glibc/malloc/hooks.c
Florian Weimer 4cf6c72fd2 malloc: Rewrite dumped heap for compatibility in __malloc_set_state
This will allow us to change many aspects of the malloc implementation
while preserving compatibility with existing Emacs binaries.

As a result, existing Emacs binaries will have a larger RSS, and Emacs
needs a few more milliseconds to start.  This overhead is specific
to Emacs (and will go away once Emacs switches to its internal malloc).

The new checks to make free and realloc compatible with the dumped heap
are confined to the mmap paths, which are already quite slow due to the
munmap overhead.

This commit weakens some security checks, but only for heap pointers
in the dumped main arena.  By default, this area is empty, so those
checks are as effective as before.
2016-05-13 14:16:39 +02:00

621 lines
18 KiB
C

/* Malloc implementation for multiple threads without lock contention.
Copyright (C) 2001-2016 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Wolfram Gloger <wg@malloc.de>, 2001.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public License as
published by the Free Software Foundation; either version 2.1 of the
License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; see the file COPYING.LIB. If
not, see <http://www.gnu.org/licenses/>. */
/* What to do if the standard debugging hooks are in place and a
corrupt pointer is detected: do nothing (0), print an error message
(1), or call abort() (2). */
/* Hooks for debugging versions. The initial hooks just call the
initialization routine, then do the normal work. */
static void *
malloc_hook_ini (size_t sz, const void *caller)
{
__malloc_hook = NULL;
ptmalloc_init ();
return __libc_malloc (sz);
}
static void *
realloc_hook_ini (void *ptr, size_t sz, const void *caller)
{
__malloc_hook = NULL;
__realloc_hook = NULL;
ptmalloc_init ();
return __libc_realloc (ptr, sz);
}
static void *
memalign_hook_ini (size_t alignment, size_t sz, const void *caller)
{
__memalign_hook = NULL;
ptmalloc_init ();
return __libc_memalign (alignment, sz);
}
/* Whether we are using malloc checking. */
static int using_malloc_checking;
/* A flag that is set by malloc_set_state, to signal that malloc checking
must not be enabled on the request from the user (via the MALLOC_CHECK_
environment variable). It is reset by __malloc_check_init to tell
malloc_set_state that the user has requested malloc checking.
The purpose of this flag is to make sure that malloc checking is not
enabled when the heap to be restored was constructed without malloc
checking, and thus does not contain the required magic bytes.
Otherwise the heap would be corrupted by calls to free and realloc. If
it turns out that the heap was created with malloc checking and the
user has requested it malloc_set_state just calls __malloc_check_init
again to enable it. On the other hand, reusing such a heap without
further malloc checking is safe. */
static int disallow_malloc_check;
/* Activate a standard set of debugging hooks. */
void
__malloc_check_init (void)
{
if (disallow_malloc_check)
{
disallow_malloc_check = 0;
return;
}
using_malloc_checking = 1;
__malloc_hook = malloc_check;
__free_hook = free_check;
__realloc_hook = realloc_check;
__memalign_hook = memalign_check;
}
/* A simple, standard set of debugging hooks. Overhead is `only' one
byte per chunk; still this will catch most cases of double frees or
overruns. The goal here is to avoid obscure crashes due to invalid
usage, unlike in the MALLOC_DEBUG code. */
static unsigned char
magicbyte (const void *p)
{
unsigned char magic;
