mirror of
https://sourceware.org/git/glibc.git
synced 2024-11-26 23:10:06 +00:00
c202c2c505
2002-09-10 Isamu Hasegawa <isamu@yamato.ibm.com> * posix/regexec.c (build_trtable): Fix the destination of newline to prevent wrong states from overwriting. Append break statements to optimization. 2002-09-10 Isamu Hasegawa <isamu@yamato.ibm.com> * posix/regcomp.c: Wrap #include wchar.h and wctype.h in #if. (build_range_exp): Add castings to strlen invocations. (build_collating_symbol): Restore the type of characters from "char" to "unsigned char", and supplement castings. (build_collating_symbol): Likewise. (build_equiv_class): Likewise. (build_charclass): Likewise. (seek_collating_symbol_entry): Likewise. (parse_bracket_exp): Likewise. (build_word_op): Supplement a casting. * posix/regex_internal.c: Wrap #include wchar.h and wctype.h in #if. (re_string_allocate): Fix castings. (re_string_construct): Likewise. (re_string_construct_common): Likewise. (re_string_realloc_buffers): Likewise. (build_wcs_buffer): Likewise. (build_wcs_upper_buffer): Likewise. (re_string_skip_chars): Likewise. (re_string_reconstruct): Likewise. * posix/regex_internal.h: Restore the type of characters in re_string_t and bracket_elem_t from "char" to "unsigned char". (re_string_elem_size_at): Fix castings. * posix/regexec.c: Wrap #include wchar.h and wctype.h in #if. (transit_state_bkref_loop): Restore the type of characters from "char" to "unsigned char", and append a cast to "char*" pointer in array subscript. (check_node_accept_bytes): Likewise. (find_collation_sequence_value): Likewise.
1272 lines
36 KiB
C
1272 lines
36 KiB
C
/* Extended regular expression matching and search library.
|
||
Copyright (C) 2002 Free Software Foundation, Inc.
|
||
This file is part of the GNU C Library.
|
||
Contributed by Isamu Hasegawa <isamu@yamato.ibm.com>.
|
||
|
||
The GNU C Library is free software; you can redistribute it and/or
|
||
modify it under the terms of the GNU Lesser General Public
|
||
License as published by the Free Software Foundation; either
|
||
version 2.1 of the License, or (at your option) any later version.
|
||
|
||
The GNU C Library is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||
Lesser General Public License for more details.
|
||
|
||
You should have received a copy of the GNU Lesser General Public
|
||
License along with the GNU C Library; if not, write to the Free
|
||
Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
|
||
02111-1307 USA. */
|
||
|
||
#include <assert.h>
|
||
#include <ctype.h>
|
||
#include <limits.h>
|
||
#include <stdio.h>
|
||
#include <stdlib.h>
|
||
#include <string.h>
|
||
|
||
#if defined HAVE_WCHAR_H || defined _LIBC
|
||
# include <wchar.h>
|
||
#endif /* HAVE_WCHAR_H || _LIBC */
|
||
#if defined HAVE_WCTYPE_H || defined _LIBC
|
||
# include <wctype.h>
|
||
#endif /* HAVE_WCTYPE_H || _LIBC */
|
||
|
||
#ifdef _LIBC
|
||
# ifndef _RE_DEFINE_LOCALE_FUNCTIONS
|
||
# define _RE_DEFINE_LOCALE_FUNCTIONS 1
|
||
# include <locale/localeinfo.h>
|
||
# include <locale/elem-hash.h>
|
||
# include <locale/coll-lookup.h>
|
||
# endif
|
||
#endif
|
||
|
||
/* This is for other GNU distributions with internationalized messages. */
|
||
#if HAVE_LIBINTL_H || defined _LIBC
|
||
# include <libintl.h>
|
||
# ifdef _LIBC
|
||
# undef gettext
|
||
# define gettext(msgid) \
|
||
INTUSE(__dcgettext) (_libc_intl_domainname_internal, msgid, LC_MESSAGES)
|
||
# endif
|
||
#else
|
||
# define gettext(msgid) (msgid)
|
||
#endif
|
||
|
||
#ifndef gettext_noop
|
||
/* This define is so xgettext can find the internationalizable
|
||
strings. */
|
||
# define gettext_noop(String) String
|
||
#endif
|
||
|
||
#include "regex.h"
|
||
#include "regex_internal.h"
|
||
|
||
static void re_string_construct_common (const char *str, int len,
|
||
re_string_t *pstr,
|
||
RE_TRANSLATE_TYPE trans, int icase);
|
||
#ifdef RE_ENABLE_I18N
|
||
static int re_string_skip_chars (re_string_t *pstr, int new_raw_idx);
|
||
#endif /* RE_ENABLE_I18N */
|
||
static re_dfastate_t *create_newstate_common (re_dfa_t *dfa,
|
||
const re_node_set *nodes,
|
||
unsigned int hash);
|
||
static reg_errcode_t register_state (re_dfa_t *dfa, re_dfastate_t *newstate,
|
||
unsigned int hash);
|
||
static re_dfastate_t *create_ci_newstate (re_dfa_t *dfa,
|
||
const re_node_set *nodes,
|
||
unsigned int hash);
|
||
static re_dfastate_t *create_cd_newstate (re_dfa_t *dfa,
|
||
const re_node_set *nodes,
|
||
unsigned int context,
|
||
unsigned int hash);
|
||
static unsigned int inline calc_state_hash (const re_node_set *nodes,
|
||
unsigned int context);
|
||
|
||
/* Functions for string operation. */
|
||
|
||
/* This function allocate the buffers. It is necessary to call
|
||
re_string_reconstruct before using the object. */
|
||
|
||
static reg_errcode_t
|
||
