[2], X##_f[1], X##_f[0], \
|
|
_FP_DIV_MEAT_4_udiv_n_f[_FP_DIV_MEAT_4_udiv_i]); \
|
|
_FP_FRAC_SUB_4 (X, Y, X); \
|
|
if (X##_f[3] > Y##_f[3]) \
|
|
{ \
|
|
R##_f[_FP_DIV_MEAT_4_udiv_i] = -2; \
|
|
_FP_FRAC_ADD_4 (X, Y, X); \
|
|
} \
|
|
} \
|
|
else \
|
|
{ \
|
|
udiv_qrnnd (R##_f[_FP_DIV_MEAT_4_udiv_i], \
|
|
X##_f[3], X##_f[3], X##_f[2], Y##_f[3]); \
|
|
umul_ppppmnnn (_FP_DIV_MEAT_4_udiv_m_f[3], \
|
|
_FP_DIV_MEAT_4_udiv_m_f[2], \
|
|
_FP_DIV_MEAT_4_udiv_m_f[1], \
|
|
_FP_DIV_MEAT_4_udiv_m_f[0], \
|
|
R##_f[_FP_DIV_MEAT_4_udiv_i], \
|
|
Y##_f[2], Y##_f[1], Y##_f[0]); \
|
|
X##_f[2] = X##_f[1]; \
|
|
X##_f[1] = X##_f[0]; \
|
|
X##_f[0] \
|
|
= _FP_DIV_MEAT_4_udiv_n_f[_FP_DIV_MEAT_4_udiv_i]; \
|
|
if (_FP_FRAC_GT_4 (_FP_DIV_MEAT_4_udiv_m, X)) \
|
|
{ \
|
|
R##_f[_FP_DIV_MEAT_4_udiv_i]--; \
|
|
_FP_FRAC_ADD_4 (X, Y, X); \
|
|
if (_FP_FRAC_GE_4 (X, Y) \
|
|
&& _FP_FRAC_GT_4 (_FP_DIV_MEAT_4_udiv_m, X)) \
|
|
{ \
|
|
R##_f[_FP_DIV_MEAT_4_udiv_i]--; \
|
|
_FP_FRAC_ADD_4 (X, Y, X); \
|
|
} \
|
|
} \
|
|
_FP_FRAC_DEC_4 (X, _FP_DIV_MEAT_4_udiv_m); \
|
|
if (!_FP_DIV_MEAT_4_udiv_i) \
|
|
{ \
|
|
if (!_FP_FRAC_EQ_4 (X, _FP_DIV_MEAT_4_udiv_m)) \
|
|
R##_f[0] |= _FP_WORK_STICKY; \
|
|
break; \
|
|
} \
|
|
} \
|
|
} \
|
|
} \
|
|
while (0)
|
|
|
|
|
|
/* Square root algorithms:
|
|
We have just one right now, maybe Newton approximation
|
|
should be added for those machines where division is fast. */
|
|
|
|
#define _FP_SQRT_MEAT_4(R, S, T, X, q) \
|
|
do \
|
|
{ \
|
|
while (q) \
|
|
{ \
|
|
T##_f[3] = S##_f[3] + (q); \
|
|
if (T##_f[3] <= X##_f[3]) \
|
|
{ \
|
|
S##_f[3] = T##_f[3] + (q); \
|
|
X##_f[3] -= T##_f[3]; \
|
|
R##_f[3] += (q); \
|
|
} \
|
|
_FP_FRAC_SLL_4 (X, 1); \
|
|
(q) >>= 1; \
|
|
} \
|
|
(q) = (_FP_W_TYPE) 1 << (_FP_W_TYPE_SIZE - 1); \
|
|
while (q) \
|
|
{ \
|
|
T##_f[2] = S##_f[2] + (q); \
|
|
T##_f[3] = S##_f[3]; \
|
|
if (T##_f[3] < X##_f[3] \
|
|
|| (T##_f[3] == X##_f[3] && T##_f[2] <= X##_f[2])) \
|
|
{ \
|
|
S##_f[2] = T##_f[2] + (q); \
|
|
S##_f[3] += (T##_f[2] > S##_f[2]); \
|
|
__FP_FRAC_DEC_2 (X##_f[3], X##_f[2], \
|
|
T##_f[3], T##_f[2]); \