magic = (((uintptr_t) p >> 3) ^ ((uintptr_t) p >> 11)) & 0xFF;
/* Do not return 1. See the comment in mem2mem_check(). */
if (magic == 1)
++magic;
return magic;
}
/* Visualize the chunk as being partitioned into blocks of 255 bytes from the
highest address of the chunk, downwards. The end of each block tells
us the size of that block, up to the actual size of the requested
memory. Our magic byte is right at the end of the requested size, so we
must reach it with this iteration, otherwise we have witnessed a memory
corruption. */
static size_t
malloc_check_get_size (mchunkptr p)
{
size_t size;
unsigned char c;
unsigned char magic = magicbyte (p);
assert (using_malloc_checking == 1);
for (size = chunksize (p) - 1 + (chunk_is_mmapped (p) ? 0 : SIZE_SZ);
(c = ((unsigned char *) p)[size]) != magic;
size -= c)
{
if (c <= 0 || size < (c + 2 * SIZE_SZ))
{
malloc_printerr (check_action, "malloc_check_get_size: memory corruption",
chunk2mem (p),
chunk_is_mmapped (p) ? NULL : arena_for_chunk (p));
return 0;
}
}
/* chunk2mem size. */
return size - 2 * SIZE_SZ;
}
/* Instrument a chunk with overrun detector byte(s) and convert it
into a user pointer with requested size req_sz. */
static void *
internal_function
mem2mem_check (void *ptr, size_t req_sz)
{
mchunkptr p;
unsigned char *m_ptr = ptr;
size_t max_sz, block_sz, i;
unsigned char magic;
if (!ptr)
return ptr;
p = mem2chunk (ptr);
magic = magicbyte (p);
max_sz = chunksize (p) - 2 * SIZE_SZ;
if (!chunk_is_mmapped (p))
max_sz += SIZE_SZ;
for (i = max_sz - 1; i > req_sz; i -= block_sz)
{
block_sz = MIN (i - req_sz, 0xff);
/* Don't allow the magic byte to appear in the chain of length bytes.
For the following to work, magicbyte cannot return 0x01. */
if (block_sz == magic)
--block_sz;
m_ptr[i] = block_sz;
}
m_ptr[req_sz] = magic;
return (void *) m_ptr;
}
/* Convert a pointer to be free()d or realloc()ed to a valid chunk
pointer. If the provided pointer is not valid, return NULL. */
static mchunkptr
internal_function
mem2chunk_check (void *mem, unsigned char **magic_p)
{
mchunkptr p;
INTERNAL_SIZE_T sz, c;
unsigned char magic;
if (!aligned_OK (mem))
return NULL;
p = mem2chunk (mem);
sz = chunksize (p);
magic = magicbyte (p);
if (!chunk_is_mmapped (p))
{
/* Must be a chunk in conventional heap memory. */
int contig = contiguous (&main_arena);
if ((contig &&
((char *) p < mp_.sbrk_base ||
((char *) p + sz) >= (mp_.sbrk_base + main_arena.system_mem))) ||
sz < MINSIZE || sz & MALLOC_ALIGN_MASK || !inuse (p) ||
(!prev_inuse (p) && (p->prev_size & MALLOC_ALIGN_MASK ||
(contig && (char *) prev_chunk (p) < mp_.sbrk_base) ||
next_chunk (prev_chunk (p)) != p)))
return NULL;
for (sz += SIZE_SZ - 1; (c = ((unsigned char *) p)[sz]) != magic; sz -= c)
{
if (c == 0 || sz < (c + 2 * SIZE_SZ))
return NULL;
}
}
else
{
unsigned long offset, page_mask = GLRO (dl_pagesize) - 1;
/* mmap()ed chunks have MALLOC_ALIGNMENT or higher power-of-two
alignment relative to the beginning of a page. Check this
first. */
offset = (unsigned long) mem & page_mask;
if ((offset != MALLOC_ALIGNMENT && offset != 0 && offset != 0x10 &&
offset != 0x20 && offset != 0x40 && offset != 0x80 && offset != 0x100 &&
offset != 0x200 && offset != 0x400 && offset != 0x800 && offset != 0x1000 &&
offset < 0x2000) ||
!chunk_is_mmapped (p) || (p->size & PREV_INUSE) ||
((((unsigned long) p - p->prev_size) & page_mask) != 0) ||
((p->prev_size + sz) & page_mask) != 0)
return NULL;
for (sz -= 1; (c = ((unsigned char *) p)[sz]) != magic; sz -= c)
{
if (c == 0 || sz < (c + 2 * SIZE_SZ))
return NULL;
}
}
((unsigned char *) p)[sz] ^= 0xFF;
