mirror of
https://sourceware.org/git/glibc.git
synced 2024-12-02 01:40:07 +00:00
d96164c330
Various floating-point functions have code to force underflow exceptions if a tiny result was computed in a way that might not have resulted in such exceptions even though the result is inexact. This typically uses math_force_eval to ensure that the underflowing expression is evaluated, but sometimes uses volatile. This patch refactors such code to use three new macros math_check_force_underflow, math_check_force_underflow_nonneg and math_check_force_underflow_complex (which in turn use math_force_eval). In the limited number of cases not suited to a simple conversion to these macros, existing uses of volatile are changed to use math_force_eval instead. The converted code does not always execute exactly the same sequence of operations as the original code, but the overall effects should be the same. Tested for x86_64, x86, mips64 and powerpc. * sysdeps/generic/math_private.h (fabs_tg): New macro. (min_of_type): Likewise. (math_check_force_underflow): Likewise. (math_check_force_underflow_nonneg): Likewise. (math_check_force_underflow_complex): Likewise. * math/e_exp2l.c (__ieee754_exp2l): Use math_check_force_underflow_nonneg. * math/k_casinh.c (__kernel_casinh): Likewise. * math/k_casinhf.c (__kernel_casinhf): Likewise. * math/k_casinhl.c (__kernel_casinhl): Likewise. * math/s_catan.c (__catan): Use math_check_force_underflow_complex. * math/s_catanf.c (__catanf): Likewise. * math/s_catanh.c (__catanh): Likewise. * math/s_catanhf.c (__catanhf): Likewise. * math/s_catanhl.c (__catanhl): Likewise. * math/s_catanl.c (__catanl): Likewise. * math/s_ccosh.c (__ccosh): Likewise. * math/s_ccoshf.c (__ccoshf): Likewise. * math/s_ccoshl.c (__ccoshl): Likewise. * math/s_cexp.c (__cexp): Likewise. * math/s_cexpf.c (__cexpf): Likewise. * math/s_cexpl.c (__cexpl): Likewise. * math/s_clog.c (__clog): Use math_check_force_underflow_nonneg. * math/s_clog10.c (__clog10): Likewise. * math/s_clog10f.c (__clog10f): Likewise. * math/s_clog10l.c (__clog10l): Likewise. * math/s_clogf.c (__clogf): Likewise. * math/s_clogl.c (__clogl): Likewise. * math/s_csin.c (__csin): Use math_check_force_underflow_complex. * math/s_csinf.c (__csinf): Likewise. * math/s_csinh.c (__csinh): Likewise. * math/s_csinhf.c (__csinhf): Likewise. * math/s_csinhl.c (__csinhl): Likewise. * math/s_csinl.c (__csinl): Likewise. * math/s_csqrt.c (__csqrt): Use math_check_force_underflow. * math/s_csqrtf.c (__csqrtf): Likewise. * math/s_csqrtl.c (__csqrtl): Likewise. * math/s_ctan.c (__ctan): Use math_check_force_underflow_complex. * math/s_ctanf.c (__ctanf): Likewise. * math/s_ctanh.c (__ctanh): Likewise. * math/s_ctanhf.c (__ctanhf): Likewise. * math/s_ctanhl.c (__ctanhl): Likewise. * math/s_ctanl.c (__ctanl): Likewise. * stdlib/strtod_l.c (round_and_return): Use math_force_eval instead of volatile. * sysdeps/ieee754/dbl-64/e_asin.c (__ieee754_asin): Use math_check_force_underflow. * sysdeps/ieee754/dbl-64/e_atanh.c (__ieee754_atanh): Likewise. * sysdeps/ieee754/dbl-64/e_exp.c (__ieee754_exp): Do not use volatile when forcing underflow. * sysdeps/ieee754/dbl-64/e_exp2.c (__ieee754_exp2): Use math_check_force_underflow_nonneg. * sysdeps/ieee754/dbl-64/e_gamma_r.c (__ieee754_gamma_r): Likewise. * sysdeps/ieee754/dbl-64/e_j1.c (__ieee754_j1): Use math_check_force_underflow. * sysdeps/ieee754/dbl-64/e_jn.c (__ieee754_jn): Likewise. * sysdeps/ieee754/dbl-64/e_sinh.c (__ieee754_sinh): Likewise. * sysdeps/ieee754/dbl-64/s_asinh.c (__asinh): Likewise. * sysdeps/ieee754/dbl-64/s_atan.c (atan): Use math_check_force_underflow_nonneg. * sysdeps/ieee754/dbl-64/s_erf.c (__erf): Use math_check_force_underflow. * sysdeps/ieee754/dbl-64/s_expm1.c (__expm1): Likewise. * sysdeps/ieee754/dbl-64/s_fma.c (__fma): Use math_force_eval instead of volatile. * sysdeps/ieee754/dbl-64/s_log1p.c (__log1p): Use math_check_force_underflow. * sysdeps/ieee754/dbl-64/s_sin.c (__sin): Likewise. * sysdeps/ieee754/dbl-64/s_tan.c (tan): Use math_check_force_underflow_nonneg. * sysdeps/ieee754/dbl-64/s_tanh.c (__tanh): Use math_check_force_underflow. * sysdeps/ieee754/flt-32/e_asinf.c (__ieee754_asinf): Likewise. * sysdeps/ieee754/flt-32/e_atanhf.c (__ieee754_atanhf): Likewise. * sysdeps/ieee754/flt-32/e_exp2f.c (__ieee754_exp2f): Use math_check_force_underflow_nonneg. * sysdeps/ieee754/flt-32/e_gammaf_r.c (__ieee754_gammaf_r): Likewise. * sysdeps/ieee754/flt-32/e_j1f.c (__ieee754_j1f): Use math_check_force_underflow. * sysdeps/ieee754/flt-32/e_jnf.c (__ieee754_jnf): Likewise. * sysdeps/ieee754/flt-32/e_sinhf.c (__ieee754_sinhf): Likewise. * sysdeps/ieee754/flt-32/k_sinf.c (__kernel_sinf): Likewise. * sysdeps/ieee754/flt-32/k_tanf.c (__kernel_tanf): Likewise. * sysdeps/ieee754/flt-32/s_asinhf.c (__asinhf): Likewise. * sysdeps/ieee754/flt-32/s_atanf.c (__atanf): Likewise. * sysdeps/ieee754/flt-32/s_erff.c (__erff): Likewise. * sysdeps/ieee754/flt-32/s_expm1f.c (__expm1f): Likewise. * sysdeps/ieee754/flt-32/s_log1pf.c (__log1pf): Likewise. * sysdeps/ieee754/flt-32/s_tanhf.c (__tanhf): Likewise. * sysdeps/ieee754/ldbl-128/e_asinl.c (__ieee754_asinl): Likewise. * sysdeps/ieee754/ldbl-128/e_atanhl.c (__ieee754_atanhl): Likewise. * sysdeps/ieee754/ldbl-128/e_expl.c (__ieee754_expl): Use math_check_force_underflow_nonneg. * sysdeps/ieee754/ldbl-128/e_gammal_r.c (__ieee754_gammal_r): Likewise. * sysdeps/ieee754/ldbl-128/e_j1l.c (__ieee754_j1l): Use