mirror of
https://sourceware.org/git/glibc.git
synced 2024-12-02 01:40:07 +00:00
4ea49f4c08
without wrapper on aarch64: powf reciprocal-throughput: 4.2x faster powf latency: 2.6x faster old worst-case error: 1.11 ulp new worst-case error: 0.82 ulp aarch64 .text size: -780 bytes aarch64 .rodata size: +144 bytes powf(x,y) is implemented as exp2(y*log2(x)) with the same algorithms that are used in exp2f and log2f, except that the log2f polynomial is larger for extra precision and its output (and exp2f input) may be scaled by a power of 2 (POWF_SCALE) to simplify the argument reduction step of exp2 (possible when efficient round and convert toint operation is available). The special case handling tries to minimize the checks in the hot path. When the input of exp2_inline is checked, int arithmetics is used as that was faster on the tested aarch64 cores. * math/Makefile (type-float-routines): Add e_powf_log2_data. * sysdeps/ieee754/flt-32/e_powf.c: New implementation. * sysdeps/ieee754/flt-32/e_powf_log2_data.c: New file. * sysdeps/ieee754/flt-32/math_config.h (__powf_log2_data): Define. (issignalingf_inline): Likewise. (POWF_LOG2_TABLE_BITS): Likewise. (POWF_LOG2_POLY_ORDER): Likewise. (POWF_SCALE_BITS): Likewise. (POWF_SCALE): Likewise. * sysdeps/i386/fpu/e_powf_log2_data.c: New file. * sysdeps/ia64/fpu/e_powf_log2_data.c: New file. * sysdeps/m68k/m680x0/fpu/e_powf_log2_data.c: New file.
218 lines
6.0 KiB
C
218 lines
6.0 KiB
C
/* Single-precision pow function.
|
|
Copyright (C) 2017 Free Software Foundation, Inc.
|
|
This file is part of the GNU C Library.
|
|
|
|
The GNU C Library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Lesser General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
|
|
The GNU C Library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
|
License along with the GNU C Library; if not, see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
#include <math.h>
|
|
#include <stdint.h>
|
|
#include "math_config.h"
|
|
|
|
/*
|
|
POWF_LOG2_POLY_ORDER = 5
|
|
EXP2F_TABLE_BITS = 5
|
|
|
|
ULP error: 0.82 (~ 0.5 + relerr*2^24)
|
|
relerr: 1.27 * 2^-26 (Relative error ~= 128*Ln2*relerr_log2 + relerr_exp2)
|
|
relerr_log2: 1.83 * 2^-33 (Relative error of logx.)
|
|
relerr_exp2: 1.69 * 2^-34 (Relative error of exp2(ylogx).)
|
|
*/
|
|
|
|
#define N (1 << POWF_LOG2_TABLE_BITS)
|
|
#define T __powf_log2_data.tab
|
|
#define A __powf_log2_data.poly
|
|
#define OFF 0x3f330000
|
|
|
|
/* Subnormal input is normalized so ix has negative biased exponent.
|
|
Output is multiplied by N (POWF_SCALE) if TOINT_INTRINICS is set. */
|
|
static inline double_t
|
|
log2_inline (uint32_t ix)
|
|
{
|
|
/* double_t for better performance on targets with FLT_EVAL_METHOD==2. */
|
|
double_t z, r, r2, r4, p, q, y, y0, invc, logc;
|
|
uint32_t iz, top, tmp;
|
|
int k, i;
|
|
|
|
/* x = 2^k z; where z is in range [OFF,2*OFF] and exact.
|
|
The range is split into N subintervals.
|
|
The ith subinterval contains z and c is near its center. */
|
|
tmp = ix - OFF;
|
|
i = (tmp >> (23 - POWF_LOG2_TABLE_BITS)) % N;
|
|
top = tmp & 0xff800000;
|
|
iz = ix - top;
|
|
k = (int32_t) top >> (23 - POWF_SCALE_BITS); /* arithmetic shift */
|
|
invc = T[i].invc;
|
|
logc = T[i].logc;
|
|
z = (double_t) asfloat (iz);
|
|
|
|
/* log2(x) = log1p(z/c-1)/ln2 + log2(c) + k */
|
|
r = z * invc - 1;
|
|
y0 = logc + (double_t) k;
|
|
|
|
/* Pipelined polynomial evaluation to approximate log1p(r)/ln2. */
|
|
r2 = r * r;
|
|
y = A[0] * r + A[1];
|
|
p = A[2] * r + A[3];
|
|
r4 = r2 * r2;
|
|
q = A[4] * r + y0;
|
|
q = p * r2 + q;
|
|
y = y * r4 + q;
|
|
return y;
|
|
}
|
|
|
|
#undef N
|
|
#undef T
|
|
#define N (1 << EXP2F_TABLE_BITS)
|
|
#define T __exp2f_data.tab
|
|
#define SIGN_BIAS (1 << (EXP2F_TABLE_BITS + 11))
|
|
|
|
/* The output of log2 and thus the input of exp2 is either scaled by N