|
|
R##_f[2] += (q); \
|
|
} \
|
|
_FP_FRAC_SLL_4 (X, 1); \
|
|
(q) >>= 1; \
|
|
} \
|
|
(q) = (_FP_W_TYPE) 1 << (_FP_W_TYPE_SIZE - 1); \
|
|
while (q) \
|
|
{ \
|
|
T##_f[1] = S##_f[1] + (q); \
|
|
T##_f[2] = S##_f[2]; \
|
|
T##_f[3] = S##_f[3]; \
|
|
if (T##_f[3] < X##_f[3] \
|
|
|| (T##_f[3] == X##_f[3] \
|
|
&& (T##_f[2] < X##_f[2] \
|
|
|| (T##_f[2] == X##_f[2] \
|
|
&& T##_f[1] <= X##_f[1])))) \
|
|
{ \
|
|
S##_f[1] = T##_f[1] + (q); \
|
|
S##_f[2] += (T##_f[1] > S##_f[1]); \
|
|
S##_f[3] += (T##_f[2] > S##_f[2]); \
|
|
__FP_FRAC_DEC_3 (X##_f[3], X##_f[2], X##_f[1], \
|
|
T##_f[3], T##_f[2], T##_f[1]); \
|
|
R##_f[1] += (q); \
|
|
} \
|
|
_FP_FRAC_SLL_4 (X, 1); \
|
|
(q) >>= 1; \
|
|
} \
|
|
(q) = (_FP_W_TYPE) 1 << (_FP_W_TYPE_SIZE - 1); \
|
|
while ((q) != _FP_WORK_ROUND) \
|
|
{ \
|
|
T##_f[0] = S##_f[0] + (q); \
|
|
T##_f[1] = S##_f[1]; \
|
|
T##_f[2] = S##_f[2]; \
|
|
T##_f[3] = S##_f[3]; \
|
|
if (_FP_FRAC_GE_4 (X, T)) \
|
|
{ \
|
|
S##_f[0] = T##_f[0] + (q); \
|
|
S##_f[1] += (T##_f[0] > S##_f[0]); \
|
|
S##_f[2] += (T##_f[1] > S##_f[1]); \
|
|
S##_f[3] += (T##_f[2] > S##_f[2]); \
|
|
_FP_FRAC_DEC_4 (X, T); \
|
|
R##_f[0] += (q); \
|
|
} \
|
|
_FP_FRAC_SLL_4 (X, 1); \
|
|
(q) >>= 1; \
|
|
} \
|
|
if (!_FP_FRAC_ZEROP_4 (X)) \
|
|
{ \
|
|
if (_FP_FRAC_GT_4 (X, S)) \
|
|
R##_f[0] |= _FP_WORK_ROUND; \
|
|
R##_f[0] |= _FP_WORK_STICKY; \
|
|
} \
|
|
} \
|
|
while (0)
|
|
|
|
|
|
/* Internals. */
|
|
|
|
#define __FP_FRAC_SET_4(X, I3, I2, I1, I0) \
|
|
(X##_f[3] = I3, X##_f[2] = I2, X##_f[1] = I1, X##_f[0] = I0)
|
|
|
|
#ifndef __FP_FRAC_ADD_3
|
|
# define __FP_FRAC_ADD_3(r2, r1, r0, x2, x1, x0, y2, y1, y0) \
|
|
do \
|
|
{ \
|
|
_FP_W_TYPE __FP_FRAC_ADD_3_c1, __FP_FRAC_ADD_3_c2; \
|
|
r0 = x0 + y0; \
|
|
__FP_FRAC_ADD_3_c1 = r0 < x0; \
|
|
r1 = x1 + y1; \
|
|
__FP_FRAC_ADD_3_c2 = r1 < x1; \
|
|
r1 += __FP_FRAC_ADD_3_c1; \
|
|
__FP_FRAC_ADD_3_c2 |= r1 < __FP_FRAC_ADD_3_c1; \
|
|
r2 = x2 + y2 + __FP_FRAC_ADD_3_c2; \
|
|
} \
|
|
while (0)
|
|
#endif
|
|
|
|
#ifndef __FP_FRAC_ADD_4
|
|
# define __FP_FRAC_ADD_4(r3, r2, r1, r0, x3, x2, x1, x0, y3, y2, y1, y0) \
|