math_check_force_underflow. * sysdeps/ieee754/ldbl-128/e_jnl.c (__ieee754_jnl): Likewise. * sysdeps/ieee754/ldbl-128/e_sinhl.c (__ieee754_sinhl): Likewise. * sysdeps/ieee754/ldbl-128/k_sincosl.c (__kernel_sincosl): Likewise. * sysdeps/ieee754/ldbl-128/k_sinl.c (__kernel_sinl): Likewise. * sysdeps/ieee754/ldbl-128/k_tanl.c (__kernel_tanl): Likewise. * sysdeps/ieee754/ldbl-128/s_asinhl.c (__asinhl): Likewise. * sysdeps/ieee754/ldbl-128/s_atanl.c (__atanl): Likewise. * sysdeps/ieee754/ldbl-128/s_erfl.c (__erfl): Likewise. * sysdeps/ieee754/ldbl-128/s_expm1l.c (__expm1l): Likewise. * sysdeps/ieee754/ldbl-128/s_fmal.c (__fmal): Use math_force_eval instead of volatile. * sysdeps/ieee754/ldbl-128/s_log1pl.c (__log1pl): Use math_check_force_underflow. * sysdeps/ieee754/ldbl-128/s_tanhl.c (__tanhl): Likewise. * sysdeps/ieee754/ldbl-128ibm/e_asinl.c (__ieee754_asinl): Use math_check_force_underflow. * sysdeps/ieee754/ldbl-128ibm/e_atanhl.c (__ieee754_atanhl): Likewise. * sysdeps/ieee754/ldbl-128ibm/e_gammal_r.c (__ieee754_gammal_r): Use math_check_force_underflow_nonneg. * sysdeps/ieee754/ldbl-128ibm/e_jnl.c (__ieee754_jnl): Use math_check_force_underflow. * sysdeps/ieee754/ldbl-128ibm/e_sinhl.c (__ieee754_sinhl): Likewise. * sysdeps/ieee754/ldbl-128ibm/k_sincosl.c (__kernel_sincosl): Likewise. * sysdeps/ieee754/ldbl-128ibm/k_sinl.c (__kernel_sinl): Likewise. * sysdeps/ieee754/ldbl-128ibm/k_tanl.c (__kernel_tanl): Likewise. * sysdeps/ieee754/ldbl-128ibm/s_asinhl.c (__asinhl): Likewise. * sysdeps/ieee754/ldbl-128ibm/s_atanl.c (__atanl): Likewise. * sysdeps/ieee754/ldbl-128ibm/s_erfl.c (__erfl): Likewise. * sysdeps/ieee754/ldbl-128ibm/s_tanhl.c (__tanhl): Likewise. * sysdeps/ieee754/ldbl-96/e_asinl.c (__ieee754_asinl): Likewise. * sysdeps/ieee754/ldbl-96/e_atanhl.c (__ieee754_atanhl): Likewise. * sysdeps/ieee754/ldbl-96/e_gammal_r.c (__ieee754_gammal_r): Use math_check_force_underflow_nonneg. * sysdeps/ieee754/ldbl-96/e_j1l.c (__ieee754_j1l): Use math_check_force_underflow. * sysdeps/ieee754/ldbl-96/e_jnl.c (__ieee754_jnl): Likewise. * sysdeps/ieee754/ldbl-96/e_sinhl.c (__ieee754_sinhl): Likewise. * sysdeps/ieee754/ldbl-96/k_sinl.c (__kernel_sinl): Likewise. * sysdeps/ieee754/ldbl-96/k_tanl.c (__kernel_tanl): Use math_check_force_underflow_nonneg. * sysdeps/ieee754/ldbl-96/s_asinhl.c (__asinhl): Use math_check_force_underflow. * sysdeps/ieee754/ldbl-96/s_erfl.c (__erfl): Likewise. * sysdeps/ieee754/ldbl-96/s_fmal.c (__fmal): Use math_force_eval instead of volatile. * sysdeps/ieee754/ldbl-96/s_tanhl.c (__tanhl): Use math_check_force_underflow.
362 lines
9.6 KiB
C
362 lines
9.6 KiB
C
/*
|
|
* IBM Accurate Mathematical Library
|
|
* written by International Business Machines Corp.