|
|
(in case of fast toint intrinsics) or not. The unscaled xd must be
|
|
in [-1021,1023], sign_bias sets the sign of the result. */
|
|
static inline double_t
|
|
exp2_inline (double_t xd, unsigned long sign_bias)
|
|
{
|
|
uint64_t ki, ski, t;
|
|
/* double_t for better performance on targets with FLT_EVAL_METHOD==2. */
|
|
double_t kd, z, r, r2, y, s;
|
|
|
|
#if TOINT_INTRINSICS
|
|
# define C __exp2f_data.poly_scaled
|
|
/* N*x = k + r with r in [-1/2, 1/2] */
|
|
kd = roundtoint (xd); /* k */
|
|
ki = converttoint (xd);
|
|
#else
|
|
# define C __exp2f_data.poly
|
|
# define SHIFT __exp2f_data.shift_scaled
|
|
/* x = k/N + r with r in [-1/(2N), 1/(2N)] */
|
|
kd = (double) (xd + SHIFT); /* Rounding to double precision is required. */
|
|
ki = asuint64 (kd);
|
|
kd -= SHIFT; /* k/N */
|
|
#endif
|
|
r = xd - kd;
|
|
|
|
/* exp2(x) = 2^(k/N) * 2^r ~= s * (C0*r^3 + C1*r^2 + C2*r + 1) */
|
|
t = T[ki % N];
|
|
ski = ki + sign_bias;
|
|
t += ski << (52 - EXP2F_TABLE_BITS);
|
|
s = asdouble (t);
|
|
z = C[0] * r + C[1];
|
|
r2 = r * r;
|
|
y = C[2] * r + 1;
|
|
y = z * r2 + y;
|
|
y = y * s;
|
|
return y;
|
|
}
|
|
|
|
/* Returns 0 if not int, 1 if odd int, 2 if even int. */
|
|
static inline int
|
|
checkint (uint32_t iy)
|
|
{
|
|
int e = iy >> 23 & 0xff;
|
|
if (e < 0x7f)
|
|
return 0;
|
|
if (e > 0x7f + 23)
|
|
return 2;
|
|
if (iy & ((1 << (0x7f + 23 - e)) - 1))
|
|
return 0;
|
|
if (iy & (1 << (0x7f + 23 - e)))
|
|
return 1;
|
|
return 2;
|
|
}
|
|
|
|
static inline int
|
|
zeroinfnan (uint32_t ix)
|
|
{
|
|
return 2 * ix - 1 >= 2u * 0x7f800000 - 1;
|
|
}
|
|
|
|
float
|
|
__ieee754_powf (float x, float y)
|
|
{
|
|
unsigned long sign_bias = 0;
|
|
uint32_t ix, iy;
|
|
|
|
ix = asuint (x);
|
|
iy = asuint (y);
|
|
if (__glibc_unlikely (ix - 0x00800000 >= 0x7f800000 - 0x00800000
|
|
|| zeroinfnan (iy)))
|
|
{
|
|
/* Either (x < 0x1p-126 or inf or nan) or (y is 0 or inf or nan). */
|
|
if (__glibc_unlikely (zeroinfnan (iy)))
|
|
{
|
|
if (2 * iy == 0)
|
|
return issignalingf_inline (x) ? x + y : 1.0f;
|
|
if (ix == 0x3f800000)
|
|
return issignalingf_inline (y) ? x + y : 1.0f;
|
|
if (2 * ix > 2u * 0x7f800000 || 2 * iy > 2u * 0x7f800000)
|
|
return x + y;
|
|
if (2 * ix == 2 * 0x3f800000)
|
|
return 1.0f;
|
|
if ((2 * ix < 2 * 0x3f800000) == !(iy & 0x80000000))
|
|
return 0.0f; /* |x|<1 && y==inf or |x|>1 && y==-inf. */
|
|
return y * y;
|
|
}
|
|
if (__glibc_unlikely (zeroinfnan (ix)))
|
|
{
|
|
float_t x2 = x * x;
|
|
if (ix & 0x80000000 && checkint (iy) == 1)
|
|
{
|
|
x2 = -x2;
|
|
sign_bias = 1;
|
|
}
|
|
#if WANT_ERRNO
|
|
if (2 * ix == 0 && iy & 0x80000000)
|
|
return __math_divzerof (sign_bias);
|
|
#endif
|
|
return iy & 0x80000000 ? 1 / x2 : x2;
|
|
}
|
|
/* x and y are non-zero finite. */
|
|
if (ix & 0x80000000)
|
|
{
|
|
/* Finite x < 0. */
|
|
int yint = checkint (iy);
|
|
if (yint == 0)
|
|
return __math_invalidf (x);
|
|
if (yint == 1)
|
|
sign_bias = SIGN_BIAS;
|
|
ix &= 0x7fffffff;
|
|
}
|
|
if (ix < 0x00800000)
|
|
{
|
|
/* Normalize subnormal x so exponent becomes negative. */
|
|
ix = asuint (x * 0x1p23f);
|
|
ix &= 0x7fffffff;
|
|
ix -= 23 << 23;
|
|
}
|
|
}
|
|
double_t logx = log2_inline (ix);
|
|
double_t ylogx = y * logx; /* Note: cannot overflow, y is single prec. */
|
|
if (__glibc_unlikely ((asuint64 (ylogx) >> 47 & 0xffff)
|
|
>= asuint64 (126.0 * POWF_SCALE) >> 47))
|
|
{
|
|
/* |y*log(x)| >= 126. */
|
|
if (ylogx > 0x1.fffffffd1d571p+6 * POWF_SCALE)
|
|
return __math_oflowf (sign_bias);
|
|
if (ylogx <= -150.0 * POWF_SCALE)
|
|
return __math_uflowf (sign_bias);
|
|
#if WANT_ERRNO_UFLOW
|
|
if (ylogx < -149.0 * POWF_SCALE)
|
|
return __math_may_uflowf (sign_bias);
|
|
#endif
|
|
}
|
|
return (float) exp2_inline (ylogx, sign_bias);
|
|
}
|
|
strong_alias (__ieee754_powf, __powf_finite)
|