|
do \
|
|
{ \
|
|
_FP_W_TYPE __FP_FRAC_ADD_4_c1, __FP_FRAC_ADD_4_c2; \
|
|
_FP_W_TYPE __FP_FRAC_ADD_4_c3; \
|
|
r0 = x0 + y0; \
|
|
__FP_FRAC_ADD_4_c1 = r0 < x0; \
|
|
r1 = x1 + y1; \
|
|
__FP_FRAC_ADD_4_c2 = r1 < x1; \
|
|
r1 += __FP_FRAC_ADD_4_c1; \
|
|
__FP_FRAC_ADD_4_c2 |= r1 < __FP_FRAC_ADD_4_c1; \
|
|
r2 = x2 + y2; \
|
|
__FP_FRAC_ADD_4_c3 = r2 < x2; \
|
|
r2 += __FP_FRAC_ADD_4_c2; \
|
|
__FP_FRAC_ADD_4_c3 |= r2 < __FP_FRAC_ADD_4_c2; \
|
|
r3 = x3 + y3 + __FP_FRAC_ADD_4_c3; \
|
|
} \
|
|
while (0)
|
|
#endif
|
|
|
|
#ifndef __FP_FRAC_SUB_3
|
|
# define __FP_FRAC_SUB_3(r2, r1, r0, x2, x1, x0, y2, y1, y0) \
|
|
do \
|
|
{ \
|
|
_FP_W_TYPE __FP_FRAC_SUB_3_tmp[2]; \
|
|
_FP_W_TYPE __FP_FRAC_SUB_3_c1, __FP_FRAC_SUB_3_c2; \
|
|
__FP_FRAC_SUB_3_tmp[0] = x0 - y0; \
|
|
__FP_FRAC_SUB_3_c1 = __FP_FRAC_SUB_3_tmp[0] > x0; \
|
|
__FP_FRAC_SUB_3_tmp[1] = x1 - y1; \
|
|
__FP_FRAC_SUB_3_c2 = __FP_FRAC_SUB_3_tmp[1] > x1; \
|
|
__FP_FRAC_SUB_3_tmp[1] -= __FP_FRAC_SUB_3_c1; \
|
|
__FP_FRAC_SUB_3_c2 |= __FP_FRAC_SUB_3_c1 && (y1 == x1); \
|
|
r2 = x2 - y2 - __FP_FRAC_SUB_3_c2; \
|
|
r1 = __FP_FRAC_SUB_3_tmp[1]; \
|
|
r0 = __FP_FRAC_SUB_3_tmp[0]; \
|
|
} \
|
|
while (0)
|
|
#endif
|
|
|
|
#ifndef __FP_FRAC_SUB_4
|
|
# define __FP_FRAC_SUB_4(r3, r2, r1, r0, x3, x2, x1, x0, y3, y2, y1, y0) \
|
|
do \
|
|
{ \
|
|
_FP_W_TYPE __FP_FRAC_SUB_4_tmp[3]; \
|
|
_FP_W_TYPE __FP_FRAC_SUB_4_c1, __FP_FRAC_SUB_4_c2; \
|
|
_FP_W_TYPE __FP_FRAC_SUB_4_c3; \
|
|
__FP_FRAC_SUB_4_tmp[0] = x0 - y0; \
|
|
__FP_FRAC_SUB_4_c1 = __FP_FRAC_SUB_4_tmp[0] > x0; \
|
|
__FP_FRAC_SUB_4_tmp[1] = x1 - y1; \
|
|
__FP_FRAC_SUB_4_c2 = __FP_FRAC_SUB_4_tmp[1] > x1; \
|
|
__FP_FRAC_SUB_4_tmp[1] -= __FP_FRAC_SUB_4_c1; \
|
|
__FP_FRAC_SUB_4_c2 |= __FP_FRAC_SUB_4_c1 && (y1 == x1); \
|
|
__FP_FRAC_SUB_4_tmp[2] = x2 - y2; \
|
|
__FP_FRAC_SUB_4_c3 = __FP_FRAC_SUB_4_tmp[2] > x2; \
|
|
__FP_FRAC_SUB_4_tmp[2] -= __FP_FRAC_SUB_4_c2; \
|
|
__FP_FRAC_SUB_4_c3 |= __FP_FRAC_SUB_4_c2 && (y2 == x2); \
|
|
r3 = x3 - y3 - __FP_FRAC_SUB_4_c3; \
|
|
r2 = __FP_FRAC_SUB_4_tmp[2]; \
|
|
r1 = __FP_FRAC_SUB_4_tmp[1]; \
