mirror of
https://sourceware.org/git/glibc.git
synced 2024-12-11 22:00:08 +00:00
162 lines
8.9 KiB
C
162 lines
8.9 KiB
C
|
|
/*
|
|
* IBM Accurate Mathematical Library
|
|
* Written by International Business Machines Corp.
|
|
* Copyright (C) 2001-2016 Free Software Foundation, Inc.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU Lesser General Public License as published by
|
|
* the Free Software Foundation; either version 2.1 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public License
|
|
* along with this program; if not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
/************************************************************************/
|
|
/* MODULE_NAME: atnat2.h */
|
|
/* */
|
|
/* */
|
|
/* common data and variables definition for BIG or LITTLE ENDIAN */
|
|
/************************************************************************/
|
|
|
|
|
|
|
|
#ifndef ATNAT2_H
|
|
#define ATNAT2_H
|
|
|
|
|
|
#define MM 5
|
|
#ifdef BIG_ENDI
|
|
|
|
static const number
|
|
/* polynomial I */
|
|
/**/ d3 = {{0xbfd55555, 0x55555555} }, /* -0.333... */
|
|
/**/ d5 = {{0x3fc99999, 0x999997fd} }, /* 0.199... */
|
|
/**/ d7 = {{0xbfc24924, 0x923f7603} }, /* -0.142... */
|
|
/**/ d9 = {{0x3fbc71c6, 0xe5129a3b} }, /* 0.111... */
|
|
/**/ d11 = {{0xbfb74580, 0x22b13c25} }, /* -0.090... */
|
|
/**/ d13 = {{0x3fb375f0, 0x8b31cbce} }, /* 0.076... */
|
|
/* polynomial II */
|
|
/**/ f3 = {{0xbfd55555, 0x55555555} }, /* -1/3 */
|
|
/**/ ff3 = {{0xbc755555, 0x55555555} }, /* -1/3-f3 */
|
|
/**/ f5 = {{0x3fc99999, 0x9999999a} }, /* 1/5 */
|
|
/**/ ff5 = {{0xbc699999, 0x9999999a} }, /* 1/5-f5 */
|
|
/**/ f7 = {{0xbfc24924, 0x92492492} }, /* -1/7 */
|
|
/**/ ff7 = {{0xbc624924, 0x92492492} }, /* -1/7-f7 */
|
|
/**/ f9 = {{0x3fbc71c7, 0x1c71c71c} }, /* 1/9 */
|
|
/**/ ff9 = {{0x3c5c71c7, 0x1c71c71c} }, /* 1/9-f9 */
|
|
/**/ f11 = {{0xbfb745d1, 0x745d1746} }, /* -1/11 */
|
|
/**/ f13 = {{0x3fb3b13b, 0x13b13b14} }, /* 1/13 */
|
|
/**/ f15 = {{0xbfb11111, 0x11111111} }, /* -1/15 */
|
|
/**/ f17 = {{0x3fae1e1e, 0x1e1e1e1e} }, /* 1/17 */
|
|
/**/ f19 = {{0xbfaaf286, 0xbca1af28} }, /* -1/19 */
|
|
/* constants */
|
|
/**/ inv16 = {{0x3fb00000, 0x00000000} }, /* 1/16 */
|
|
/**/ opi = {{0x400921fb, 0x54442d18} }, /* pi */
|
|
/**/ opi1 = {{0x3ca1a626, 0x33145c07} }, /* pi-opi */
|
|
/**/ mopi = {{0xc00921fb, 0x54442d18} }, /* -pi */
|
|
/**/ hpi = {{0x3ff921fb, 0x54442d18} }, /* pi/2 */
|
|
/**/ hpi1 = {{0x3c91a626, 0x33145c07} }, /* pi/2-hpi */
|
