mirror of
https://sourceware.org/git/glibc.git
synced 2024-11-22 21:10:07 +00:00
30891f35fa
We stopped adding "Contributed by" or similar lines in sources in 2012 in favour of git logs and keeping the Contributors section of the glibc manual up to date. Removing these lines makes the license header a bit more consistent across files and also removes the possibility of error in attribution when license blocks or files are copied across since the contributed-by lines don't actually reflect reality in those cases. Move all "Contributed by" and similar lines (Written by, Test by, etc.) into a new file CONTRIBUTED-BY to retain record of these contributions. These contributors are also mentioned in manual/contrib.texi, so we just maintain this additional record as a courtesy to the earlier developers. The following scripts were used to filter a list of files to edit in place and to clean up the CONTRIBUTED-BY file respectively. These were not added to the glibc sources because they're not expected to be of any use in future given that this is a one time task: https://gist.github.com/siddhesh/b5ecac94eabfd72ed2916d6d8157e7dc https://gist.github.com/siddhesh/15ea1f5e435ace9774f485030695ee02 Reviewed-by: Carlos O'Donell <carlos@redhat.com>
3249 lines
80 KiB
ArmAsm
3249 lines
80 KiB
ArmAsm
.file "tancotl.s"
|
|
|
|
|
|
// Copyright (c) 2000 - 2004, Intel Corporation
|
|
// All rights reserved.
|
|
//
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistributions in binary form must reproduce the above copyright
|
|
// notice, this list of conditions and the following disclaimer in the
|
|
// documentation and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of Intel Corporation may not be used to endorse or promote
|
|
// products derived from this software without specific prior written
|
|
// permission.
|
|
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
|
|
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
|
|
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
|
|
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
//
|
|
// Intel Corporation is the author of this code, and requests that all
|
|
// problem reports or change requests be submitted to it directly at
|
|
// http://www.intel.com/software/products/opensource/libraries/num.htm.
|
|
//
|
|
//*********************************************************************
|
|
//
|
|
// History:
|
|
//
|
|
// 02/02/00 (hand-optimized)
|
|
// 04/04/00 Unwind support added
|
|
// 12/28/00 Fixed false invalid flags
|
|
// 02/06/02 Improved speed
|
|
// 05/07/02 Changed interface to __libm_pi_by_2_reduce
|
|
// 05/30/02 Added cotl
|
|
// 02/10/03 Reordered header: .section, .global, .proc, .align;
|
|
// used data8 for long double table values
|
|
// 05/15/03 Reformatted data tables
|
|
// 10/26/04 Avoided using r14-31 as scratch so not clobbered by dynamic loader
|
|
//
|
|
//*********************************************************************
|
|
//
|
|
// Functions: tanl(x) = tangent(x), for double-extended precision x values
|
|
// cotl(x) = cotangent(x), for double-extended precision x values
|
|
//
|
|
//*********************************************************************
|
|
//
|
|
// Resources Used:
|
|
//
|
|
// Floating-Point Registers: f8 (Input and Return Value)
|
|
// f9-f15
|
|
// f32-f121
|
|
//
|
|
// General Purpose Registers:
|
|
// r32-r70
|
|
//
|
|
// Predicate Registers: p6-p15
|
|
//
|
|
//*********************************************************************
|
|
//
|
|
// IEEE Special Conditions for tanl:
|
|
//
|
|
// Denormal fault raised on denormal inputs
|
|
// Overflow exceptions do not occur
|
|
// Underflow exceptions raised when appropriate for tan
|
|
// (No specialized error handling for this routine)
|
|
// Inexact raised when appropriate by algorithm
|
|
//
|
|
// tanl(SNaN) = QNaN
|
|
// tanl(QNaN) = QNaN
|
|
// tanl(inf) = QNaN
|
|
// tanl(+/-0) = +/-0
|
|
//
|
|
//*********************************************************************
|
|
//
|
|
// IEEE Special Conditions for cotl:
|
|
//
|
|
// Denormal fault raised on denormal inputs
|
|
// Overflow exceptions occur at zero and near zero
|
|
// Underflow exceptions do not occur
|
|
// Inexact raised when appropriate by algorithm
|
|
//
|
|
// cotl(SNaN) = QNaN
|
|
// cotl(QNaN) = QNaN
|
|
// cotl(inf) = QNaN
|
|
// cotl(+/-0) = +/-Inf and error handling is called
|
|
//
|
|
//*********************************************************************
|
|
//
|
|
// Below are mathematical and algorithmic descriptions for tanl.
|
|
// For cotl we use next identity cot(x) = -tan(x + Pi/2).
|
|
// So, to compute cot(x) we just need to increment N (N = N + 1)
|
|
// and invert sign of the computed result.
|
|
//
|
|
//*********************************************************************
|
|
//
|
|
// Mathematical Description
|
|
//
|
|
// We consider the computation of FPTANL of Arg. Now, given
|
|
//
|
|
// Arg = N pi/2 + alpha, |alpha| <= pi/4,
|
|
//
|
|
// basic mathematical relationship shows that
|
|
//
|
|
// tan( Arg ) = tan( alpha ) if N is even;
|
|
// = -cot( alpha ) otherwise.
|
|
//
|
|
// The value of alpha is obtained by argument reduction and
|
|
// represented by two working precision numbers r and c where
|
|
//
|
|
// alpha = r + c accurately.
|
|
//
|
|
// The reduction method is described in a previous write up.