|
|
r0 = __FP_FRAC_SUB_4_tmp[0]; \
|
|
} \
|
|
while (0)
|
|
#endif
|
|
|
|
#ifndef __FP_FRAC_DEC_3
|
|
# define __FP_FRAC_DEC_3(x2, x1, x0, y2, y1, y0) \
|
|
do \
|
|
{ \
|
|
UWtype __FP_FRAC_DEC_3_t0, __FP_FRAC_DEC_3_t1; \
|
|
UWtype __FP_FRAC_DEC_3_t2; \
|
|
__FP_FRAC_DEC_3_t0 = x0; \
|
|
__FP_FRAC_DEC_3_t1 = x1; \
|
|
__FP_FRAC_DEC_3_t2 = x2; \
|
|
__FP_FRAC_SUB_3 (x2, x1, x0, __FP_FRAC_DEC_3_t2, \
|
|
__FP_FRAC_DEC_3_t1, __FP_FRAC_DEC_3_t0, \
|
|
y2, y1, y0); \
|
|
} \
|
|
while (0)
|
|
#endif
|
|
|
|
#ifndef __FP_FRAC_DEC_4
|
|
# define __FP_FRAC_DEC_4(x3, x2, x1, x0, y3, y2, y1, y0) \
|
|
do \
|
|
{ \
|
|
UWtype __FP_FRAC_DEC_4_t0, __FP_FRAC_DEC_4_t1; \
|
|
UWtype __FP_FRAC_DEC_4_t2, __FP_FRAC_DEC_4_t3; \
|
|
__FP_FRAC_DEC_4_t0 = x0; \
|
|
__FP_FRAC_DEC_4_t1 = x1; \
|
|
__FP_FRAC_DEC_4_t2 = x2; \
|
|
__FP_FRAC_DEC_4_t3 = x3; \
|
|
__FP_FRAC_SUB_4 (x3, x2, x1, x0, __FP_FRAC_DEC_4_t3, \
|
|
__FP_FRAC_DEC_4_t2, __FP_FRAC_DEC_4_t1, \
|
|
__FP_FRAC_DEC_4_t0, y3, y2, y1, y0); \
|
|
} \
|
|
while (0)
|
|
#endif
|
|
|
|
#ifndef __FP_FRAC_ADDI_4
|
|
# define __FP_FRAC_ADDI_4(x3, x2, x1, x0, i) \
|
|
do \
|
|
{ \
|
|
UWtype __FP_FRAC_ADDI_4_t; \
|
|
__FP_FRAC_ADDI_4_t = ((x0 += i) < i); \
|
|
x1 += __FP_FRAC_ADDI_4_t; \
|
|
__FP_FRAC_ADDI_4_t = (x1 < __FP_FRAC_ADDI_4_t); \
|
|
x2 += __FP_FRAC_ADDI_4_t; \
|
|
__FP_FRAC_ADDI_4_t = (x2 < __FP_FRAC_ADDI_4_t); \
|
|
x3 += __FP_FRAC_ADDI_4_t; \
|
|
} \
|
|
while (0)
|
|
#endif
|
|
|
|
/* Convert FP values between word sizes. This appears to be more
|
|
complicated than I'd have expected it to be, so these might be
|
|
wrong... These macros are in any case somewhat bogus because they
|
|
use information about what various FRAC_n variables look like
|
|
internally [eg, that 2 word vars are X_f0 and x_f1]. But so do
|
|
the ones in op-2.h and op-1.h. */
|
|
#define _FP_FRAC_COPY_1_4(D, S) (D##_f = S##_f[0])
|
|
|
|
#define _FP_FRAC_COPY_2_4(D, S) \
|
|
do \
|
|
{ \
|
|
D##_f0 = S##_f[0]; \
|
|
D##_f1 = S##_f[1]; \
|
|
} \
|
|
while (0)
|
|
|
|
/* Assembly/disassembly for converting to/from integral types.
