glibc/nptl/pthread_join_common.c
Adhemerval Zanella 2b51742531 nptl: Move cancel state out of cancelhandling
Now that thread cancellation state is not accessed concurrently anymore,
it is possible to move it out the 'cancelhandling'.

The code is also simplified: CANCELLATION_P is replaced with a
internal pthread_testcancel call and the CANCELSTATE_BIT{MASK} is
removed.

With this behavior pthread_setcancelstate does not require to act on
cancellation if cancel type is asynchronous (is already handled either
by pthread_setcanceltype or by the signal handler).

Checked on x86_64-linux-gnu and aarch64-linux-gnu.
2021-06-09 15:16:45 -03:00

137 lines
4.7 KiB
C

/* Common definition for pthread_{timed,try}join{_np}.
Copyright (C) 2017-2021 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<https://www.gnu.org/licenses/>. */
#include "pthreadP.h"
#include <atomic.h>
#include <stap-probe.h>
#include <time.h>
#include <futex-internal.h>
static void
cleanup (void *arg)
{
/* If we already changed the waiter ID, reset it. The call cannot
fail for any reason but the thread not having done that yet so
there is no reason for a loop. */
struct pthread *self = THREAD_SELF;
atomic_compare_exchange_weak_acquire (&arg, &self, NULL);
}
int
__pthread_clockjoin_ex (pthread_t threadid, void **thread_return,
clockid_t clockid,
const struct __timespec64 *abstime, bool block)
{
struct pthread *pd = (struct pthread *) threadid;
/* Make sure the descriptor is valid. */
if (INVALID_NOT_TERMINATED_TD_P (pd))
/* Not a valid thread handle. */
return ESRCH;
/* Is the thread joinable?. */
if (IS_DETACHED (pd))
/* We cannot wait for the thread. */
return EINVAL;
struct pthread *self = THREAD_SELF;
int result = 0;
LIBC_PROBE (pthread_join, 1, threadid);
if ((pd == self
|| (self->joinid == pd
&& (pd->cancelhandling
& (CANCELED_BITMASK | EXITING_BITMASK
| TERMINATED_BITMASK)) == 0))
&& !(self->cancelstate == PTHREAD_CANCEL_ENABLE
&& (pd->cancelhandling & (CANCELED_BITMASK | EXITING_BITMASK
| TERMINATED_BITMASK))
== CANCELED_BITMASK))
/* This is a deadlock situation. The threads are waiting for each
other to finish. Note that this is a "may" error. To be 100%
sure we catch this error we would have to lock the data
structures but it is not necessary. In the unlikely case that
two threads are really caught in this situation they will
deadlock. It is the programmer's problem to figure this
out. */
return EDEADLK;
/* Wait for the thread to finish. If it is already locked something
is wrong. There can only be one waiter. */
else if (__glibc_unlikely (atomic_compare_exchange_weak_acquire (&pd->joinid,
&self,
NULL)))
/* There is already somebody waiting for the thread. */
return EINVAL;
/* BLOCK waits either indefinitely or based on an absolute time. POSIX also
states a cancellation point shall occur for pthread_join, and we use the
same rationale for posix_timedjoin_np. Both clockwait_tid and the futex
call use the cancellable variant. */
if (block)
{
/* During the wait we change to asynchronous cancellation. If we
are cancelled the thread we are waiting for must be marked as
un-wait-ed for again. */
pthread_cleanup_push (cleanup, &pd->joinid);
/* We need acquire MO here so that we synchronize with the
kernel's store to 0 when the clone terminates. (see above) */
pid_t tid;
while ((tid = atomic_load_acquire (&pd->tid)) != 0)
{
/* The kernel notifies a process which uses CLONE_CHILD_CLEARTID via
futex wake-up when the clone terminates. The memory location
contains the thread ID while the clone is running and is reset to
zero by the kernel afterwards. The kernel up to version 3.16.3
does not use the private futex operations for futex wake-up when
the clone terminates. */
int ret = __futex_abstimed_wait_cancelable64 (
(unsigned int *) &pd->tid, tid, clockid, abstime, LLL_SHARED);
if (ret == ETIMEDOUT || ret == EOVERFLOW)
{
result = ret;
break;
}
}
pthread_cleanup_pop (0);
}
void *pd_result = pd->result;
if (__glibc_likely (result == 0))
{
/* We mark the thread as terminated and as joined. */
pd->tid = -1;
/* Store the return value if the caller is interested. */
if (thread_return != NULL)
*thread_return = pd_result;
/* Free the TCB. */
__nptl_free_tcb (pd);
}
else
pd->joinid = NULL;
LIBC_PROBE (pthread_join_ret, 3, threadid, result, pd_result);
return result;
}