|
|
// The argument reduction scheme identifies 4 cases. For Cases 2
|
|
// and 4, because |alpha| is small, tan(r+c) and -cot(r+c) can be
|
|
// computed very easily by 2 or 3 terms of the Taylor series
|
|
// expansion as follows:
|
|
//
|
|
// Case 2:
|
|
// -------
|
|
//
|
|
// tan(r + c) = r + c + r^3/3 ...accurately
|
|
// -cot(r + c) = -1/(r+c) + r/3 ...accurately
|
|
//
|
|
// Case 4:
|
|
// -------
|
|
//
|
|
// tan(r + c) = r + c + r^3/3 + 2r^5/15 ...accurately
|
|
// -cot(r + c) = -1/(r+c) + r/3 + r^3/45 ...accurately
|
|
//
|
|
//
|
|
// The only cases left are Cases 1 and 3 of the argument reduction
|
|
// procedure. These two cases will be merged since after the
|
|
// argument is reduced in either cases, we have the reduced argument
|
|
// represented as r + c and that the magnitude |r + c| is not small
|
|
// enough to allow the usage of a very short approximation.
|
|
//
|
|
// The greatest challenge of this task is that the second terms of
|
|
// the Taylor series for tan(r) and -cot(r)
|
|
//
|
|
// r + r^3/3 + 2 r^5/15 + ...
|
|
//
|
|
// and
|
|
//
|
|
// -1/r + r/3 + r^3/45 + ...
|
|
//
|
|
// are not very small when |r| is close to pi/4 and the rounding
|
|
// errors will be a concern if simple polynomial accumulation is
|
|
// used. When |r| < 2^(-2), however, the second terms will be small
|
|
// enough (5 bits or so of right shift) that a normal Horner
|
|
// recurrence suffices. Hence there are two cases that we consider
|
|
// in the accurate computation of tan(r) and cot(r), |r| <= pi/4.
|
|
//
|
|
// Case small_r: |r| < 2^(-2)
|
|
// --------------------------
|
|
//
|
|
// Since Arg = N pi/4 + r + c accurately, we have
|
|
//
|
|
// tan(Arg) = tan(r+c) for N even,
|
|
// = -cot(r+c) otherwise.
|
|
//
|
|
// Here for this case, both tan(r) and -cot(r) can be approximated
|
|
// by simple polynomials:
|
|
//
|
|
// tan(r) = r + P1_1 r^3 + P1_2 r^5 + ... + P1_9 r^19
|
|
// -cot(r) = -1/r + Q1_1 r + Q1_2 r^3 + ... + Q1_7 r^13
|
|
//
|
|
// accurately. Since |r| is relatively small, tan(r+c) and
|
|
// -cot(r+c) can be accurately approximated by replacing r with
|
|
// r+c only in the first two terms of the corresponding polynomials.
|
|
//
|
|
// Note that P1_1 (and Q1_1 for that matter) approximates 1/3 to
|
|
// almost 64 sig. bits, thus
|
|
//
|
|
// P1_1 (r+c)^3 = P1_1 r^3 + c * r^2 accurately.
|
|
//
|
|
// Hence,
|
|
//
|
|
// tan(r+c) = r + P1_1 r^3 + P1_2 r^5 + ... + P1_9 r^19
|
|
// + c*(1 + r^2)
|
|
//
|
|
// -cot(r+c) = -1/(r+c) + Q1_1 r + Q1_2 r^3 + ... + Q1_7 r^13
|
|
// + Q1_1*c
|
|
//
|
|
//
|
|
// Case normal_r: 2^(-2) <= |r| <= pi/4
|
|
// ------------------------------------
|
|
//
|
|
// This case is more likely than the previous one if one considers
|
|
// r to be uniformly distributed in [-pi/4 pi/4].
|
|
//
|
|
// The required calculation is either
|
|
//
|
|
// tan(r + c) = tan(r) + correction, or
|
|
// -cot(r + c) = -cot(r) + correction.
|
|
//
|
|
// Specifically,
|
|
//
|
|
// tan(r + c) = tan(r) + c tan'(r) + O(c^2)
|
|
// = tan(r) + c sec^2(r) + O(c^2)
|
|
// = tan(r) + c SEC_sq ...accurately
|
|
// as long as SEC_sq approximates sec^2(r)
|
|
// to, say, 5 bits or so.
|
|
//
|
|
// Similarly,
|
|
//
|
|
// -cot(r + c) = -cot(r) - c cot'(r) + O(c^2)
|
|
// = -cot(r) + c csc^2(r) + O(c^2)
|
|
// = -cot(r) + c CSC_sq ...accurately
|
|
// as long as CSC_sq approximates csc^2(r)
|
|
// to, say, 5 bits or so.
|
|
//
|
|
// We therefore concentrate on accurately calculating tan(r) and
|
|
// cot(r) for a working-precision number r, |r| <= pi/4 to within
|
|
// 0.1% or so.