re_string_allocate (pstr, str, len, init_len, trans, icase)
|
||
re_string_t *pstr;
|
||
const char *str;
|
||
int len, init_len, icase;
|
||
RE_TRANSLATE_TYPE trans;
|
||
{
|
||
reg_errcode_t ret;
|
||
int init_buf_len = (len + 1 < init_len) ? len + 1: init_len;
|
||
re_string_construct_common (str, len, pstr, trans, icase);
|
||
pstr->stop = pstr->len;
|
||
|
||
ret = re_string_realloc_buffers (pstr, init_buf_len);
|
||
if (BE (ret != REG_NOERROR, 0))
|
||
return ret;
|
||
|
||
pstr->mbs_case = (MBS_CASE_ALLOCATED (pstr) ? pstr->mbs_case
|
||
: (unsigned char *) str);
|
||
pstr->mbs = MBS_ALLOCATED (pstr) ? pstr->mbs : pstr->mbs_case;
|
||
pstr->valid_len = (MBS_CASE_ALLOCATED (pstr) || MBS_ALLOCATED (pstr)
|
||
|| MB_CUR_MAX > 1) ? pstr->valid_len : len;
|
||
return REG_NOERROR;
|
||
}
|
||
|
||
/* This function allocate the buffers, and initialize them. */
|
||
|
||
static reg_errcode_t
|
||
re_string_construct (pstr, str, len, trans, icase)
|
||
re_string_t *pstr;
|
||
const char *str;
|
||
int len, icase;
|
||
RE_TRANSLATE_TYPE trans;
|
||
{
|
||
reg_errcode_t ret;
|
||
re_string_construct_common (str, len, pstr, trans, icase);
|
||
pstr->stop = pstr->len;
|
||
/* Set 0 so that this function can initialize whole buffers. */
|
||
pstr->valid_len = 0;
|
||
|
||
if (len > 0)
|
||
{
|
||
ret = re_string_realloc_buffers (pstr, len + 1);
|
||
if (BE (ret != REG_NOERROR, 0))
|
||
return ret;
|
||
}
|
||
pstr->mbs_case = (MBS_CASE_ALLOCATED (pstr) ? pstr->mbs_case
|
||
: (unsigned char *) str);
|
||
pstr->mbs = MBS_ALLOCATED (pstr) ? pstr->mbs : pstr->mbs_case;
|
||
|
||
if (icase)
|
||
{
|
||
#ifdef RE_ENABLE_I18N
|
||
if (MB_CUR_MAX > 1)
|
||
build_wcs_upper_buffer (pstr);
|
||
else
|
||
#endif /* RE_ENABLE_I18N */
|
||
build_upper_buffer (pstr);
|
||
}
|
||
else
|
||
{
|
||
#ifdef RE_ENABLE_I18N
|
||
if (MB_CUR_MAX > 1)
|
||
build_wcs_buffer (pstr);
|
||
else
|
||
#endif /* RE_ENABLE_I18N */
|
||
{
|
||
if (trans != NULL)
|
||
re_string_translate_buffer (pstr);
|
||
else
|
||
pstr->valid_len = len;
|
||
}
|
||
}
|
||
|
||
/* Initialized whole buffers, then valid_len == bufs_len. */
|
||
pstr->valid_len = pstr->bufs_len;
|
||
return REG_NOERROR;
|
||
}
|
||
|
||
/* Helper functions for re_string_allocate, and re_string_construct. */
|
||
|
||
static reg_errcode_t
|
||
re_string_realloc_buffers (pstr, new_buf_len)
|
||
re_string_t *pstr;
|
||
int new_buf_len;
|
||
{
|
||
#ifdef RE_ENABLE_I18N
|
||
if (MB_CUR_MAX > 1)
|
||
{
|
||
pstr->wcs = re_realloc (pstr->wcs, wint_t, new_buf_len);
|
||
if (BE (pstr->wcs == NULL, 0))
|
||
return REG_ESPACE;
|
||
}
|
||
#endif /* RE_ENABLE_I18N */
|
||
if (MBS_ALLOCATED (pstr))
|
||
{
|
||
pstr->mbs = re_realloc (pstr->mbs, unsigned char, new_buf_len);
|
||
if (BE (pstr->mbs == NULL, 0))
|
||
return REG_ESPACE;
|
||
}
|
||
if (MBS_CASE_ALLOCATED (pstr))
|
||
{
|
||
pstr->mbs_case = re_realloc (pstr->mbs_case, unsigned char, new_buf_len);
|
||
if (BE (pstr->mbs_case == NULL, 0))
|
||
return REG_ESPACE;
|
||
if (!MBS_ALLOCATED (pstr))
|
||
pstr->mbs = pstr->mbs_case;
|
||
}
|
||
pstr->bufs_len = new_buf_len;
|
||
return REG_NOERROR;
|
||
}
|
||
|
||
|
||
static void
|
||
re_string_construct_common (str, len, pstr, trans, icase)
|
||
const char *str;
|
||
int len;
|
||
re_string_t *pstr;
|
||
RE_TRANSLATE_TYPE trans;
|
||
int icase;
|
||
{
|
||
memset (pstr, '\0', sizeof (re_string_t));
|
||
pstr->raw_mbs = (const unsigned char *) str;
|
||
pstr->len = len;
|
||
pstr->trans = trans;
|
||
pstr->icase = icase ? 1 : 0;
|
||
}
|
||
|
||
#ifdef RE_ENABLE_I18N
|
||
|
||
/* Build wide character buffer PSTR->WCS.
|
||
If the byte sequence of the string are:
|
||
<mb1>(0), <mb1>(1), <mb2>(0), <mb2>(1), <sb3>
|
||
Then wide character buffer will be:
|
||
<wc1> , WEOF , <wc2> , WEOF , <wc3>
|
||
We use WEOF for padding, they indicate that the position isn't
|
||
a first byte of a multibyte character.
|
||
|
||
Note that this function assumes PSTR->VALID_LEN elements are already
|
||
built and starts from PSTR->VALID_LEN. */
|
||
|
||
static void
|
||
build_wcs_buffer (pstr)
|
||
re_string_t *pstr;
|
||
{
|
||
mbstate_t prev_st;
|
||
int byte_idx, end_idx, mbclen, remain_len;
|
||
/* Build the buffers from pstr->valid_len to either pstr->len or
|
||
pstr->bufs_len. */
|
||
end_idx = (pstr->bufs_len > pstr->len)? pstr->len : pstr->bufs_len;
|
||
for (byte_idx = pstr->valid_len; byte_idx < end_idx;)
|
||
{
|
||
wchar_t wc;
|
||
remain_len = end_idx - byte_idx;
|
||
prev_st = pstr->cur_state;
|
||
mbclen = mbrtowc (&wc, ((const char *) pstr->raw_mbs + pstr->raw_mbs_idx
|
||
+ byte_idx), remain_len, &pstr->cur_state);
|
||
if (BE (mbclen == (size_t) -2, 0))
|
||
{
|
||
/* The buffer doesn't have enough space, finish to build. */
|
||
pstr->cur_state = prev_st;
|
||
break;
|
||
}
|
||
else if (BE (mbclen == (size_t) -1 || mbclen == 0, 0))