if (magic_p)
*magic_p = (unsigned char *) p + sz;
return p;
}
/* Check for corruption of the top chunk, and try to recover if
necessary. */
static int
internal_function
top_check (void)
{
mchunkptr t = top (&main_arena);
char *brk, *new_brk;
INTERNAL_SIZE_T front_misalign, sbrk_size;
unsigned long pagesz = GLRO (dl_pagesize);
if (t == initial_top (&main_arena) ||
(!chunk_is_mmapped (t) &&
chunksize (t) >= MINSIZE &&
prev_inuse (t) &&
(!contiguous (&main_arena) ||
(char *) t + chunksize (t) == mp_.sbrk_base + main_arena.system_mem)))
return 0;
malloc_printerr (check_action, "malloc: top chunk is corrupt", t,
&main_arena);
/* Try to set up a new top chunk. */
brk = MORECORE (0);
front_misalign = (unsigned long) chunk2mem (brk) & MALLOC_ALIGN_MASK;
if (front_misalign > 0)
front_misalign = MALLOC_ALIGNMENT - front_misalign;
sbrk_size = front_misalign + mp_.top_pad + MINSIZE;
sbrk_size += pagesz - ((unsigned long) (brk + sbrk_size) & (pagesz - 1));
new_brk = (char *) (MORECORE (sbrk_size));
if (new_brk == (char *) (MORECORE_FAILURE))
{
__set_errno (ENOMEM);
return -1;
}
/* Call the `morecore' hook if necessary. */
void (*hook) (void) = atomic_forced_read (__after_morecore_hook);
if (hook)
(*hook)();
main_arena.system_mem = (new_brk - mp_.sbrk_base) + sbrk_size;
top (&main_arena) = (mchunkptr) (brk + front_misalign);
set_head (top (&main_arena), (sbrk_size - front_misalign) | PREV_INUSE);
return 0;
}
static void *
malloc_check (size_t sz, const void *caller)
{
void *victim;
if (sz + 1 == 0)
{
__set_errno (ENOMEM);
return NULL;
}
(void) mutex_lock (&main_arena.mutex);
victim = (top_check () >= 0) ? _int_malloc (&main_arena, sz + 1) : NULL;
(void) mutex_unlock (&main_arena.mutex);
return mem2mem_check (victim, sz);
}
static void
free_check (void *mem, const void *caller)
{
mchunkptr p;
if (!mem)
return;
(void) mutex_lock (&main_arena.mutex);
p = mem2chunk_check (mem, NULL);
if (!p)
{
(void) mutex_unlock (&main_arena.mutex);
malloc_printerr (check_action, "free(): invalid pointer", mem,
&main_arena);
return;
}
if (chunk_is_mmapped (p))
{
(void) mutex_unlock (&main_arena.mutex);
munmap_chunk (p);
return;
}
_int_free (&main_arena, p, 1);
(void) mutex_unlock (&main_arena.mutex);
}
static void *
realloc_check (void *oldmem, size_t bytes, const void *caller)
{
INTERNAL_SIZE_T nb;
void *newmem = 0;
unsigned char *magic_p;
if (bytes + 1 == 0)
{
__set_errno (ENOMEM);
return NULL;
}
if (oldmem == 0)
return malloc_check (bytes, NULL);
if (bytes == 0)
{
free_check (oldmem, NULL);
return NULL;
}
(void) mutex_lock (&main_arena.mutex);
const mchunkptr oldp = mem2chunk_check (oldmem, &magic_p);
(void) mutex_unlock (&main_arena.mutex);
if (!oldp)
{
malloc_printerr (check_action, "realloc(): invalid pointer", oldmem,
&main_arena);
return malloc_check (bytes, NULL);
}
const INTERNAL_SIZE_T oldsize = chunksize (oldp);
checked_request2size (bytes + 1, nb);
(void) mutex_lock (&main_arena.mutex);
if (chunk_is_mmapped (oldp))
{
#if HAVE_MREMAP
mchunkptr newp = mremap_chunk (oldp, nb);
if (newp)
newmem = chunk2mem (newp);
else
#endif
{
/* Note the extra SIZE_SZ overhead. */
if (oldsize - SIZE_SZ >= nb)
newmem = oldmem; /* do nothing */
else
{
/* Must alloc, copy, free. */
if (top_check () >= 0)
newmem = _int_malloc (&main_arena, bytes + 1);
if (newmem)
{
memcpy (newmem, oldmem, oldsize - 2 * SIZE_SZ);
munmap_chunk (oldp);
}
}
}
}
else
{
if (top_check () >= 0)
{
INTERNAL_SIZE_T nb;
checked_request2size (bytes + 1, nb);
newmem = _int_realloc (&main_arena, oldp, oldsize, nb);
}
}
/* mem2chunk_check changed the magic byte in the old chunk.