|
|
//
|
|
// We will employ a table-driven approach. Let
|
|
//
|
|
// r = sgn_r * 2^k * 1.b_1 b_2 ... b_5 ... b_63
|
|
// = sgn_r * ( B + x )
|
|
//
|
|
// where
|
|
//
|
|
// B = 2^k * 1.b_1 b_2 ... b_5 1
|
|
// x = |r| - B
|
|
//
|
|
// Now,
|
|
// tan(B) + tan(x)
|
|
// tan( B + x ) = ------------------------
|
|
// 1 - tan(B)*tan(x)
|
|
//
|
|
// / \
|
|
// | tan(B) + tan(x) |
|
|
|
|
// = tan(B) + | ------------------------ - tan(B) |
|
|
// | 1 - tan(B)*tan(x) |
|
|
// \ /
|
|
//
|
|
// sec^2(B) * tan(x)
|
|
// = tan(B) + ------------------------
|
|
// 1 - tan(B)*tan(x)
|
|
//
|
|
// (1/[sin(B)*cos(B)]) * tan(x)
|
|
// = tan(B) + --------------------------------
|
|
// cot(B) - tan(x)
|
|
//
|
|
//
|
|
// Clearly, the values of tan(B), cot(B) and 1/(sin(B)*cos(B)) are
|
|
// calculated beforehand and stored in a table. Since
|
|
//
|
|
// |x| <= 2^k * 2^(-6) <= 2^(-7) (because k = -1, -2)
|
|
//
|
|
// a very short polynomial will be sufficient to approximate tan(x)
|
|
// accurately. The details involved in computing the last expression
|
|
// will be given in the next section on algorithm description.
|
|
//
|
|
//
|
|
// Now, we turn to the case where cot( B + x ) is needed.
|
|
//
|
|
//
|
|
// 1 - tan(B)*tan(x)
|
|
// cot( B + x ) = ------------------------
|
|
// tan(B) + tan(x)
|
|
//
|
|
// / \
|
|
// | 1 - tan(B)*tan(x) |
|
|
|
|
// = cot(B) + | ----------------------- - cot(B) |
|
|
// | tan(B) + tan(x) |
|
|
// \ /
|
|
//
|
|
// [tan(B) + cot(B)] * tan(x)
|
|
// = cot(B) - ----------------------------
|
|
// tan(B) + tan(x)
|
|
//
|
|
// (1/[sin(B)*cos(B)]) * tan(x)
|
|
// = cot(B) - --------------------------------
|
|
// tan(B) + tan(x)
|
|
//
|
|
//
|
|
// Note that the values of tan(B), cot(B) and 1/(sin(B)*cos(B)) that
|
|
// are needed are the same set of values needed in the previous
|
|
// case.
|
|
//
|
|
// Finally, we can put all the ingredients together as follows:
|
|
//
|
|
// Arg = N * pi/2 + r + c ...accurately
|
|
//
|
|
// tan(Arg) = tan(r) + correction if N is even;
|
|
// = -cot(r) + correction otherwise.
|
|
//
|
|
// For Cases 2 and 4,
|
|
//
|
|
// Case 2:
|
|
// tan(Arg) = tan(r + c) = r + c + r^3/3 N even
|
|
// = -cot(r + c) = -1/(r+c) + r/3 N odd
|
|
// Case 4:
|
|
// tan(Arg) = tan(r + c) = r + c + r^3/3 + 2r^5/15 N even
|
|
// = -cot(r + c) = -1/(r+c) + r/3 + r^3/45 N odd
|
|
//
|
|
//
|
|
// For Cases 1 and 3,
|
|
//
|
|
// Case small_r: |r| < 2^(-2)
|
|
//
|
|
// tan(Arg) = r + P1_1 r^3 + P1_2 r^5 + ... + P1_9 r^19
|
|
// + c*(1 + r^2) N even
|
|
//
|
|
// = -1/(r+c) + Q1_1 r + Q1_2 r^3 + ... + Q1_7 r^13
|
|
// + Q1_1*c N odd
|
|
//
|
|
// Case normal_r: 2^(-2) <= |r| <= pi/4
|
|
//
|
|
// tan(Arg) = tan(r) + c * sec^2(r) N even
|
|
// = -cot(r) + c * csc^2(r) otherwise
|
|
//
|
|
// For N even,
|
|
//
|
|
// tan(Arg) = tan(r) + c*sec^2(r)
|
|
// = tan( sgn_r * (B+x) ) + c * sec^2(|r|)
|
|
// = sgn_r * ( tan(B+x) + sgn_r*c*sec^2(|r|) )
|
|
// = sgn_r * ( tan(B+x) + sgn_r*c*sec^2(B) )
|
|
//
|
|
// since B approximates |r| to 2^(-6) in relative accuracy.
|
|
//
|
|
// / (1/[sin(B)*cos(B)]) * tan(x)
|
|
// tan(Arg) = sgn_r * | tan(B) + --------------------------------
|
|
// \ cot(B) - tan(x)
|
|
// \
|
|
// + CORR |
|
|
|
|
// /
|
|
// where
|
|
//
|
|
// CORR = sgn_r*c*tan(B)*SC_inv(B); SC_inv(B) = 1/(sin(B)*cos(B)).
|
|
//
|
|
// For N odd,
|
|
//
|
|
// tan(Arg) = -cot(r) + c*csc^2(r)
|
|
// = -cot( sgn_r * (B+x) ) + c * csc^2(|r|)
|
|
// = sgn_r * ( -cot(B+x) + sgn_r*c*csc^2(|r|) )
|
|
// = sgn_r * ( -cot(B+x) + sgn_r*c*csc^2(B) )
|
|
//
|
|
// since B approximates |r| to 2^(-6) in relative accuracy.
|
|
//
|
|
// / (1/[sin(B)*cos(B)]) * tan(x)
|
|
// tan(Arg) = sgn_r * | -cot(B) + --------------------------------
|
|
// \ tan(B) + tan(x)
|
|
// \
|
|
// + CORR |
|
|
|
|
// /
|
|
// where
|
|
//
|
|
// CORR = sgn_r*c*cot(B)*SC_inv(B); SC_inv(B) = 1/(sin(B)*cos(B)).