|
|
* Copyright (C) 2001-2015 Free Software Foundation, Inc.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU Lesser General Public License as published by
|
|
* the Free Software Foundation; either version 2.1 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public License
|
|
* along with this program; if not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
/***************************************************************************/
|
|
/* MODULE_NAME:uexp.c */
|
|
/* */
|
|
/* FUNCTION:uexp */
|
|
/* exp1 */
|
|
/* */
|
|
/* FILES NEEDED:dla.h endian.h mpa.h mydefs.h uexp.h */
|
|
/* mpa.c mpexp.x slowexp.c */
|
|
/* */
|
|
/* An ultimate exp routine. Given an IEEE double machine number x */
|
|
/* it computes the correctly rounded (to nearest) value of e^x */
|
|
/* Assumption: Machine arithmetic operations are performed in */
|
|
/* round to nearest mode of IEEE 754 standard. */
|
|
/* */
|
|
/***************************************************************************/
|
|
|
|
#include <math.h>
|
|
#include "endian.h"
|
|
#include "uexp.h"
|
|
#include "mydefs.h"
|
|
#include "MathLib.h"
|
|
#include "uexp.tbl"
|
|
#include <math_private.h>
|
|
#include <fenv.h>
|
|
#include <float.h>
|
|
|
|
#ifndef SECTION
|
|
# define SECTION
|
|
#endif
|
|
|
|
double __slowexp (double);
|
|
|
|
/* An ultimate exp routine. Given an IEEE double machine number x it computes
|
|
the correctly rounded (to nearest) value of e^x. */
|
|
double
|
|
SECTION
|
|
__ieee754_exp (double x)
|
|
{
|
|
double bexp, t, eps, del, base, y, al, bet, res, rem, cor;
|
|
mynumber junk1, junk2, binexp = {{0, 0}};
|
|
int4 i, j, m, n, ex;
|
|
double retval;
|
|
|
|
{
|
|
SET_RESTORE_ROUND (FE_TONEAREST);
|
|
|
|
junk1.x = x;
|
|
m = junk1.i[HIGH_HALF];
|
|
n = m & hugeint;
|
|
|
|
if (n > smallint && n < bigint)
|
|
{
|
|
y = x * log2e.x + three51.x;
|
|
bexp = y - three51.x; /* multiply the result by 2**bexp */
|
|
|
|
junk1.x = y;
|
|
|
|
eps = bexp * ln_two2.x; /* x = bexp*ln(2) + t - eps */
|
|
t = x - bexp * ln_two1.x;
|
|
|
|
y = t + three33.x;
|
|
base = y - three33.x; /* t rounded to a multiple of 2**-18 */
|
|
junk2.x = y;
|
|
del = (t - base) - eps; /* x = bexp*ln(2) + base + del */
|
|
eps = del + del * del * (p3.x * del + p2.x);
|
|
|
|
binexp.i[HIGH_HALF] = (junk1.i[LOW_HALF] + 1023) << 20;
|
|
|
|
i = ((junk2.i[LOW_HALF] >> 8) & 0xfffffffe) + 356;
|
|
j = (junk2.i[LOW_HALF] & 511) << 1;
|
|
|
|
al = coar.x[i] * fine.x[j];
|
|
bet = ((coar.x[i] * fine.x[j + 1] + coar.x[i + 1] * fine.x[j])
|
|
+ coar.x[i + 1] * fine.x[j + 1]);
|
|
|
|
rem = (bet + bet * eps) + al * eps;
|
|
res = al + rem;
|
|
cor = (al - res) + rem;
|
|
if (res == (res + cor * err_0))
|
|
{
|
|
retval = res * binexp.x;
|
|
goto ret;
|
|
}
|
|
else
|
|
{
|
|
retval = __slowexp (x);
|
|
goto ret;
|
|
} /*if error is over bound */
|
|
}
|
|
|
|
if (n <= smallint)
|
|
{
|
|
retval = 1.0;
|
|
goto ret;
|
|
}
|
|
|
|
if (n >= badint)
|
|
{
|
|
if (n > infint)
|
|
{
|
|
retval = x + x;
|
|
goto ret;
|
|
} /* x is NaN */
|