If newmem is NULL, then the old chunk will still be used though,
so we need to invert that change here. */
if (newmem == NULL)
*magic_p ^= 0xFF;
(void) mutex_unlock (&main_arena.mutex);
return mem2mem_check (newmem, bytes);
}
static void *
memalign_check (size_t alignment, size_t bytes, const void *caller)
{
void *mem;
if (alignment <= MALLOC_ALIGNMENT)
return malloc_check (bytes, NULL);
if (alignment < MINSIZE)
alignment = MINSIZE;
/* If the alignment is greater than SIZE_MAX / 2 + 1 it cannot be a
power of 2 and will cause overflow in the check below. */
if (alignment > SIZE_MAX / 2 + 1)
{
__set_errno (EINVAL);
return 0;
}
/* Check for overflow. */
if (bytes > SIZE_MAX - alignment - MINSIZE)
{
__set_errno (ENOMEM);
return 0;
}
/* Make sure alignment is power of 2. */
if (!powerof2 (alignment))
{
size_t a = MALLOC_ALIGNMENT * 2;
while (a < alignment)
a <<= 1;
alignment = a;
}
(void) mutex_lock (&main_arena.mutex);
mem = (top_check () >= 0) ? _int_memalign (&main_arena, alignment, bytes + 1) :
NULL;
(void) mutex_unlock (&main_arena.mutex);
return mem2mem_check (mem, bytes);
}
/* Get/set state: malloc_get_state() records the current state of all
malloc variables (_except_ for the actual heap contents and `hook'
function pointers) in a system dependent, opaque data structure.
This data structure is dynamically allocated and can be free()d
after use. malloc_set_state() restores the state of all malloc
variables to the previously obtained state. This is especially
useful when using this malloc as part of a shared library, and when
the heap contents are saved/restored via some other method. The
primary example for this is GNU Emacs with its `dumping' procedure.
`Hook' function pointers are never saved or restored by these
functions, with two exceptions: If malloc checking was in use when
malloc_get_state() was called, then malloc_set_state() calls
__malloc_check_init() if possible; if malloc checking was not in
use in the recorded state but the user requested malloc checking,
then the hooks are reset to 0. */
#define MALLOC_STATE_MAGIC 0x444c4541l
#define MALLOC_STATE_VERSION (0 * 0x100l + 4l) /* major*0x100 + minor */
struct malloc_save_state
{
long magic;
long version;
mbinptr av[NBINS * 2 + 2];
char *sbrk_base;
int sbrked_mem_bytes;
unsigned long trim_threshold;
unsigned long top_pad;
unsigned int n_mmaps_max;
unsigned long mmap_threshold;
int check_action;
unsigned long max_sbrked_mem;
unsigned long max_total_mem; /* Always 0, for backwards compatibility. */
unsigned int n_mmaps;
unsigned int max_n_mmaps;
unsigned long mmapped_mem;
unsigned long max_mmapped_mem;
int using_malloc_checking;
unsigned long max_fast;
unsigned long arena_test;
unsigned long arena_max;
unsigned long narenas;
};
void *
__malloc_get_state (void)
{
struct malloc_save_state *ms;
int i;
mbinptr b;
ms = (struct malloc_save_state *) __libc_malloc (sizeof (*ms));
if (!ms)
return 0;
(void) mutex_lock (&main_arena.mutex);
malloc_consolidate (&main_arena);
ms->magic = MALLOC_STATE_MAGIC;
ms->version = MALLOC_STATE_VERSION;
