glibc/sysdeps/sparc/sparc32/sfp-machine.h
Paul Eggert 581c785bf3 Update copyright dates with scripts/update-copyrights
I used these shell commands:

../glibc/scripts/update-copyrights $PWD/../gnulib/build-aux/update-copyright
(cd ../glibc && git commit -am"[this commit message]")

and then ignored the output, which consisted lines saying "FOO: warning:
copyright statement not found" for each of 7061 files FOO.

I then removed trailing white space from math/tgmath.h,
support/tst-support-open-dev-null-range.c, and
sysdeps/x86_64/multiarch/strlen-vec.S, to work around the following
obscure pre-commit check failure diagnostics from Savannah.  I don't
know why I run into these diagnostics whereas others evidently do not.

remote: *** 912-#endif
remote: *** 913:
remote: *** 914-
remote: *** error: lines with trailing whitespace found
...
remote: *** error: sysdeps/unix/sysv/linux/statx_cp.c: trailing lines
2022-01-01 11:40:24 -08:00

216 lines
6.8 KiB
C

/* Machine-dependent software floating-point definitions.
Sparc userland (_Q_*) version.
Copyright (C) 1997-2022 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<https://www.gnu.org/licenses/>. */
#include <fpu_control.h>
#include <stdlib.h>
#define _FP_W_TYPE_SIZE 32
#define _FP_W_TYPE unsigned long
#define _FP_WS_TYPE signed long
#define _FP_I_TYPE long
#define _FP_MUL_MEAT_S(R,X,Y) \
_FP_MUL_MEAT_1_wide(_FP_WFRACBITS_S,R,X,Y,umul_ppmm)
#define _FP_MUL_MEAT_D(R,X,Y) \
_FP_MUL_MEAT_2_wide(_FP_WFRACBITS_D,R,X,Y,umul_ppmm)
#define _FP_MUL_MEAT_Q(R,X,Y) \
_FP_MUL_MEAT_4_wide(_FP_WFRACBITS_Q,R,X,Y,umul_ppmm)
#define _FP_DIV_MEAT_S(R,X,Y) _FP_DIV_MEAT_1_udiv(S,R,X,Y)
#define _FP_DIV_MEAT_D(R,X,Y) _FP_DIV_MEAT_2_udiv(D,R,X,Y)
#define _FP_DIV_MEAT_Q(R,X,Y) _FP_DIV_MEAT_4_udiv(Q,R,X,Y)
#define _FP_NANFRAC_S ((_FP_QNANBIT_S << 1) - 1)
#define _FP_NANFRAC_D ((_FP_QNANBIT_D << 1) - 1), -1
#define _FP_NANFRAC_Q ((_FP_QNANBIT_Q << 1) - 1), -1, -1, -1
#define _FP_NANSIGN_S 0
#define _FP_NANSIGN_D 0
#define _FP_NANSIGN_Q 0
#define _FP_KEEPNANFRACP 1
#define _FP_QNANNEGATEDP 0
/* If one NaN is signaling and the other is not,
* we choose that one, otherwise we choose X.
*/
/* For _Qp_* and _Q_*, this should prefer X, for
* CPU instruction emulation this should prefer Y.
* (see SPAMv9 B.2.2 section).
*/
#define _FP_CHOOSENAN(fs, wc, R, X, Y, OP) \
do { \
if ((_FP_FRAC_HIGH_RAW_##fs(X) & _FP_QNANBIT_##fs) \
&& !(_FP_FRAC_HIGH_RAW_##fs(Y) & _FP_QNANBIT_##fs)) \
{ \
R##_s = Y##_s; \
_FP_FRAC_COPY_##wc(R,Y); \
} \
else \
{ \
R##_s = X##_s; \
_FP_FRAC_COPY_##wc(R,X); \
} \
R##_c = FP_CLS_NAN; \
} while (0)
/* Some assembly to speed things up. */
#define __FP_FRAC_ADD_3(r2,r1,r0,x2,x1,x0,y2,y1,y0) \
__asm__ ("addcc %r7,%8,%2\n\
addxcc %r5,%6,%1\n\
addx %r3,%4,%0" \
: "=r" ((USItype)(r2)), \
"=&r" ((USItype)(r1)), \
"=&r" ((USItype)(r0)) \
: "%rJ" ((USItype)(x2)), \
"rI" ((USItype)(y2)), \
"%rJ" ((USItype)(x1)), \
"rI" ((USItype)(y1)), \
"%rJ" ((USItype)(x0)), \
"rI" ((USItype)(y0)) \
: "cc")
#define __FP_FRAC_SUB_3(r2,r1,r0,x2,x1,x0,y2,y1,y0) \
__asm__ ("subcc %r7,%8,%2\n\
subxcc %r5,%6,%1\n\
subx %r3,%4,%0" \
: "=r" ((USItype)(r2)), \