|
|
No shifting or overflow handled here. */
|
|
/* Put the FP value X into r, which is an integer of size rsize. */
|
|
#define _FP_FRAC_ASSEMBLE_4(r, X, rsize) \
|
|
do \
|
|
{ \
|
|
if ((rsize) <= _FP_W_TYPE_SIZE) \
|
|
(r) = X##_f[0]; \
|
|
else if ((rsize) <= 2*_FP_W_TYPE_SIZE) \
|
|
{ \
|
|
(r) = X##_f[1]; \
|
|
(r) = ((rsize) <= _FP_W_TYPE_SIZE \
|
|
? 0 \
|
|
: (r) << _FP_W_TYPE_SIZE); \
|
|
(r) += X##_f[0]; \
|
|
} \
|
|
else \
|
|
{ \
|
|
/* I'm feeling lazy so we deal with int == 3words \
|
|
(implausible) and int == 4words as a single case. */ \
|
|
(r) = X##_f[3]; \
|
|
(r) = ((rsize) <= _FP_W_TYPE_SIZE \
|
|
? 0 \
|
|
: (r) << _FP_W_TYPE_SIZE); \
|
|
(r) += X##_f[2]; \
|
|
(r) = ((rsize) <= _FP_W_TYPE_SIZE \
|
|
? 0 \
|
|
: (r) << _FP_W_TYPE_SIZE); \
|
|
(r) += X##_f[1]; \
|
|
(r) = ((rsize) <= _FP_W_TYPE_SIZE \
|
|
? 0 \
|
|
: (r) << _FP_W_TYPE_SIZE); \
|
|
(r) += X##_f[0]; \
|
|
} \
|
|
} \
|
|
while (0)
|
|
|
|
/* "No disassemble Number Five!" */
|
|
/* Move an integer of size rsize into X's fractional part. We rely on
|
|
the _f[] array consisting of words of size _FP_W_TYPE_SIZE to avoid
|
|
having to mask the values we store into it. */
|
|
#define _FP_FRAC_DISASSEMBLE_4(X, r, rsize) \
|
|
do \
|
|
{ \
|
|
X##_f[0] = (r); \
|
|
X##_f[1] = ((rsize) <= _FP_W_TYPE_SIZE \
|
|
? 0 \
|
|
: (r) >> _FP_W_TYPE_SIZE); \
|
|
X##_f[2] = ((rsize) <= 2*_FP_W_TYPE_SIZE \
|
|
? 0 \
|
|
: (r) >> 2*_FP_W_TYPE_SIZE); \
|
|
X##_f[3] = ((rsize) <= 3*_FP_W_TYPE_SIZE \
|
|
? 0 \
|
|
: (r) >> 3*_FP_W_TYPE_SIZE); \
|
|
} \
|
|
while (0)
|
|
|
|
#define _FP_FRAC_COPY_4_1(D, S) \
|
|
do \
|
|
{ \
|
|
D##_f[0] = S##_f; \
|
|
D##_f[1] = D##_f[2] = D##_f[3] = 0; \
|
|
} \
|
|
while (0)
|
|
|
|
#define _FP_FRAC_COPY_4_2(D, S) \
|
|
do \
|
|
{ \
|
|
D##_f[0] = S##_f0; \
|
|
D##_f[1] = S##_f1; \
|
|
D##_f[2] = D##_f[3] = 0; \
|
|
} \
|
|
while (0)
|
|
|
|
#define _FP_FRAC_COPY_4_4(D, S) _FP_FRAC_COPY_4 (D, S)
|
|
|
|
#endif /* !SOFT_FP_OP_4_H */
|