|
||
{
|
||
/* We treat these cases as a singlebyte character. */
|
||
mbclen = 1;
|
||
wc = (wchar_t) pstr->raw_mbs[pstr->raw_mbs_idx + byte_idx];
|
||
pstr->cur_state = prev_st;
|
||
}
|
||
|
||
/* Apply the translateion if we need. */
|
||
if (pstr->trans != NULL && mbclen == 1)
|
||
{
|
||
int ch = pstr->trans[pstr->raw_mbs[pstr->raw_mbs_idx + byte_idx]];
|
||
pstr->mbs_case[byte_idx] = ch;
|
||
}
|
||
/* Write wide character and padding. */
|
||
pstr->wcs[byte_idx++] = wc;
|
||
/* Write paddings. */
|
||
for (remain_len = byte_idx + mbclen - 1; byte_idx < remain_len ;)
|
||
pstr->wcs[byte_idx++] = WEOF;
|
||
}
|
||
pstr->valid_len = byte_idx;
|
||
}
|
||
|
||
/* Build wide character buffer PSTR->WCS like build_wcs_buffer,
|
||
but for REG_ICASE. */
|
||
|
||
static void
|
||
build_wcs_upper_buffer (pstr)
|
||
re_string_t *pstr;
|
||
{
|
||
mbstate_t prev_st;
|
||
int byte_idx, end_idx, mbclen, remain_len;
|
||
/* Build the buffers from pstr->valid_len to either pstr->len or
|
||
pstr->bufs_len. */
|
||
end_idx = (pstr->bufs_len > pstr->len)? pstr->len : pstr->bufs_len;
|
||
for (byte_idx = pstr->valid_len; byte_idx < end_idx;)
|
||
{
|
||
wchar_t wc;
|
||
remain_len = end_idx - byte_idx;
|
||
prev_st = pstr->cur_state;
|
||
mbclen = mbrtowc (&wc, ((const char *) pstr->raw_mbs + pstr->raw_mbs_idx
|
||
+ byte_idx), remain_len, &pstr->cur_state);
|
||
if (BE (mbclen == (size_t) -2, 0))
|
||
{
|
||
/* The buffer doesn't have enough space, finish to build. */
|
||
pstr->cur_state = prev_st;
|
||
break;
|
||
}
|
||
else if (mbclen == 1 || mbclen == (size_t) -1 || mbclen == 0)
|
||
{
|
||
/* In case of a singlebyte character. */
|
||
int ch = pstr->raw_mbs[pstr->raw_mbs_idx + byte_idx];
|
||
/* Apply the translateion if we need. */
|
||
if (pstr->trans != NULL && mbclen == 1)
|
||
{
|
||
ch = pstr->trans[ch];
|
||
pstr->mbs_case[byte_idx] = ch;
|
||
}
|
||
pstr->wcs[byte_idx] = iswlower (wc) ? toupper (wc) : wc;
|
||
pstr->mbs[byte_idx++] = islower (ch) ? toupper (ch) : ch;
|
||
if (BE (mbclen == (size_t) -1, 0))
|
||
pstr->cur_state = prev_st;
|
||
}
|
||
else /* mbclen > 1 */
|
||
{
|
||
if (iswlower (wc))
|
||
wcrtomb ((char *) pstr->mbs + byte_idx, towupper (wc), &prev_st);
|
||
else
|
||
memcpy (pstr->mbs + byte_idx,
|
||
pstr->raw_mbs + pstr->raw_mbs_idx + byte_idx, mbclen);
|
||
pstr->wcs[byte_idx++] = iswlower (wc) ? toupper (wc) : wc;
|
||
/* Write paddings. */
|
||
for (remain_len = byte_idx + mbclen - 1; byte_idx < remain_len ;)
|
||
pstr->wcs[byte_idx++] = WEOF;
|
||
}
|
||
}
|
||
pstr->valid_len = byte_idx;
|
||
}
|
||
|
||
/* Skip characters until the index becomes greater than NEW_RAW_IDX.
|
||
Return the index. */
|
||
|
||
static int
|
||
re_string_skip_chars (pstr, new_raw_idx)
|
||
re_string_t *pstr;
|
||
int new_raw_idx;
|
||
{
|
||
mbstate_t prev_st;
|
||
int rawbuf_idx, mbclen;
|
||
|
||
/* Skip the characters which are not necessary to check. */
|
||
for (rawbuf_idx = pstr->raw_mbs_idx + pstr->valid_len;
|
||
rawbuf_idx < new_raw_idx;)
|
||
{
|
||
int remain_len = pstr->len - rawbuf_idx;
|
||
prev_st = pstr->cur_state;
|
||
mbclen = mbrlen ((const char *) pstr->raw_mbs + rawbuf_idx, remain_len,
|
||
&pstr->cur_state);
|
||
if (BE (mbclen == (size_t) -2 || mbclen == (size_t) -1 || mbclen == 0, 0))
|
||
{
|
||
/* We treat these cases as a singlebyte character. */
|
||
mbclen = 1;
|
||
pstr->cur_state = prev_st;
|
||
}
|
||
/* Then proceed the next character. */
|
||
rawbuf_idx += mbclen;
|
||
}
|
||
return rawbuf_idx;
|
||
}
|
||
#endif /* RE_ENABLE_I18N */
|
||
|
||
/* Build the buffer PSTR->MBS, and apply the translation if we need.
|
||
This function is used in case of REG_ICASE. */
|
||
|
||
static void
|
||
build_upper_buffer (pstr)
|
||
re_string_t *pstr;
|
||
{
|
||
int char_idx, end_idx;
|
||
end_idx = (pstr->bufs_len > pstr->len) ? pstr->len : pstr->bufs_len;
|
||
|
||
for (char_idx = pstr->valid_len; char_idx < end_idx; ++char_idx)
|
||
{
|
||
int ch = pstr->raw_mbs[pstr->raw_mbs_idx + char_idx];
|
||
if (pstr->trans != NULL)
|
||
{
|
||
ch = pstr->trans[ch];
|
||
pstr->mbs_case[char_idx] = ch;
|
||
}
|
||
if (islower (ch))
|
||
pstr->mbs[char_idx] = toupper (ch);
|
||
else
|
||
pstr->mbs[char_idx] = ch;
|
||
}
|
||
pstr->valid_len = char_idx;
|
||
}
|
||
|
||
/* Apply TRANS to the buffer in PSTR. */
|
||
|
||
static void
|
||
re_string_translate_buffer (pstr)
|
||
re_string_t *pstr;
|
||
{
|
||
int buf_idx, end_idx;
|
||
end_idx = (pstr->bufs_len > pstr->len) ? pstr->len : pstr->bufs_len;
|
||
|
||
for (buf_idx = pstr->valid_len; buf_idx < end_idx; ++buf_idx)
|
||
{
|
||
int ch = pstr->raw_mbs[pstr->raw_mbs_idx + buf_idx];
|
||
pstr->mbs_case[buf_idx] = pstr->trans[ch];
|
||
}
|
||
|
||
pstr->valid_len = buf_idx;
|
||
}
|
||
|
||
/* This function re-construct the buffers.