"=&r" ((USItype)(r1)), \
"=&r" ((USItype)(r0)) \
: "%rJ" ((USItype)(x2)), \
"rI" ((USItype)(y2)), \
"%rJ" ((USItype)(x1)), \
"rI" ((USItype)(y1)), \
"%rJ" ((USItype)(x0)), \
"rI" ((USItype)(y0)) \
: "cc")
#define __FP_FRAC_ADD_4(r3,r2,r1,r0,x3,x2,x1,x0,y3,y2,y1,y0) \
do { \
/* We need to fool gcc, as we need to pass more than 10 \
input/outputs. */ \
register USItype _t1 __asm__ ("g1"), _t2 __asm__ ("g2"); \
__asm__ __volatile__ ("\
addcc %r8,%9,%1\n\
addxcc %r6,%7,%0\n\
addxcc %r4,%5,%%g2\n\
addx %r2,%3,%%g1" \
: "=&r" ((USItype)(r1)), \
"=&r" ((USItype)(r0)) \
: "%rJ" ((USItype)(x3)), \
"rI" ((USItype)(y3)), \
"%rJ" ((USItype)(x2)), \
"rI" ((USItype)(y2)), \
"%rJ" ((USItype)(x1)), \
"rI" ((USItype)(y1)), \
"%rJ" ((USItype)(x0)), \
"rI" ((USItype)(y0)) \
: "cc", "g1", "g2"); \
__asm__ __volatile__ ("" : "=r" (_t1), "=r" (_t2)); \
r3 = _t1; r2 = _t2; \
} while (0)
#define __FP_FRAC_SUB_4(r3,r2,r1,r0,x3,x2,x1,x0,y3,y2,y1,y0) \
do { \
/* We need to fool gcc, as we need to pass more than 10 \
input/outputs. */ \
register USItype _t1 __asm__ ("g1"), _t2 __asm__ ("g2"); \
__asm__ __volatile__ ("\
subcc %r8,%9,%1\n\
subxcc %r6,%7,%0\n\
subxcc %r4,%5,%%g2\n\
subx %r2,%3,%%g1" \
: "=&r" ((USItype)(r1)), \
"=&r" ((USItype)(r0)) \
: "%rJ" ((USItype)(x3)), \
"rI" ((USItype)(y3)), \
"%rJ" ((USItype)(x2)), \
"rI" ((USItype)(y2)), \
"%rJ" ((USItype)(x1)), \
"rI" ((USItype)(y1)), \
"%rJ" ((USItype)(x0)), \
"rI" ((USItype)(y0)) \
: "cc", "g1", "g2"); \
__asm__ __volatile__ ("" : "=r" (_t1), "=r" (_t2)); \
r3 = _t1; r2 = _t2; \
} while (0)
#define __FP_FRAC_DEC_3(x2,x1,x0,y2,y1,y0) __FP_FRAC_SUB_3(x2,x1,x0,x2,x1,x0,y2,y1,y0)
#define __FP_FRAC_DEC_4(x3,x2,x1,x0,y3,y2,y1,y0) __FP_FRAC_SUB_4(x3,x2,x1,x0,x3,x2,x1,x0,y3,y2,y1,y0)
#define __FP_FRAC_ADDI_4(x3,x2,x1,x0,i) \
__asm__ ("addcc %3,%4,%3\n\
addxcc %2,%%g0,%2\n\
addxcc %1,%%g0,%1\n\
addx %0,%%g0,%0" \
: "=&r" ((USItype)(x3)), \
"=&r" ((USItype)(x2)), \
"=&r" ((USItype)(x1)), \
"=&r" ((USItype)(x0)) \
: "rI" ((USItype)(i)), \
"0" ((USItype)(x3)), \
"1" ((USItype)(x2)), \
"2" ((USItype)(x1)), \
"3" ((USItype)(x0)) \
: "cc")
/* Obtain the current rounding mode. */
#ifndef FP_ROUNDMODE
#define FP_ROUNDMODE ((_fcw >> 30) & 0x3)
#endif
/* Exception flags. */
#define FP_EX_INVALID (1 << 4)
#define FP_EX_OVERFLOW (1 << 3)
#define FP_EX_UNDERFLOW (1 << 2)
#define FP_EX_DIVZERO (1 << 1)
#define FP_EX_INEXACT (1 << 0)
#define _FP_TININESS_AFTER_ROUNDING 0
#define _FP_DECL_EX \
fpu_control_t _fcw __attribute__ ((unused)) = (FP_RND_NEAREST << 30)
#define FP_INIT_ROUNDMODE \
do { \
_FPU_GETCW(_fcw); \
} while (0)
#define FP_TRAPPING_EXCEPTIONS ((_fcw >> 23) & 0x1f)
#define FP_INHIBIT_RESULTS ((_fcw >> 23) & _fex)
/* Simulate exceptions using double arithmetics. */
extern void ___Q_simulate_exceptions(int exc);
#define FP_HANDLE_EXCEPTIONS \
do { \
if (!_fex) \
{ \
/* This is the common case, so we do it inline. \
* We need to clear cexc bits if any. \
*/ \
extern unsigned long long ___Q_zero; \
__asm__ __volatile__("ldd [%0], %%f30\n\t" \
"faddd %%f30, %%f30, %%f30" \
: : "r" (&___Q_zero) : "f30"); \
} \
else \
___Q_simulate_exceptions (_fex); \
} while (0)