ms->av[0] = 0;
ms->av[1] = 0; /* used to be binblocks, now no longer used */
ms->av[2] = top (&main_arena);
ms->av[3] = 0; /* used to be undefined */
for (i = 1; i < NBINS; i++)
{
b = bin_at (&main_arena, i);
if (first (b) == b)
ms->av[2 * i + 2] = ms->av[2 * i + 3] = 0; /* empty bin */
else
{
ms->av[2 * i + 2] = first (b);
ms->av[2 * i + 3] = last (b);
}
}
ms->sbrk_base = mp_.sbrk_base;
ms->sbrked_mem_bytes = main_arena.system_mem;
ms->trim_threshold = mp_.trim_threshold;
ms->top_pad = mp_.top_pad;
ms->n_mmaps_max = mp_.n_mmaps_max;
ms->mmap_threshold = mp_.mmap_threshold;
ms->check_action = check_action;
ms->max_sbrked_mem = main_arena.max_system_mem;
ms->max_total_mem = 0;
ms->n_mmaps = mp_.n_mmaps;
ms->max_n_mmaps = mp_.max_n_mmaps;
ms->mmapped_mem = mp_.mmapped_mem;
ms->max_mmapped_mem = mp_.max_mmapped_mem;
ms->using_malloc_checking = using_malloc_checking;
ms->max_fast = get_max_fast ();
ms->arena_test = mp_.arena_test;
ms->arena_max = mp_.arena_max;
ms->narenas = narenas;
(void) mutex_unlock (&main_arena.mutex);
return (void *) ms;
}
int
__malloc_set_state (void *msptr)
{
struct malloc_save_state *ms = (struct malloc_save_state *) msptr;
if (ms->magic != MALLOC_STATE_MAGIC)
return -1;
/* Must fail if the major version is too high. */
if ((ms->version & ~0xffl) > (MALLOC_STATE_VERSION & ~0xffl))
return -2;
/* We do not need to perform locking here because __malloc_set_state
must be called before the first call into the malloc subsytem
(usually via __malloc_initialize_hook). pthread_create always
calls calloc and thus must be called only afterwards, so there
cannot be more than one thread when we reach this point. */
/* Disable the malloc hooks (and malloc checking). */
__malloc_hook = NULL;
__realloc_hook = NULL;
__free_hook = NULL;
__memalign_hook = NULL;
using_malloc_checking = 0;
/* Patch the dumped heap. We no longer try to integrate into the
existing heap. Instead, we mark the existing chunks as mmapped.
Together with the update to dumped_main_arena_start and
dumped_main_arena_end, realloc and free will recognize these
chunks as dumped fake mmapped chunks and never free them. */
/* Find the chunk with the lowest address with the heap. */
mchunkptr chunk = NULL;
{
size_t *candidate = (size_t *) ms->sbrk_base;
size_t *end = (size_t *) (ms->sbrk_base + ms->sbrked_mem_bytes);
while (candidate < end)
if (*candidate != 0)
{
chunk = mem2chunk ((void *) (candidate + 1));
break;
}
else
++candidate;
}
if (chunk == NULL)
return 0;
/* Iterate over the dumped heap and patch the chunks so that they
are treated as fake mmapped chunks. */
mchunkptr top = ms->av[2];
while (chunk < top)
{
if (inuse (chunk))
{
/* Mark chunk as mmapped, to trigger the fallback path. */
size_t size = chunksize (chunk);
set_head (chunk, size | IS_MMAPPED);
}
chunk = next_chunk (chunk);
}
/* The dumped fake mmapped chunks all lie in this address range. */
dumped_main_arena_start = (mchunkptr) ms->sbrk_base;
dumped_main_arena_end = top;
return 0;
}
/*
* Local variables:
* c-basic-offset: 2
* End:
*/