|
||
Concretely, convert to wide character in case of MB_CUR_MAX > 1,
|
||
convert to upper case in case of REG_ICASE, apply translation. */
|
||
|
||
static reg_errcode_t
|
||
re_string_reconstruct (pstr, idx, eflags, newline)
|
||
re_string_t *pstr;
|
||
int idx, eflags, newline;
|
||
{
|
||
int offset = idx - pstr->raw_mbs_idx;
|
||
if (offset < 0)
|
||
{
|
||
/* Reset buffer. */
|
||
#ifdef RE_ENABLE_I18N
|
||
if (MB_CUR_MAX > 1)
|
||
memset (&pstr->cur_state, '\0', sizeof (mbstate_t));
|
||
#endif /* RE_ENABLE_I18N */
|
||
pstr->valid_len = pstr->raw_mbs_idx = 0;
|
||
pstr->tip_context = ((eflags & REG_NOTBOL) ? CONTEXT_BEGBUF
|
||
: CONTEXT_NEWLINE | CONTEXT_BEGBUF);
|
||
if (!MBS_CASE_ALLOCATED (pstr))
|
||
pstr->mbs_case = (unsigned char *) pstr->raw_mbs;
|
||
if (!MBS_ALLOCATED (pstr) && !MBS_CASE_ALLOCATED (pstr))
|
||
pstr->mbs = (unsigned char *) pstr->raw_mbs;
|
||
offset = idx;
|
||
}
|
||
|
||
if (offset != 0)
|
||
{
|
||
pstr->tip_context = re_string_context_at (pstr, offset - 1, eflags,
|
||
newline);
|
||
/* Are the characters which are already checked remain? */
|
||
if (offset < pstr->valid_len)
|
||
{
|
||
/* Yes, move them to the front of the buffer. */
|
||
#ifdef RE_ENABLE_I18N
|
||
if (MB_CUR_MAX > 1)
|
||
memmove (pstr->wcs, pstr->wcs + offset,
|
||
(pstr->valid_len - offset) * sizeof (wint_t));
|
||
#endif /* RE_ENABLE_I18N */
|
||
if (MBS_ALLOCATED (pstr))
|
||
memmove (pstr->mbs, pstr->mbs + offset,
|
||
pstr->valid_len - offset);
|
||
if (MBS_CASE_ALLOCATED (pstr))
|
||
memmove (pstr->mbs_case, pstr->mbs_case + offset,
|
||
pstr->valid_len - offset);
|
||
pstr->valid_len -= offset;
|
||
#if DEBUG
|
||
assert (pstr->valid_len > 0);
|
||
#endif
|
||
}
|
||
else
|
||
{
|
||
/* No, skip all characters until IDX. */
|
||
pstr->valid_len = 0;
|
||
#ifdef RE_ENABLE_I18N
|
||
if (MB_CUR_MAX > 1)
|
||
{
|
||
int wcs_idx;
|
||
pstr->valid_len = re_string_skip_chars (pstr, idx) - idx;
|
||
for (wcs_idx = 0; wcs_idx < pstr->valid_len; ++wcs_idx)
|
||
pstr->wcs[wcs_idx] = WEOF;
|
||
}
|
||
#endif /* RE_ENABLE_I18N */
|
||
}
|
||
if (!MBS_CASE_ALLOCATED (pstr))
|
||
{
|
||
pstr->mbs_case += offset;
|
||
/* In case of !MBS_ALLOCATED && !MBS_CASE_ALLOCATED. */
|
||
if (!MBS_ALLOCATED (pstr))
|
||
pstr->mbs += offset;
|
||
}
|
||
}
|
||
pstr->raw_mbs_idx = idx;
|
||
pstr->len -= offset;
|
||
pstr->stop -= offset;
|
||
|
||
/* Then build the buffers. */
|
||
#ifdef RE_ENABLE_I18N
|
||
if (MB_CUR_MAX > 1)
|
||
{
|
||
if (pstr->icase)
|
||
build_wcs_upper_buffer (pstr);
|
||
else
|
||
build_wcs_buffer (pstr);
|
||
}
|
||
else
|
||
#endif /* RE_ENABLE_I18N */
|
||
{
|
||
if (pstr->icase)
|
||
build_upper_buffer (pstr);
|
||
else if (pstr->trans != NULL)
|
||
re_string_translate_buffer (pstr);
|
||
}
|
||
pstr->cur_idx = 0;
|
||
|
||
return REG_NOERROR;
|
||
}
|
||
|
||
static void
|
||
re_string_destruct (pstr)
|
||
re_string_t *pstr;
|
||
{
|
||
#ifdef RE_ENABLE_I18N
|
||
re_free (pstr->wcs);
|
||
#endif /* RE_ENABLE_I18N */
|
||
if (MBS_ALLOCATED (pstr))
|
||
re_free (pstr->mbs);
|
||
if (MBS_CASE_ALLOCATED (pstr))
|
||
re_free (pstr->mbs_case);
|
||
}
|
||
|
||
/* Return the context at IDX in INPUT. */
|
||
|
||
static unsigned int
|
||
re_string_context_at (input, idx, eflags, newline_anchor)
|
||
const re_string_t *input;
|
||
int idx, eflags, newline_anchor;
|
||
{
|
||
int c;
|
||
if (idx < 0 || idx == input->len)
|
||
{
|
||
if (idx < 0)
|
||
/* In this case, we use the value stored in input->tip_context,
|
||
since we can't know the character in input->mbs[-1] here. */
|
||
return input->tip_context;
|
||
else /* (idx == input->len) */
|
||
return ((eflags & REG_NOTEOL) ? CONTEXT_ENDBUF
|
||
: CONTEXT_NEWLINE | CONTEXT_ENDBUF);
|
||
}
|
||
c = re_string_byte_at (input, idx);
|
||
if (IS_WORD_CHAR (c))
|
||
return CONTEXT_WORD;
|
||
return (newline_anchor && IS_NEWLINE (c)) ? CONTEXT_NEWLINE : 0;
|
||
}
|
||
|
||
/* Functions for set operation. */
|
||
|
||
static reg_errcode_t
|
||
re_node_set_alloc (set, size)
|
||
re_node_set *set;
|
||
int size;
|
||
{
|
||
set->alloc = size;
|
||
set->nelem = 0;
|
||
set->elems = re_malloc (int, size);
|
||
if (BE (set->elems == NULL, 0))
|
||
return REG_ESPACE;
|
||
return REG_NOERROR;
|
||
}
|
||
|
||
static reg_errcode_t
|
||
re_node_set_init_1 (set, elem)
|
||
re_node_set *set;
|
||
int elem;
|
||
{
|
||
set->alloc = 1;
|
||
set->nelem = 1;
|
||
set->elems = re_malloc (int, 1);
|
||
if (BE (set->elems == NULL, 0))
|
||
return REG_ESPACE;
|
||
set->elems[0] = elem;
|
||
return REG_NOERROR;
|
||
}
|
||
|
||
static reg_errcode_t
|
||
re_node_set_init_2 (set, elem1, elem2)
|
||
re_node_set *set;
|
||
int elem1, elem2;
|
||
{
|
||
set->alloc = 2;
|
||
set->elems = re_malloc (int, 2);
|
||
if (BE (set->elems == NULL, 0))
|
||
return REG_ESPACE;
|
||
if (elem1 == elem2)
|
||
{
|
||
set->nelem = 1;
|
||
set->elems[0] = elem1;
|
||
}
|
||
else
|
||
{
|
||
set->nelem = 2;
|
||
if (elem1 < elem2)
|
||
{
|
||
set->elems[0] = elem1;
|
||
set->elems[1] = elem2;
|
||
}
|
||
else
|
||
{
|
||
set->elems[0] = elem2;
|
||
set->elems[1] = elem1;
|
||
}
|
||
}
|
||
return REG_NOERROR;
|
||
}
|
||
|
||
static reg_errcode_t
|
||
re_node_set_init_copy (dest, src)
|
||
re_node_set *dest;
|
||
const re_node_set *src;
|
||
{
|
||
dest->nelem = src->nelem;
|
||
if (src->nelem > 0)
|
||
{
|
||
dest->alloc = dest->nelem;
|
||
dest->elems = re_malloc (int, dest->alloc);
|
||
if (BE (dest->elems == NULL, 0))
|
||
return REG_ESPACE;
|
||
memcpy (dest->elems, src->elems, src->nelem * sizeof (int));
|
||
}
|
||
else
|
||
re_node_set_init_empty (dest);
|
||
return REG_NOERROR;
|
||
}
|
||
|
||
/* Calculate the intersection of the sets SRC1 and SRC2. And store it in
|
||
DEST. Return value indicate the error code or REG_NOERROR if succeeded.