|
if (n < infint)
|
|
{
|
|
if (x > 0)
|
|
goto ret_huge;
|
|
else
|
|
goto ret_tiny;
|
|
}
|
|
/* x is finite, cause either overflow or underflow */
|
|
if (junk1.i[LOW_HALF] != 0)
|
|
{
|
|
retval = x + x;
|
|
goto ret;
|
|
} /* x is NaN */
|
|
retval = (x > 0) ? inf.x : zero; /* |x| = inf; return either inf or 0 */
|
|
goto ret;
|
|
}
|
|
|
|
y = x * log2e.x + three51.x;
|
|
bexp = y - three51.x;
|
|
junk1.x = y;
|
|
eps = bexp * ln_two2.x;
|
|
t = x - bexp * ln_two1.x;
|
|
y = t + three33.x;
|
|
base = y - three33.x;
|
|
junk2.x = y;
|
|
del = (t - base) - eps;
|
|
eps = del + del * del * (p3.x * del + p2.x);
|
|
i = ((junk2.i[LOW_HALF] >> 8) & 0xfffffffe) + 356;
|
|
j = (junk2.i[LOW_HALF] & 511) << 1;
|
|
al = coar.x[i] * fine.x[j];
|
|
bet = ((coar.x[i] * fine.x[j + 1] + coar.x[i + 1] * fine.x[j])
|
|
+ coar.x[i + 1] * fine.x[j + 1]);
|
|
rem = (bet + bet * eps) + al * eps;
|
|
res = al + rem;
|
|
cor = (al - res) + rem;
|
|
if (m >> 31)
|
|
{
|
|
ex = junk1.i[LOW_HALF];
|
|
if (res < 1.0)
|
|
{
|
|
res += res;
|
|
cor += cor;
|
|
ex -= 1;
|
|
}
|
|
if (ex >= -1022)
|
|
{
|
|
binexp.i[HIGH_HALF] = (1023 + ex) << 20;
|
|
if (res == (res + cor * err_0))
|
|
{
|
|
retval = res * binexp.x;
|
|
goto ret;
|
|
}
|
|
else
|
|
{
|
|
retval = __slowexp (x);
|
|
goto check_uflow_ret;
|
|
} /*if error is over bound */
|
|
}
|
|
ex = -(1022 + ex);
|
|
binexp.i[HIGH_HALF] = (1023 - ex) << 20;
|
|
res *= binexp.x;
|
|
cor *= binexp.x;
|
|
eps = 1.0000000001 + err_0 * binexp.x;
|
|
t = 1.0 + res;
|
|
y = ((1.0 - t) + res) + cor;
|
|
res = t + y;
|
|
cor = (t - res) + y;
|
|
if (res == (res + eps * cor))
|
|
{
|
|
binexp.i[HIGH_HALF] = 0x00100000;
|
|
retval = (res - 1.0) * binexp.x;
|
|
goto check_uflow_ret;
|
|
}
|
|
else
|
|
{
|
|
retval = __slowexp (x);
|
|
goto check_uflow_ret;
|
|
} /* if error is over bound */
|
|
check_uflow_ret:
|
|
if (retval < DBL_MIN)
|
|
{
|
|
double force_underflow = tiny * tiny;
|
|
math_force_eval (force_underflow);
|
|
}
|
|
if (retval == 0)
|
|
goto ret_tiny;
|
|
goto ret;
|
|
}
|
|
else
|
|
{
|
|
binexp.i[HIGH_HALF] = (junk1.i[LOW_HALF] + 767) << 20;
|
|
if (res == (res + cor * err_0))
|
|
retval = res * binexp.x * t256.x;
|
|
else
|
|
retval = __slowexp (x);
|
|
if (isinf (retval))
|
|
goto ret_huge;
|
|
else
|
|
goto ret;
|
|
}
|
|
}
|
|
ret:
|
|
return retval;
|
|
|
|
ret_huge:
|
|
return hhuge * hhuge;
|
|
|
|
ret_tiny:
|
|
return tiny * tiny;
|
|
}
|
|
#ifndef __ieee754_exp
|
|
strong_alias (__ieee754_exp, __exp_finite)
|
|
#endif
|
|
|
|
/* Compute e^(x+xx). The routine also receives bound of error of previous
|
|
calculation. If after computing exp the error exceeds the allowed bounds,
|
|
the routine returns a non-positive number. Otherwise it returns the
|
|
computed result, which is always positive. */
|
|
double
|
|
SECTION
|
|
__exp1 (double x, double xx, double error)
|
|
{
|
|
double bexp, t, eps, del, base, y, al, bet, res, rem, cor;
|
|
mynumber junk1, junk2, binexp = {{0, 0}};
|
|
int4 i, j, m, n, ex;
|
|
|
|
junk1.x = x;
|
|