|
|
//
|
|
//
|
|
// The actual algorithm prescribes how all the mathematical formulas
|
|
// are calculated.
|
|
//
|
|
//
|
|
// 2. Algorithmic Description
|
|
// ==========================
|
|
//
|
|
// 2.1 Computation for Cases 2 and 4.
|
|
// ----------------------------------
|
|
//
|
|
// For Case 2, we use two-term polynomials.
|
|
//
|
|
// For N even,
|
|
//
|
|
// rsq := r * r
|
|
// Poly := c + r * rsq * P1_1
|
|
// Result := r + Poly ...in user-defined rounding
|
|
//
|
|
// For N odd,
|
|
// S_hi := -frcpa(r) ...8 bits
|
|
// S_hi := S_hi + S_hi*(1 + S_hi*r) ...16 bits
|
|
// S_hi := S_hi + S_hi*(1 + S_hi*r) ...32 bits
|
|
// S_hi := S_hi + S_hi*(1 + S_hi*r) ...64 bits
|
|
// S_lo := S_hi*( (1 + S_hi*r) + S_hi*c )
|
|
// ...S_hi + S_lo is -1/(r+c) to extra precision
|
|
// S_lo := S_lo + Q1_1*r
|
|
//
|
|
// Result := S_hi + S_lo ...in user-defined rounding
|
|
//
|
|
// For Case 4, we use three-term polynomials
|
|
//
|
|
// For N even,
|
|
//
|
|
// rsq := r * r
|
|
// Poly := c + r * rsq * (P1_1 + rsq * P1_2)
|
|
// Result := r + Poly ...in user-defined rounding
|
|
//
|
|
// For N odd,
|
|
// S_hi := -frcpa(r) ...8 bits
|
|
// S_hi := S_hi + S_hi*(1 + S_hi*r) ...16 bits
|
|
// S_hi := S_hi + S_hi*(1 + S_hi*r) ...32 bits
|
|
// S_hi := S_hi + S_hi*(1 + S_hi*r) ...64 bits
|
|
// S_lo := S_hi*( (1 + S_hi*r) + S_hi*c )
|
|
// ...S_hi + S_lo is -1/(r+c) to extra precision
|
|
// rsq := r * r
|
|
// P := Q1_1 + rsq*Q1_2
|
|
// S_lo := S_lo + r*P
|
|
//
|
|
// Result := S_hi + S_lo ...in user-defined rounding
|
|
//
|
|
//
|
|
// Note that the coefficients P1_1, P1_2, Q1_1, and Q1_2 are
|
|
// the same as those used in the small_r case of Cases 1 and 3
|
|
// below.
|
|
//
|
|
//
|
|
// 2.2 Computation for Cases 1 and 3.
|
|
// ----------------------------------
|
|
// This is further divided into the case of small_r,
|
|
// where |r| < 2^(-2), and the case of normal_r, where |r| lies between
|
|
// 2^(-2) and pi/4.
|
|
//
|
|
// Algorithm for the case of small_r
|
|
// ---------------------------------
|
|
//
|
|
// For N even,
|
|
// rsq := r * r
|
|
// Poly1 := rsq*(P1_1 + rsq*(P1_2 + rsq*P1_3))
|
|
// r_to_the_8 := rsq * rsq
|
|
// r_to_the_8 := r_to_the_8 * r_to_the_8
|
|
// Poly2 := P1_4 + rsq*(P1_5 + rsq*(P1_6 + ... rsq*P1_9))
|
|
// CORR := c * ( 1 + rsq )
|
|
// Poly := Poly1 + r_to_the_8*Poly2
|
|
// Poly := r*Poly + CORR
|
|
// Result := r + Poly ...in user-defined rounding
|
|
// ...note that Poly1 and r_to_the_8 can be computed in parallel
|
|
// ...with Poly2 (Poly1 is intentionally set to be much
|
|
// ...shorter than Poly2 so that r_to_the_8 and CORR can be hidden)
|
|
//
|
|
// For N odd,
|
|
// S_hi := -frcpa(r) ...8 bits
|
|
// S_hi := S_hi + S_hi*(1 + S_hi*r) ...16 bits
|
|
// S_hi := S_hi + S_hi*(1 + S_hi*r) ...32 bits
|
|
// S_hi := S_hi + S_hi*(1 + S_hi*r) ...64 bits
|
|
// S_lo := S_hi*( (1 + S_hi*r) + S_hi*c )
|
|
// ...S_hi + S_lo is -1/(r+c) to extra precision
|
|
// S_lo := S_lo + Q1_1*c
|
|
//
|
|
// ...S_hi and S_lo are computed in parallel with
|
|
// ...the following
|
|
// rsq := r*r
|
|
// P := Q1_1 + rsq*(Q1_2 + rsq*(Q1_3 + ... + rsq*Q1_7))
|
|
//
|
|
// Poly := r*P + S_lo
|
|
// Result := S_hi + Poly ...in user-defined rounding
|
|
//
|
|
//
|
|
// Algorithm for the case of normal_r
|
|
// ----------------------------------
|
|
//
|
|
// Here, we first consider the computation of tan( r + c ). As
|
|
// presented in the previous section,
|
|
//
|
|
// tan( r + c ) = tan(r) + c * sec^2(r)
|
|
// = sgn_r * [ tan(B+x) + CORR ]
|
|
// CORR = sgn_r * c * tan(B) * 1/[sin(B)*cos(B)]
|
|
//
|
|
// because sec^2(r) = sec^(|r|), and B approximate |r| to 6.5 bits.