|
||
Note: We assume dest->elems is NULL, when dest->alloc is 0. */
|
||
|
||
static reg_errcode_t
|
||
re_node_set_intersect (dest, src1, src2)
|
||
re_node_set *dest;
|
||
const re_node_set *src1, *src2;
|
||
{
|
||
int i1, i2, id;
|
||
if (src1->nelem > 0 && src2->nelem > 0)
|
||
{
|
||
if (src1->nelem + src2->nelem > dest->alloc)
|
||
{
|
||
dest->alloc = src1->nelem + src2->nelem;
|
||
dest->elems = re_realloc (dest->elems, int, dest->alloc);
|
||
if (BE (dest->elems == NULL, 0))
|
||
return REG_ESPACE;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* The intersection of empty sets is also empty set. */
|
||
dest->nelem = 0;
|
||
return REG_NOERROR;
|
||
}
|
||
|
||
for (i1 = i2 = id = 0; i1 < src1->nelem && i2 < src2->nelem; )
|
||
{
|
||
if (src1->elems[i1] > src2->elems[i2])
|
||
{
|
||
++i2;
|
||
continue;
|
||
}
|
||
/* The intersection must have the elements which are in both of
|
||
SRC1 and SRC2. */
|
||
if (src1->elems[i1] == src2->elems[i2])
|
||
dest->elems[id++] = src2->elems[i2++];
|
||
++i1;
|
||
}
|
||
dest->nelem = id;
|
||
return REG_NOERROR;
|
||
}
|
||
|
||
/* Calculate the intersection of the sets SRC1 and SRC2. And merge it to
|
||
DEST. Return value indicate the error code or REG_NOERROR if succeeded.
|
||
Note: We assume dest->elems is NULL, when dest->alloc is 0. */
|
||
|
||
static reg_errcode_t
|
||
re_node_set_add_intersect (dest, src1, src2)
|
||
re_node_set *dest;
|
||
const re_node_set *src1, *src2;
|
||
{
|
||
int i1, i2, id;
|
||
if (src1->nelem > 0 && src2->nelem > 0)
|
||
{
|
||
if (src1->nelem + src2->nelem + dest->nelem > dest->alloc)
|
||
{
|
||
dest->alloc = src1->nelem + src2->nelem + dest->nelem;
|
||
dest->elems = re_realloc (dest->elems, int, dest->alloc);
|
||
if (BE (dest->elems == NULL, 0))
|
||
return REG_ESPACE;
|
||
}
|
||
}
|
||
else
|
||
return REG_NOERROR;
|
||
|
||
for (i1 = i2 = id = 0 ; i1 < src1->nelem && i2 < src2->nelem ;)
|
||
{
|
||
if (src1->elems[i1] > src2->elems[i2])
|
||
{
|
||
++i2;
|
||
continue;
|
||
}
|
||
if (src1->elems[i1] == src2->elems[i2])
|
||
{
|
||
while (id < dest->nelem && dest->elems[id] < src2->elems[i2])
|
||
++id;
|
||
if (id < dest->nelem && dest->elems[id] == src2->elems[i2])
|
||
++id;
|
||
else
|
||
{
|
||
memmove (dest->elems + id + 1, dest->elems + id,
|
||
sizeof (int) * (dest->nelem - id));
|
||
dest->elems[id++] = src2->elems[i2++];
|
||
++dest->nelem;
|
||
}
|
||
}
|
||
++i1;
|
||
}
|
||
return REG_NOERROR;
|
||
}
|
||
|
||
/* Calculate the union set of the sets SRC1 and SRC2. And store it to
|
||
DEST. Return value indicate the error code or REG_NOERROR if succeeded. */
|
||
|
||
static reg_errcode_t
|
||
re_node_set_init_union (dest, src1, src2)
|
||
re_node_set *dest;
|
||
const re_node_set *src1, *src2;
|
||
{
|
||
int i1, i2, id;
|
||
if (src1 != NULL && src1->nelem > 0 && src2 != NULL && src2->nelem > 0)
|
||
{
|
||
dest->alloc = src1->nelem + src2->nelem;
|
||
dest->elems = re_malloc (int, dest->alloc);
|
||
if (BE (dest->elems == NULL, 0))
|
||
return REG_ESPACE;
|
||
}
|
||
else
|
||
{
|
||
if (src1 != NULL && src1->nelem > 0)
|
||
return re_node_set_init_copy (dest, src1);
|
||
else if (src2 != NULL && src2->nelem > 0)
|
||
return re_node_set_init_copy (dest, src2);
|
||
else
|
||
re_node_set_init_empty (dest);
|
||
return REG_NOERROR;
|
||
}
|
||
for (i1 = i2 = id = 0 ; i1 < src1->nelem && i2 < src2->nelem ;)
|
||
{
|
||
if (src1->elems[i1] > src2->elems[i2])
|
||
{
|
||
dest->elems[id++] = src2->elems[i2++];
|
||
continue;
|
||
}
|
||
if (src1->elems[i1] == src2->elems[i2])
|
||
++i2;
|
||
dest->elems[id++] = src1->elems[i1++];
|
||
}
|
||
if (i1 < src1->nelem)
|
||
{
|
||
memcpy (dest->elems + id, src1->elems + i1,
|
||
(src1->nelem - i1) * sizeof (int));
|
||
id += src1->nelem - i1;
|
||
}
|
||
else if (i2 < src2->nelem)
|
||
{
|
||
memcpy (dest->elems + id, src2->elems + i2,
|
||
(src2->nelem - i2) * sizeof (int));
|
||
id += src2->nelem - i2;
|
||
}
|
||
dest->nelem = id;
|
||
return REG_NOERROR;
|
||
}
|
||
|
||
/* Calculate the union set of the sets DEST and SRC. And store it to
|
||
DEST. Return value indicate the error code or REG_NOERROR if succeeded. */
|
||
|
||
static reg_errcode_t
|
||
re_node_set_merge (dest, src)
|
||
re_node_set *dest;
|
||
const re_node_set *src;
|
||
{
|
||
int si, di;
|
||
if (src == NULL || src->nelem == 0)
|
||
return REG_NOERROR;
|
||
if (dest->alloc < src->nelem + dest->nelem)
|
||
{
|
||
dest->alloc = 2 * (src->nelem + dest->alloc);
|
||