|
/**/ mhpi = {{0xbff921fb, 0x54442d18} }, /* -pi/2 */
|
|
/**/ qpi = {{0x3fe921fb, 0x54442d18} }, /* pi/4 */
|
|
/**/ mqpi = {{0xbfe921fb, 0x54442d18} }, /* -pi/4 */
|
|
/**/ tqpi = {{0x4002d97c, 0x7f3321d2} }, /* 3pi/4 */
|
|
/**/ mtqpi = {{0xc002d97c, 0x7f3321d2} }, /* -3pi/4 */
|
|
/**/ u1 = {{0x3c314c2a, 0x00000000} }, /* 9.377e-19 */
|
|
/**/ u2 = {{0x3bf955e4, 0x00000000} }, /* 8.584e-20 */
|
|
/**/ u3 = {{0x3bf955e4, 0x00000000} }, /* 8.584e-20 */
|
|
/**/ u4 = {{0x3bf955e4, 0x00000000} }, /* 8.584e-20 */
|
|
/**/ u5 = {{0x3aaef2d1, 0x00000000} }, /* 5e-26 */
|
|
/**/ u6 = {{0x3a6eeb36, 0x00000000} }, /* 3.122e-27 */
|
|
/**/ u7 = {{0x3a6eeb36, 0x00000000} }, /* 3.122e-27 */
|
|
/**/ u8 = {{0x3a6eeb36, 0x00000000} }, /* 3.122e-27 */
|
|
/**/ u91 = {{0x3c6dffc0, 0x00000000} }, /* 1.301e-17 */
|
|
/**/ u92 = {{0x3c527bd0, 0x00000000} }, /* 4.008e-18 */
|
|
/**/ u93 = {{0x3c3cd057, 0x00000000} }, /* 1.562e-18 */
|
|
/**/ u94 = {{0x3c329cdf, 0x00000000} }, /* 1.009e-18 */
|
|
/**/ ua1 = {{0x3c3a1edf, 0x00000000} }, /* 1.416e-18 */
|
|
/**/ ua2 = {{0x3c33f0e1, 0x00000000} }, /* 1.081e-18 */
|
|
/**/ ub = {{0x3a98c56d, 0x00000000} }, /* 2.001e-26 */
|
|
/**/ uc = {{0x3a9375de, 0x00000000} }, /* 1.572e-26 */
|
|
/**/ ud[MM] ={{{0x38c6eddf, 0x00000000} }, /* 3.450e-35 */
|
|
/**/ {{0x35c6ef60, 0x00000000} }, /* 1.226e-49 */
|
|
/**/ {{0x32c6ed2f, 0x00000000} }, /* 4.354e-64 */
|
|
/**/ {{0x23c6eee8, 0x00000000} }, /* 2.465e-136 */
|
|
/**/ {{0x11c6ed16, 0x00000000} }},/* 4.955e-223 */
|
|
/**/ ue = {{0x38900e9d, 0x00000000} }, /* 3.02e-36 */
|
|
/**/ two500 = {{0x5f300000, 0x00000000} }, /* 2**500 */
|
|
/**/ twom500 = {{0x20b00000, 0x00000000} }; /* 2**(-500) */
|
|
|
|
#else
|
|
#ifdef LITTLE_ENDI
|
|
|
|
static const number
|
|
/* polynomial I */
|
|
/**/ d3 = {{0x55555555, 0xbfd55555} }, /* -0.333... */
|
|
/**/ d5 = {{0x999997fd, 0x3fc99999} }, /* 0.199... */
|
|
/**/ d7 = {{0x923f7603, 0xbfc24924} }, /* -0.142... */
|
|
/**/ d9 = {{0xe5129a3b, 0x3fbc71c6} }, /* 0.111... */
|
|
/**/ d11 = {{0x22b13c25, 0xbfb74580} }, /* -0.090... */
|
|
/**/ d13 = {{0x8b31cbce, 0x3fb375f0} }, /* 0.076... */
|
|
/* polynomial II */
|
|
/**/ f3 = {{0x55555555, 0xbfd55555} }, /* -1/3 */
|
|
/**/ ff3 = {{0x55555555, 0xbc755555} }, /* -1/3-f3 */
|
|
/**/ f5 = {{0x9999999a, 0x3fc99999} }, /* 1/5 */
|
|
/**/ ff5 = {{0x9999999a, 0xbc699999} }, /* 1/5-f5 */
|
|
/**/ f7 = {{0x92492492, 0xbfc24924} }, /* -1/7 */
|
|
/**/ ff7 = {{0x92492492, 0xbc624924} }, /* -1/7-f7 */