|
|
//
|
|
// tan( r + c ) =
|
|
// / (1/[sin(B)*cos(B)]) * tan(x)
|
|
// sgn_r * | tan(B) + -------------------------------- +
|
|
// \ cot(B) - tan(x)
|
|
// \
|
|
// CORR |
|
|
|
|
// /
|
|
//
|
|
// The values of tan(B), cot(B) and 1/(sin(B)*cos(B)) are
|
|
// calculated beforehand and stored in a table. Specifically,
|
|
// the table values are
|
|
//
|
|
// tan(B) as T_hi + T_lo;
|
|
// cot(B) as C_hi + C_lo;
|
|
// 1/[sin(B)*cos(B)] as SC_inv
|
|
//
|
|
// T_hi, C_hi are in double-precision memory format;
|
|
// T_lo, C_lo are in single-precision memory format;
|
|
// SC_inv is in extended-precision memory format.
|
|
//
|
|
// The value of tan(x) will be approximated by a short polynomial of
|
|
// the form
|
|
//
|
|
// tan(x) as x + x * P, where
|
|
// P = x^2 * (P2_1 + x^2 * (P2_2 + x^2 * P2_3))
|
|
//
|
|
// Because |x| <= 2^(-7), cot(B) - x approximates cot(B) - tan(x)
|
|
// to a relative accuracy better than 2^(-20). Thus, a good
|
|
// initial guess of 1/( cot(B) - tan(x) ) to initiate the iterative
|
|
// division is:
|
|
//
|
|
// 1/(cot(B) - tan(x)) is approximately
|
|
// 1/(cot(B) - x) is
|
|
// tan(B)/(1 - x*tan(B)) is approximately
|
|
// T_hi / ( 1 - T_hi * x ) is approximately
|
|
//
|
|
// T_hi * [ 1 + (Thi * x) + (T_hi * x)^2 ]
|
|
//
|
|
// The calculation of tan(r+c) therefore proceed as follows:
|
|
//
|
|
// Tx := T_hi * x
|
|
// xsq := x * x
|
|
//
|
|
// V_hi := T_hi*(1 + Tx*(1 + Tx))
|
|
// P := xsq * (P1_1 + xsq*(P1_2 + xsq*P1_3))
|
|
// ...V_hi serves as an initial guess of 1/(cot(B) - tan(x))
|
|
// ...good to about 20 bits of accuracy
|
|
//
|
|
// tanx := x + x*P
|
|
// D := C_hi - tanx
|
|
// ...D is a double precision denominator: cot(B) - tan(x)
|
|
//
|
|
// V_hi := V_hi + V_hi*(1 - V_hi*D)
|
|
// ....V_hi approximates 1/(cot(B)-tan(x)) to 40 bits
|
|
//
|
|
// V_lo := V_hi * ( [ (1 - V_hi*C_hi) + V_hi*tanx ]
|
|
// - V_hi*C_lo ) ...observe all order
|
|
// ...V_hi + V_lo approximates 1/(cot(B) - tan(x))
|
|
// ...to extra accuracy
|
|
//
|
|
// ... SC_inv(B) * (x + x*P)
|
|
// ... tan(B) + ------------------------- + CORR
|
|
// ... cot(B) - (x + x*P)
|
|
// ...
|
|
// ... = tan(B) + SC_inv(B)*(x + x*P)*(V_hi + V_lo) + CORR
|
|
// ...
|
|
//
|
|
// Sx := SC_inv * x
|
|
// CORR := sgn_r * c * SC_inv * T_hi
|
|
//
|
|
// ...put the ingredients together to compute
|
|
// ... SC_inv(B) * (x + x*P)
|
|
// ... tan(B) + ------------------------- + CORR
|
|
// ... cot(B) - (x + x*P)
|
|
// ...
|
|
// ... = tan(B) + SC_inv(B)*(x + x*P)*(V_hi + V_lo) + CORR
|
|
// ...
|
|
// ... = T_hi + T_lo + CORR +
|
|
// ... Sx * V_hi + Sx * V_lo + Sx * P *(V_hi + V_lo)
|
|
//
|
|
// CORR := CORR + T_lo
|
|
// tail := V_lo + P*(V_hi + V_lo)
|
|
// tail := Sx * tail + CORR
|
|
// tail := Sx * V_hi + tail
|
|
// T_hi := sgn_r * T_hi
|
|
//
|
|
// ...T_hi + sgn_r*tail now approximate
|
|
// ...sgn_r*(tan(B+x) + CORR) accurately
|
|
//
|
|
// Result := T_hi + sgn_r*tail ...in user-defined
|
|
// ...rounding control
|
|
// ...It is crucial that independent paths be fully
|
|
// ...exploited for performance's sake.
|
|
//
|
|
//
|
|
// Next, we consider the computation of -cot( r + c ). As
|
|
// presented in the previous section,
|
|
//
|
|
// -cot( r + c ) = -cot(r) + c * csc^2(r)
|
|
// = sgn_r * [ -cot(B+x) + CORR ]
|
|
// CORR = sgn_r * c * cot(B) * 1/[sin(B)*cos(B)]
|
|
//
|
|
// because csc^2(r) = csc^(|r|), and B approximate |r| to 6.5 bits.