m = junk1.i[HIGH_HALF];
|
|
n = m & hugeint; /* no sign */
|
|
|
|
if (n > smallint && n < bigint)
|
|
{
|
|
y = x * log2e.x + three51.x;
|
|
bexp = y - three51.x; /* multiply the result by 2**bexp */
|
|
|
|
junk1.x = y;
|
|
|
|
eps = bexp * ln_two2.x; /* x = bexp*ln(2) + t - eps */
|
|
t = x - bexp * ln_two1.x;
|
|
|
|
y = t + three33.x;
|
|
base = y - three33.x; /* t rounded to a multiple of 2**-18 */
|
|
junk2.x = y;
|
|
del = (t - base) + (xx - eps); /* x = bexp*ln(2) + base + del */
|
|
eps = del + del * del * (p3.x * del + p2.x);
|
|
|
|
binexp.i[HIGH_HALF] = (junk1.i[LOW_HALF] + 1023) << 20;
|
|
|
|
i = ((junk2.i[LOW_HALF] >> 8) & 0xfffffffe) + 356;
|
|
j = (junk2.i[LOW_HALF] & 511) << 1;
|
|
|
|
al = coar.x[i] * fine.x[j];
|
|
bet = ((coar.x[i] * fine.x[j + 1] + coar.x[i + 1] * fine.x[j])
|
|
+ coar.x[i + 1] * fine.x[j + 1]);
|
|
|
|
rem = (bet + bet * eps) + al * eps;
|
|
res = al + rem;
|
|
cor = (al - res) + rem;
|
|
if (res == (res + cor * (1.0 + error + err_1)))
|
|
return res * binexp.x;
|
|
else
|
|
return -10.0;
|
|
}
|
|
|
|
if (n <= smallint)
|
|
return 1.0; /* if x->0 e^x=1 */
|
|
|
|
if (n >= badint)
|
|
{
|
|
if (n > infint)
|
|
return (zero / zero); /* x is NaN, return invalid */
|
|
if (n < infint)
|
|
return ((x > 0) ? (hhuge * hhuge) : (tiny * tiny));
|
|
/* x is finite, cause either overflow or underflow */
|
|
if (junk1.i[LOW_HALF] != 0)
|
|
return (zero / zero); /* x is NaN */
|
|
return ((x > 0) ? inf.x : zero); /* |x| = inf; return either inf or 0 */
|
|
}
|
|
|
|
y = x * log2e.x + three51.x;
|
|
bexp = y - three51.x;
|
|
junk1.x = y;
|
|
eps = bexp * ln_two2.x;
|
|
t = x - bexp * ln_two1.x;
|
|
y = t + three33.x;
|
|
base = y - three33.x;
|
|
junk2.x = y;
|
|
del = (t - base) + (xx - eps);
|
|
eps = del + del * del * (p3.x * del + p2.x);
|
|
i = ((junk2.i[LOW_HALF] >> 8) & 0xfffffffe) + 356;
|
|
j = (junk2.i[LOW_HALF] & 511) << 1;
|
|
al = coar.x[i] * fine.x[j];
|
|
bet = ((coar.x[i] * fine.x[j + 1] + coar.x[i + 1] * fine.x[j])
|
|
+ coar.x[i + 1] * fine.x[j + 1]);
|
|
rem = (bet + bet * eps) + al * eps;
|
|
res = al + rem;
|
|
cor = (al - res) + rem;
|
|
if (m >> 31)
|
|
{
|
|
ex = junk1.i[LOW_HALF];
|
|
if (res < 1.0)
|
|
{
|
|
res += res;
|
|
cor += cor;
|
|
ex -= 1;
|
|
}
|
|
if (ex >= -1022)
|
|
{
|
|
binexp.i[HIGH_HALF] = (1023 + ex) << 20;
|
|
if (res == (res + cor * (1.0 + error + err_1)))
|
|
return res * binexp.x;
|
|
else
|
|
return -10.0;
|
|
}
|
|
ex = -(1022 + ex);
|
|
binexp.i[HIGH_HALF] = (1023 - ex) << 20;
|
|
res *= binexp.x;
|
|
cor *= binexp.x;
|
|
eps = 1.00000000001 + (error + err_1) * binexp.x;
|
|
t = 1.0 + res;
|
|
y = ((1.0 - t) + res) + cor;
|
|
res = t + y;
|
|
cor = (t - res) + y;
|
|
if (res == (res + eps * cor))
|
|
{
|
|
binexp.i[HIGH_HALF] = 0x00100000;
|
|
return (res - 1.0) * binexp.x;
|
|
}
|
|
else
|
|
return -10.0;
|
|
}
|
|
else
|
|
{
|
|
binexp.i[HIGH_HALF] = (junk1.i[LOW_HALF] + 767) << 20;
|
|
if (res == (res + cor * (1.0 + error + err_1)))
|
|
return res * binexp.x * t256.x;
|
|
else
|
|
return -10.0;
|
|
}
|
|
}
|