|
|
/**/ f9 = {{0x1c71c71c, 0x3fbc71c7} }, /* 1/9 */
|
|
/**/ ff9 = {{0x1c71c71c, 0x3c5c71c7} }, /* 1/9-f9 */
|
|
/**/ f11 = {{0x745d1746, 0xbfb745d1} }, /* -1/11 */
|
|
/**/ f13 = {{0x13b13b14, 0x3fb3b13b} }, /* 1/13 */
|
|
/**/ f15 = {{0x11111111, 0xbfb11111} }, /* -1/15 */
|
|
/**/ f17 = {{0x1e1e1e1e, 0x3fae1e1e} }, /* 1/17 */
|
|
/**/ f19 = {{0xbca1af28, 0xbfaaf286} }, /* -1/19 */
|
|
/* constants */
|
|
/**/ inv16 = {{0x00000000, 0x3fb00000} }, /* 1/16 */
|
|
/**/ opi = {{0x54442d18, 0x400921fb} }, /* pi */
|
|
/**/ opi1 = {{0x33145c07, 0x3ca1a626} }, /* pi-opi */
|
|
/**/ mopi = {{0x54442d18, 0xc00921fb} }, /* -pi */
|
|
/**/ hpi = {{0x54442d18, 0x3ff921fb} }, /* pi/2 */
|
|
/**/ hpi1 = {{0x33145c07, 0x3c91a626} }, /* pi/2-hpi */
|
|
/**/ mhpi = {{0x54442d18, 0xbff921fb} }, /* -pi/2 */
|
|
/**/ qpi = {{0x54442d18, 0x3fe921fb} }, /* pi/4 */
|
|
/**/ mqpi = {{0x54442d18, 0xbfe921fb} }, /* -pi/4 */
|
|
/**/ tqpi = {{0x7f3321d2, 0x4002d97c} }, /* 3pi/4 */
|
|
/**/ mtqpi = {{0x7f3321d2, 0xc002d97c} }, /* -3pi/4 */
|
|
/**/ u1 = {{0x00000000, 0x3c314c2a} }, /* 9.377e-19 */
|
|
/**/ u2 = {{0x00000000, 0x3bf955e4} }, /* 8.584e-20 */
|
|
/**/ u3 = {{0x00000000, 0x3bf955e4} }, /* 8.584e-20 */
|
|
/**/ u4 = {{0x00000000, 0x3bf955e4} }, /* 8.584e-20 */
|
|
/**/ u5 = {{0x00000000, 0x3aaef2d1} }, /* 5e-26 */
|
|
/**/ u6 = {{0x00000000, 0x3a6eeb36} }, /* 3.122e-27 */
|
|
/**/ u7 = {{0x00000000, 0x3a6eeb36} }, /* 3.122e-27 */
|
|
/**/ u8 = {{0x00000000, 0x3a6eeb36} }, /* 3.122e-27 */
|
|
/**/ u91 = {{0x00000000, 0x3c6dffc0} }, /* 1.301e-17 */
|
|
/**/ u92 = {{0x00000000, 0x3c527bd0} }, /* 4.008e-18 */
|
|
/**/ u93 = {{0x00000000, 0x3c3cd057} }, /* 1.562e-18 */
|
|
/**/ u94 = {{0x00000000, 0x3c329cdf} }, /* 1.009e-18 */
|
|
/**/ ua1 = {{0x00000000, 0x3c3a1edf} }, /* 1.416e-18 */
|
|
/**/ ua2 = {{0x00000000, 0x3c33f0e1} }, /* 1.081e-18 */
|
|
/**/ ub = {{0x00000000, 0x3a98c56d} }, /* 2.001e-26 */
|
|
/**/ uc = {{0x00000000, 0x3a9375de} }, /* 1.572e-26 */
|
|
/**/ ud[MM] ={{{0x00000000, 0x38c6eddf} }, /* 3.450e-35 */
|
|
/**/ {{0x00000000, 0x35c6ef60} }, /* 1.226e-49 */
|
|
/**/ {{0x00000000, 0x32c6ed2f} }, /* 4.354e-64 */
|
|
/**/ {{0x00000000, 0x23c6eee8} }, /* 2.465e-136 */
|
|
/**/ {{0x00000000, 0x11c6ed16} }},/* 4.955e-223 */
|
|
/**/ ue = {{0x00000000, 0x38900e9d} }, /* 3.02e-36 */
|
|
/**/ two500 = {{0x00000000, 0x5f300000} }, /* 2**500 */
|
|
/**/ twom500 = {{0x00000000, 0x20b00000} }; /* 2**(-500) */
|
|
|
|
#endif
|
|
#endif
|
|
|
|
#endif
|