|
|
//
|
|
// -cot( r + c ) =
|
|
// / (1/[sin(B)*cos(B)]) * tan(x)
|
|
// sgn_r * | -cot(B) + -------------------------------- +
|
|
// \ tan(B) + tan(x)
|
|
// \
|
|
// CORR |
|
|
|
|
// /
|
|
//
|
|
// The values of tan(B), cot(B) and 1/(sin(B)*cos(B)) are
|
|
// calculated beforehand and stored in a table. Specifically,
|
|
// the table values are
|
|
//
|
|
// tan(B) as T_hi + T_lo;
|
|
// cot(B) as C_hi + C_lo;
|
|
// 1/[sin(B)*cos(B)] as SC_inv
|
|
//
|
|
// T_hi, C_hi are in double-precision memory format;
|
|
// T_lo, C_lo are in single-precision memory format;
|
|
// SC_inv is in extended-precision memory format.
|
|
//
|
|
// The value of tan(x) will be approximated by a short polynomial of
|
|
// the form
|
|
//
|
|
// tan(x) as x + x * P, where
|
|
// P = x^2 * (P2_1 + x^2 * (P2_2 + x^2 * P2_3))
|
|
//
|
|
// Because |x| <= 2^(-7), tan(B) + x approximates tan(B) + tan(x)
|
|
// to a relative accuracy better than 2^(-18). Thus, a good
|
|
// initial guess of 1/( tan(B) + tan(x) ) to initiate the iterative
|
|
// division is:
|
|
//
|
|
// 1/(tan(B) + tan(x)) is approximately
|
|
// 1/(tan(B) + x) is
|
|
// cot(B)/(1 + x*cot(B)) is approximately
|
|
// C_hi / ( 1 + C_hi * x ) is approximately
|
|
//
|
|
// C_hi * [ 1 - (C_hi * x) + (C_hi * x)^2 ]
|
|
//
|
|
// The calculation of -cot(r+c) therefore proceed as follows:
|
|
//
|
|
// Cx := C_hi * x
|
|
// xsq := x * x
|
|
//
|
|
// V_hi := C_hi*(1 - Cx*(1 - Cx))
|
|
// P := xsq * (P1_1 + xsq*(P1_2 + xsq*P1_3))
|
|
// ...V_hi serves as an initial guess of 1/(tan(B) + tan(x))
|
|
// ...good to about 18 bits of accuracy
|
|
//
|
|
// tanx := x + x*P
|
|
// D := T_hi + tanx
|
|
// ...D is a double precision denominator: tan(B) + tan(x)
|
|
//
|
|
// V_hi := V_hi + V_hi*(1 - V_hi*D)
|
|
// ....V_hi approximates 1/(tan(B)+tan(x)) to 40 bits
|
|
//
|
|
// V_lo := V_hi * ( [ (1 - V_hi*T_hi) - V_hi*tanx ]
|
|
// - V_hi*T_lo ) ...observe all order
|
|
// ...V_hi + V_lo approximates 1/(tan(B) + tan(x))
|
|
// ...to extra accuracy
|
|
//
|
|
// ... SC_inv(B) * (x + x*P)
|
|
// ... -cot(B) + ------------------------- + CORR
|
|
// ... tan(B) + (x + x*P)
|
|
// ...
|
|
// ... =-cot(B) + SC_inv(B)*(x + x*P)*(V_hi + V_lo) + CORR
|
|
// ...
|
|
//
|
|
// Sx := SC_inv * x
|
|
// CORR := sgn_r * c * SC_inv * C_hi
|
|
//
|
|
// ...put the ingredients together to compute
|
|
// ... SC_inv(B) * (x + x*P)
|
|
// ... -cot(B) + ------------------------- + CORR
|
|
// ... tan(B) + (x + x*P)
|
|
// ...
|
|
// ... =-cot(B) + SC_inv(B)*(x + x*P)*(V_hi + V_lo) + CORR
|
|
// ...
|
|
// ... =-C_hi - C_lo + CORR +
|
|
// ... Sx * V_hi + Sx * V_lo + Sx * P *(V_hi + V_lo)
|
|
//
|
|
// CORR := CORR - C_lo
|
|
// tail := V_lo + P*(V_hi + V_lo)
|
|
// tail := Sx * tail + CORR
|
|
// tail := Sx * V_hi + tail
|
|
// C_hi := -sgn_r * C_hi
|
|
//
|
|
// ...C_hi + sgn_r*tail now approximates
|
|
// ...sgn_r*(-cot(B+x) + CORR) accurately
|
|
//
|
|
// Result := C_hi + sgn_r*tail in user-defined rounding control
|
|
// ...It is crucial that independent paths be fully
|
|
// ...exploited for performance's sake.
|
|
//
|
|
// 3. Implementation Notes
|
|
// =======================
|
|
//
|
|
// Table entries T_hi, T_lo; C_hi, C_lo; SC_inv
|
|
//
|
|
// Recall that 2^(-2) <= |r| <= pi/4;
|
|
//
|
|
// r = sgn_r * 2^k * 1.b_1 b_2 ... b_63
|
|
//
|
|
// and
|
|
//
|
|
// B = 2^k * 1.b_1 b_2 b_3 b_4 b_5 1
|
|
//
|
|
// Thus, for k = -2, possible values of B are
|
|
//
|
|
// B = 2^(-2) * ( 1 + index/32 + 1/64 ),
|
|
// index ranges from 0 to 31
|
|
//
|
|
// For k = -1, however, since |r| <= pi/4 = 0.78...
|
|
// possible values of B are
|
|
//
|
|
// B = 2^(-1) * ( 1 + index/32 + 1/64 )
|
|
// index ranges from 0 to 19.