dest->elems = re_realloc (dest->elems, int, dest->alloc);
|
||
if (BE (dest->elems == NULL, 0))
|
||
return REG_ESPACE;
|
||
}
|
||
|
||
for (si = 0, di = 0 ; si < src->nelem && di < dest->nelem ;)
|
||
{
|
||
int cp_from, ncp, mid, right, src_elem = src->elems[si];
|
||
/* Binary search the spot we will add the new element. */
|
||
right = dest->nelem;
|
||
while (di < right)
|
||
{
|
||
mid = (di + right) / 2;
|
||
if (dest->elems[mid] < src_elem)
|
||
di = mid + 1;
|
||
else
|
||
right = mid;
|
||
}
|
||
if (di >= dest->nelem)
|
||
break;
|
||
|
||
if (dest->elems[di] == src_elem)
|
||
{
|
||
/* Skip since, DEST already has the element. */
|
||
++di;
|
||
++si;
|
||
continue;
|
||
}
|
||
|
||
/* Skip the src elements which are less than dest->elems[di]. */
|
||
cp_from = si;
|
||
while (si < src->nelem && src->elems[si] < dest->elems[di])
|
||
++si;
|
||
/* Copy these src elements. */
|
||
ncp = si - cp_from;
|
||
memmove (dest->elems + di + ncp, dest->elems + di,
|
||
sizeof (int) * (dest->nelem - di));
|
||
memcpy (dest->elems + di, src->elems + cp_from,
|
||
sizeof (int) * ncp);
|
||
/* Update counters. */
|
||
di += ncp;
|
||
dest->nelem += ncp;
|
||
}
|
||
|
||
/* Copy remaining src elements. */
|
||
if (si < src->nelem)
|
||
{
|
||
memcpy (dest->elems + di, src->elems + si,
|
||
sizeof (int) * (src->nelem - si));
|
||
dest->nelem += src->nelem - si;
|
||
}
|
||
return REG_NOERROR;
|
||
}
|
||
|
||
/* Insert the new element ELEM to the re_node_set* SET.
|
||
return 0 if SET already has ELEM,
|
||
return -1 if an error is occured, return 1 otherwise. */
|
||
|
||
static int
|
||
re_node_set_insert (set, elem)
|
||
re_node_set *set;
|
||
int elem;
|
||
{
|
||
int idx, right, mid;
|
||
/* In case of the set is empty. */
|
||
if (set->elems == NULL || set->alloc == 0)
|
||
{
|
||
if (BE (re_node_set_init_1 (set, elem) == REG_NOERROR, 1))
|
||
return 1;
|
||
else
|
||
return -1;
|
||
}
|
||
|
||
/* Binary search the spot we will add the new element. */
|
||
idx = 0;
|
||
right = set->nelem;
|
||
while (idx < right)
|
||
{
|
||
mid = (idx + right) / 2;
|
||
if (set->elems[mid] < elem)
|
||
idx = mid + 1;
|
||
else
|
||
right = mid;
|
||
}
|
||
|
||
/* Realloc if we need. */
|
||
if (set->alloc < set->nelem + 1)
|
||
{
|
||
int *new_array;
|
||
set->alloc = set->alloc * 2;
|
||
new_array = re_malloc (int, set->alloc);
|
||
if (BE (new_array == NULL, 0))
|
||
return -1;
|
||
/* Copy the elements they are followed by the new element. */
|
||
if (idx > 0)
|
||
memcpy (new_array, set->elems, sizeof (int) * (idx));
|
||
/* Copy the elements which follows the new element. */
|
||
if (set->nelem - idx > 0)
|
||
memcpy (new_array + idx + 1, set->elems + idx,
|
||
sizeof (int) * (set->nelem - idx));
|
||
re_free (set->elems);
|
||
set->elems = new_array;
|
||
}
|
||
else
|
||
{
|
||
/* Move the elements which follows the new element. */
|
||
if (set->nelem - idx > 0)
|
||
memmove (set->elems + idx + 1, set->elems + idx,
|
||
sizeof (int) * (set->nelem - idx));
|
||
}
|
||
/* Insert the new element. */
|
||
set->elems[idx] = elem;
|
||
++set->nelem;
|
||
return 1;
|
||
}
|
||
|
||
/* Compare two node sets SET1 and SET2.
|
||
return 1 if SET1 and SET2 are equivalent, retrun 0 otherwise. */
|
||
|
||
static int
|
||
re_node_set_compare (set1, set2)
|
||
const re_node_set *set1, *set2;
|
||
{
|
||
int i;
|
||
if (set1 == NULL || set2 == NULL || set1->nelem != set2->nelem)
|
||
return 0;
|
||
for (i = 0 ; i < set1->nelem ; i++)
|
||
if (set1->elems[i] != set2->elems[i])
|
||
return 0;
|
||
return 1;
|
||
}
|
||
|
||
/* Return 1 if SET contains the element ELEM, return 0 otherwise. */
|
||
|
||
static int
|
||
re_node_set_contains (set, elem)
|
||
const re_node_set *set;
|
||
int elem;
|
||
{
|
||
int idx, right, mid;
|
||
if (set->nelem <= 0)
|
||
return 0;
|
||
|
||
/* Binary search the element. */
|
||
idx = 0;
|
||
right = set->nelem - 1;
|
||
while (idx < right)
|
||
{
|
||
mid = (idx + right) / 2;
|
||
if (set->elems[mid] < elem)
|
||
idx = mid + 1;
|
||
else
|
||
right = mid;
|
||
}
|
||
return set->elems[idx] == elem;
|
||
}
|
||
|
||
static void
|
||
re_node_set_remove_at (set, idx)
|
||
re_node_set *set;
|
||
int idx;
|
||
{
|
||
if (idx < 0 || idx >= set->nelem)
|
||
return;
|
||
if (idx < set->nelem - 1)
|
||
memmove (set->elems + idx, set->elems + idx + 1,
|
||
sizeof (int) * (set->nelem - idx - 1));
|
||
--set->nelem;
|
||
}
|
||
|
||
|
||
/* Add the token TOKEN to dfa->nodes, and return the index of the token.