|
|
//
|
|
//
|
|
|
|
RODATA
|
|
.align 16
|
|
|
|
LOCAL_OBJECT_START(TANL_BASE_CONSTANTS)
|
|
|
|
tanl_table_1:
|
|
data8 0xA2F9836E4E44152A, 0x00003FFE // two_by_pi
|
|
data8 0xC84D32B0CE81B9F1, 0x00004016 // P_0
|
|
data8 0xC90FDAA22168C235, 0x00003FFF // P_1
|
|
data8 0xECE675D1FC8F8CBB, 0x0000BFBD // P_2
|
|
data8 0xB7ED8FBBACC19C60, 0x0000BF7C // P_3
|
|
LOCAL_OBJECT_END(TANL_BASE_CONSTANTS)
|
|
|
|
LOCAL_OBJECT_START(tanl_table_2)
|
|
data8 0xC90FDAA22168C234, 0x00003FFE // PI_BY_4
|
|
data8 0xA397E5046EC6B45A, 0x00003FE7 // Inv_P_0
|
|
data8 0x8D848E89DBD171A1, 0x0000BFBF // d_1
|
|
data8 0xD5394C3618A66F8E, 0x0000BF7C // d_2
|
|
data4 0x3E800000 // two**-2
|
|
data4 0xBE800000 // -two**-2
|
|
data4 0x00000000 // pad
|
|
data4 0x00000000 // pad
|
|
LOCAL_OBJECT_END(tanl_table_2)
|
|
|
|
LOCAL_OBJECT_START(tanl_table_p1)
|
|
data8 0xAAAAAAAAAAAAAABD, 0x00003FFD // P1_1
|
|
data8 0x8888888888882E6A, 0x00003FFC // P1_2
|
|
data8 0xDD0DD0DD0F0177B6, 0x00003FFA // P1_3
|
|
data8 0xB327A440646B8C6D, 0x00003FF9 // P1_4
|
|
data8 0x91371B251D5F7D20, 0x00003FF8 // P1_5
|
|
data8 0xEB69A5F161C67914, 0x00003FF6 // P1_6
|
|
data8 0xBEDD37BE019318D2, 0x00003FF5 // P1_7
|
|
data8 0x9979B1463C794015, 0x00003FF4 // P1_8
|
|
data8 0x8EBD21A38C6EB58A, 0x00003FF3 // P1_9
|
|
LOCAL_OBJECT_END(tanl_table_p1)
|
|
|
|
LOCAL_OBJECT_START(tanl_table_q1)
|
|
data8 0xAAAAAAAAAAAAAAB4, 0x00003FFD // Q1_1
|
|
data8 0xB60B60B60B5FC93E, 0x00003FF9 // Q1_2
|
|
data8 0x8AB355E00C9BBFBF, 0x00003FF6 // Q1_3
|
|
data8 0xDDEBBC89CBEE3D4C, 0x00003FF2 // Q1_4
|
|
data8 0xB3548A685F80BBB6, 0x00003FEF // Q1_5
|
|
data8 0x913625604CED5BF1, 0x00003FEC // Q1_6
|
|
data8 0xF189D95A8EE92A83, 0x00003FE8 // Q1_7
|
|
LOCAL_OBJECT_END(tanl_table_q1)
|
|
|
|
LOCAL_OBJECT_START(tanl_table_p2)
|
|
data8 0xAAAAAAAAAAAB362F, 0x00003FFD // P2_1
|
|
data8 0x88888886E97A6097, 0x00003FFC // P2_2
|
|
data8 0xDD108EE025E716A1, 0x00003FFA // P2_3
|
|
LOCAL_OBJECT_END(tanl_table_p2)
|
|
|
|
LOCAL_OBJECT_START(tanl_table_tm2)
|
|
//
|
|
// Entries T_hi double-precision memory format
|
|
// Index = 0,1,...,31 B = 2^(-2)*(1+Index/32+1/64)
|
|
// Entries T_lo single-precision memory format
|
|
// Index = 0,1,...,31 B = 2^(-2)*(1+Index/32+1/64)
|
|
//
|
|
data8 0x3FD09BC362400794
|
|
data4 0x23A05C32, 0x00000000
|
|
data8 0x3FD124A9DFFBC074
|
|
data4 0x240078B2, 0x00000000
|
|
data8 0x3FD1AE235BD4920F
|
|
data4 0x23826B8E, 0x00000000
|
|
data8 0x3FD2383515E2701D
|
|
data4 0x22D31154, 0x00000000
|
|
data8 0x3FD2C2E463739C2D
|
|
data4 0x2265C9E2, 0x00000000
|
|
data8 0x3FD34E36AFEEA48B
|
|
data4 0x245C05EB, 0x00000000
|
|
data8 0x3FD3DA317DBB35D1
|
|
data4 0x24749F2D, 0x00000000
|
|
data8 0x3FD466DA67321619
|
|
data4 0x2462CECE, 0x00000000
|
|
data8 0x3FD4F4371F94A4D5
|
|
data4 0x246D0DF1, 0x00000000
|
|
data8 0x3FD5824D740C3E6D
|
|
data4 0x240A85B5, 0x00000000
|
|
data8 0x3FD611234CB1E73D
|
|
data4 0x23F96E33, 0x00000000
|
|
data8 0x3FD6A0BEAD9EA64B
|
|
data4 0x247C5393, 0x00000000
|
|
data8 0x3FD73125B804FD01
|
|
data4 0x241F3B29, 0x00000000
|
|
data8 0x3FD7C25EAB53EE83
|