|
||
Or return -1, if an error will be occured. */
|
||
|
||
static int
|
||
re_dfa_add_node (dfa, token, mode)
|
||
re_dfa_t *dfa;
|
||
re_token_t token;
|
||
int mode;
|
||
{
|
||
if (dfa->nodes_len >= dfa->nodes_alloc)
|
||
{
|
||
re_token_t *new_array;
|
||
dfa->nodes_alloc *= 2;
|
||
new_array = re_realloc (dfa->nodes, re_token_t, dfa->nodes_alloc);
|
||
if (BE (new_array == NULL, 0))
|
||
return -1;
|
||
else
|
||
dfa->nodes = new_array;
|
||
if (mode)
|
||
{
|
||
int *new_firsts, *new_nexts;
|
||
re_node_set *new_edests, *new_eclosures, *new_inveclosures;
|
||
|
||
new_firsts = re_realloc (dfa->firsts, int, dfa->nodes_alloc);
|
||
new_nexts = re_realloc (dfa->nexts, int, dfa->nodes_alloc);
|
||
new_edests = re_realloc (dfa->edests, re_node_set, dfa->nodes_alloc);
|
||
new_eclosures = re_realloc (dfa->eclosures, re_node_set,
|
||
dfa->nodes_alloc);
|
||
new_inveclosures = re_realloc (dfa->inveclosures, re_node_set,
|
||
dfa->nodes_alloc);
|
||
if (BE (new_firsts == NULL || new_nexts == NULL || new_edests == NULL
|
||
|| new_eclosures == NULL || new_inveclosures == NULL, 0))
|
||
return -1;
|
||
dfa->firsts = new_firsts;
|
||
dfa->nexts = new_nexts;
|
||
dfa->edests = new_edests;
|
||
dfa->eclosures = new_eclosures;
|
||
dfa->inveclosures = new_inveclosures;
|
||
}
|
||
}
|
||
dfa->nodes[dfa->nodes_len] = token;
|
||
dfa->nodes[dfa->nodes_len].duplicated = 0;
|
||
return dfa->nodes_len++;
|
||
}
|
||
|
||
static unsigned int inline
|
||
calc_state_hash (nodes, context)
|
||
const re_node_set *nodes;
|
||
unsigned int context;
|
||
{
|
||
unsigned int hash = nodes->nelem + context;
|
||
int i;
|
||
for (i = 0 ; i < nodes->nelem ; i++)
|
||
hash += nodes->elems[i];
|
||
return hash;
|
||
}
|
||
|
||
/* Search for the state whose node_set is equivalent to NODES.
|
||
Return the pointer to the state, if we found it in the DFA.
|
||
Otherwise create the new one and return it. In case of an error
|
||
return NULL and set the error code in ERR.
|
||
Note: - We assume NULL as the invalid state, then it is possible that
|
||
return value is NULL and ERR is REG_NOERROR.
|
||
- We never return non-NULL value in case of any errors, it is for
|
||
optimization. */
|
||
|
||
static re_dfastate_t*
|
||
re_acquire_state (err, dfa, nodes)
|
||
reg_errcode_t *err;
|
||
re_dfa_t *dfa;
|
||
const re_node_set *nodes;
|
||
{
|
||
unsigned int hash;
|
||
re_dfastate_t *new_state;
|
||
struct re_state_table_entry *spot;
|
||
int i;
|
||
if (BE (nodes->nelem == 0, 0))
|
||
{
|
||
*err = REG_NOERROR;
|
||
return NULL;
|
||
}
|
||
hash = calc_state_hash (nodes, 0);
|
||
spot = dfa->state_table + (hash & dfa->state_hash_mask);
|
||
|
||
for (i = 0 ; i < spot->num ; i++)
|
||
{
|
||
re_dfastate_t *state = spot->array[i];
|
||
if (hash != state->hash)
|
||
continue;
|
||
if (re_node_set_compare (&state->nodes, nodes))
|
||
return state;
|
||
}
|
||
|
||
/* There are no appropriate state in the dfa, create the new one. */
|
||
new_state = create_ci_newstate (dfa, nodes, hash);
|
||
if (BE (new_state != NULL, 1))
|
||
return new_state;
|
||
else
|
||
{
|
||
*err = REG_ESPACE;
|
||
return NULL;
|
||
}
|
||
}
|
||
|
||
/* Search for the state whose node_set is equivalent to NODES and
|
||
whose context is equivalent to CONTEXT.
|
||
Return the pointer to the state, if we found it in the DFA.
|
||
Otherwise create the new one and return it. In case of an error
|
||
return NULL and set the error code in ERR.
|
||
Note: - We assume NULL as the invalid state, then it is possible that
|
||
return value is NULL and ERR is REG_NOERROR.
|
||
- We never return non-NULL value in case of any errors, it is for
|
||
optimization. */
|
||
|
||
static re_dfastate_t*
|
||
re_acquire_state_context (err, dfa, nodes, context)
|
||
reg_errcode_t *err;
|
||
re_dfa_t *dfa;
|
||
const re_node_set *nodes;
|
||
unsigned int context;
|
||
{
|
||
unsigned int hash;
|
||
re_dfastate_t *new_state;
|
||
struct re_state_table_entry *spot;
|
||
int i;
|
||
if (nodes->nelem == 0)
|
||
{
|
||
*err = REG_NOERROR;
|
||
return NULL;
|
||
}
|
||
hash = calc_state_hash (nodes, context);
|
||
spot = dfa->state_table + (hash & dfa->state_hash_mask);
|
||
|
||
for (i = 0 ; i < spot->num ; i++)
|
||
{
|
||
re_dfastate_t *state = spot->array[i];
|
||
if (hash != state->hash)
|
||
continue;
|
||
if (re_node_set_compare (state->entrance_nodes, nodes)
|
||
&& state->context == context)
|
||
return state;
|
||
}
|
||
/* There are no appropriate state in `dfa', create the new one. */
|
||
new_state = create_cd_newstate (dfa, nodes, context, hash);
|
||
if (BE (new_state != NULL, 1))
|
||
return new_state;
|
||
else
|
||
{
|
||
*err = REG_ESPACE;
|
||
return NULL;
|
||
}
|
||
}
|
||
|
||
/* Allocate memory for DFA state and initialize common properties.
|
||
Return the new state if succeeded, otherwise return NULL. */
|
||
|
||
static re_dfastate_t *
|
||
create_newstate_common (dfa, nodes, hash)
|
||
re_dfa_t *dfa;
|
||
const re_node_set *nodes;
|
||
unsigned int hash;
|
||
{
|
||
re_dfastate_t *newstate;
|
||
newstate = (re_dfastate_t *) calloc (sizeof (re_dfastate_t), 1);
|
||
if (BE (newstate == NULL, 0))
|
||
return NULL;
|
||
re_node_set_init_copy (&newstate->nodes, nodes);
|
||
newstate->trtable = NULL;
|
||
newstate->trtable_search = NULL;
|
||
newstate->hash = hash;
|
||
return newstate;
|
||
}
|
||
|
||
/* Store the new state NEWSTATE whose hash value is HASH in appropriate
|
||
position. Return value indicate the error code if failed. */
|
||
|
||
static reg_errcode_t
|
||
register_state (dfa, newstate, hash)
|
||
re_dfa_t *dfa;
|
||
re_dfastate_t *newstate;
|
||
unsigned int hash;
|
||
{
|
||
struct re_state_table_entry *spot;
|
||
spot = dfa->state_table + (hash & dfa->state_hash_mask);
|
||
|
||
if (spot->alloc <= spot->num)
|
||
{
|
||
spot->alloc = 2 * spot->num + 2;
|
||
spot->array = re_realloc (spot->array, re_dfastate_t *, spot->alloc);
|
||
if (BE (spot->array == NULL, 0))
|
||
return REG_ESPACE;
|
||
}
|
||
spot->array[spot->num++] = newstate;
|
||
return REG_NOERROR;
|
||
}
|
||
|
||
/* Create the new state which is independ of contexts.
|
||
Return the new state if succeeded, otherwise return NULL. */
|
||
|
||
static re_dfastate_t *
|
||
create_ci_newstate (dfa, nodes, hash)
|
||
re_dfa_t *dfa;
|
||
const re_node_set *nodes;
|
||
unsigned int hash;
|
||
{
|
||
int i;
|
||
reg_errcode_t err;
|
||
re_dfastate_t *newstate;
|
||
newstate = create_newstate_common (dfa, nodes, hash);
|
||
if (BE (newstate == NULL, 0))
|
||
return NULL;
|
||
newstate->entrance_nodes = &newstate->nodes;
|
||
|
||
for (i = 0 ; i < nodes->nelem ; i++)
|
||
{
|
||
re_token_t *node = dfa->nodes + nodes->elems[i];
|
||
re_token_type_t type = node->type;
|
||
if (type == CHARACTER)
|
||
continue;
|
||
|
||
/* If the state has the halt node, the state is a halt state. */
|
||
else if (type == END_OF_RE)
|
||
newstate->halt = 1;
|
||
#ifdef RE_ENABLE_I18N
|
||
else if (type == COMPLEX_BRACKET
|
||
|| (type == OP_PERIOD && MB_CUR_MAX > 1))
|
||
newstate->accept_mb = 1;
|
||
#endif /* RE_ENABLE_I18N */
|
||
else if (type == OP_BACK_REF)
|
||
newstate->has_backref = 1;
|
||
else if (type == ANCHOR || OP_CONTEXT_NODE)
|
||
{
|
||
newstate->has_constraint = 1;
|
||
if (type == OP_CONTEXT_NODE
|
||
&& dfa->nodes[node->opr.ctx_info->entity].type == END_OF_RE)
|
||
newstate->halt = 1;
|
||
}
|
||
}
|
||
err = register_state (dfa, newstate, hash);
|
||
return (err != REG_NOERROR) ? NULL : newstate;
|
||
}
|
||
|
||
/* Create the new state which is depend on the context CONTEXT.
|
||
Return the new state if succeeded, otherwise return NULL. */
|
||
|
||
static re_dfastate_t *
|
||
create_cd_newstate (dfa, nodes, context, hash)
|
||
re_dfa_t *dfa;
|
||
const re_node_set *nodes;
|
||
unsigned int context, hash;
|
||
{
|
||
int i, nctx_nodes = 0;
|
||
reg_errcode_t err;
|
||
re_dfastate_t *newstate;
|
||
|
||
newstate = create_newstate_common (dfa, nodes, hash);
|
||
if (BE (newstate == NULL, 0))
|
||
return NULL;
|
||
newstate->context = context;
|
||
newstate->entrance_nodes = &newstate->nodes;
|
||
|
||
for (i = 0 ; i < nodes->nelem ; i++)
|
||
{
|
||
unsigned int constraint = 0;
|
||
re_token_t *node = dfa->nodes + nodes->elems[i];
|
||
re_token_type_t type = node->type;
|
||
if (type == CHARACTER)
|
||
continue;
|
||
|
||
/* If the state has the halt node, the state is a halt state. */
|
||
else if (type == END_OF_RE)
|
||
newstate->halt = 1;
|
||
#ifdef RE_ENABLE_I18N
|
||
else if (type == COMPLEX_BRACKET
|
||
|| (type == OP_PERIOD && MB_CUR_MAX > 1))
|
||
newstate->accept_mb = 1;
|
||
#endif /* RE_ENABLE_I18N */
|
||
else if (type == OP_BACK_REF)
|
||
newstate->has_backref = 1;
|
||
else if (type == ANCHOR)
|
||
constraint = node->opr.ctx_type;
|
||
else if (type == OP_CONTEXT_NODE)
|
||
{
|
||
re_token_type_t ctype = dfa->nodes[node->opr.ctx_info->entity].type;
|
||
constraint = node->constraint;
|
||
if (ctype == END_OF_RE)
|
||
newstate->halt = 1;
|
||
else if (ctype == OP_BACK_REF)
|
||
newstate->has_backref = 1;
|
||
#ifdef RE_ENABLE_I18N
|
||
else if (ctype == COMPLEX_BRACKET
|
||
|| (type == OP_PERIOD && MB_CUR_MAX > 1))
|
||
newstate->accept_mb = 1;
|
||
#endif /* RE_ENABLE_I18N */
|
||
}
|
||
|
||
if (constraint)
|
||
{
|
||
if (newstate->entrance_nodes == &newstate->nodes)
|
||
{
|
||
newstate->entrance_nodes = re_malloc (re_node_set, 1);
|
||
if (BE (newstate->entrance_nodes == NULL, 0))
|
||
return NULL;
|
||
re_node_set_init_copy (newstate->entrance_nodes, nodes);
|
||
nctx_nodes = 0;
|
||
newstate->has_constraint = 1;
|
||
}
|
||
|
||
if (NOT_SATISFY_PREV_CONSTRAINT (constraint,context))
|
||
{
|
||
re_node_set_remove_at (&newstate->nodes, i - nctx_nodes);
|
||
++nctx_nodes;
|
||
}
|
||
}
|
||
}
|
||
err = register_state (dfa, newstate, hash);
|
||
return (err != REG_NOERROR) ? NULL : newstate;
|
||
}
|