|
data4 0x2479989B, 0x00000000
|
|
data8 0x3FD8546FE6640EED
|
|
data4 0x23B343BC, 0x00000000
|
|
data8 0x3FD8E75FE8AF1892
|
|
data4 0x241454D1, 0x00000000
|
|
data8 0x3FD97B3553928BDA
|
|
data4 0x238613D9, 0x00000000
|
|
data8 0x3FDA0FF6EB9DE4DE
|
|
data4 0x22859FA7, 0x00000000
|
|
data8 0x3FDAA5AB99ECF92D
|
|
data4 0x237A6D06, 0x00000000
|
|
data8 0x3FDB3C5A6D8F1796
|
|
data4 0x23952F6C, 0x00000000
|
|
data8 0x3FDBD40A9CFB8BE4
|
|
data4 0x2280FC95, 0x00000000
|
|
data8 0x3FDC6CC387943100
|
|
data4 0x245D2EC0, 0x00000000
|
|
data8 0x3FDD068CB736C500
|
|
data4 0x23C4AD7D, 0x00000000
|
|
data8 0x3FDDA16DE1DDBC31
|
|
data4 0x23D076E6, 0x00000000
|
|
data8 0x3FDE3D6EEB515A93
|
|
data4 0x244809A6, 0x00000000
|
|
data8 0x3FDEDA97E6E9E5F1
|
|
data4 0x220856C8, 0x00000000
|
|
data8 0x3FDF78F11963CE69
|
|
data4 0x244BE993, 0x00000000
|
|
data8 0x3FE00C417D635BCE
|
|
data4 0x23D21799, 0x00000000
|
|
data8 0x3FE05CAB1C302CD3
|
|
data4 0x248A1B1D, 0x00000000
|
|
data8 0x3FE0ADB9DB6A1FA0
|
|
data4 0x23D53E33, 0x00000000
|
|
data8 0x3FE0FF724A20BA81
|
|
data4 0x24DB9ED5, 0x00000000
|
|
data8 0x3FE151D9153FA6F5
|
|
data4 0x24E9E451, 0x00000000
|
|
LOCAL_OBJECT_END(tanl_table_tm2)
|
|
|
|
LOCAL_OBJECT_START(tanl_table_tm1)
|
|
//
|
|
// Entries T_hi double-precision memory format
|
|
// Index = 0,1,...,19 B = 2^(-1)*(1+Index/32+1/64)
|
|
// Entries T_lo single-precision memory format
|
|
// Index = 0,1,...,19 B = 2^(-1)*(1+Index/32+1/64)
|
|
//
|
|
data8 0x3FE1CEC4BA1BE39E
|
|
data4 0x24B60F9E, 0x00000000
|
|
data8 0x3FE277E45ABD9B2D
|
|
data4 0x248C2474, 0x00000000
|
|
data8 0x3FE324180272B110
|
|
data4 0x247B8311, 0x00000000
|
|
data8 0x3FE3D38B890E2DF0
|
|
data4 0x24C55751, 0x00000000
|
|
data8 0x3FE4866D46236871
|
|
data4 0x24E5BC34, 0x00000000
|
|
data8 0x3FE53CEE45E044B0
|
|
data4 0x24001BA4, 0x00000000
|
|
data8 0x3FE5F74282EC06E4
|
|
data4 0x24B973DC, 0x00000000
|
|
data8 0x3FE6B5A125DF43F9
|
|
data4 0x24895440, 0x00000000
|
|
data8 0x3FE77844CAFD348C
|
|
data4 0x240021CA, 0x00000000
|
|
data8 0x3FE83F6BCEED6B92
|
|
data4 0x24C45372, 0x00000000
|
|
data8 0x3FE90B58A34F3665
|
|
data4 0x240DAD33, 0x00000000
|
|
data8 0x3FE9DC522C1E56B4
|
|
data4 0x24F846CE, 0x00000000
|
|
data8 0x3FEAB2A427041578
|
|
data4 0x2323FB6E, 0x00000000
|
|
data8 0x3FEB8E9F9DD8C373
|
|
data4 0x24B3090B, 0x00000000
|
|
data8 0x3FEC709B65C9AA7B
|
|
data4 0x2449F611, 0x00000000
|
|
data8 0x3FED58F4ACCF8435
|
|
data4 0x23616A7E, 0x00000000
|
|
data8 0x3FEE480F97635082
|
|
data4 0x24C2FEAE, 0x00000000
|
|
data8 0x3FEF3E57F0ACC544
|
|
data4 0x242CE964, 0x00000000
|
|
data8 0x3FF01E20F7E06E4B
|
|
data4 0x2480D3EE, 0x00000000
|
|
data8 0x3FF0A1258A798A69
|
|
data4 0x24DB8967, 0x00000000
|
|
LOCAL_OBJECT_END(tanl_table_tm1)
|
|
|
|
LOCAL_OBJECT_START(tanl_table_cm2)
|
|
//
|
|
// Entries C_hi double-precision memory format
|
|
// Index = 0,1,...,31 B = 2^(-2)*(1+Index/32+1/64)
|
|
// Entries C_lo single-precision memory format
|
|
// Index = 0,1,...,31 B = 2^(-2)*(1+Index/32+1/64)
|
|
//
|
|
data8 0x400ED3E2E63EFBD0
|
|
data4 0x259D94D4, 0x00000000
|
|
data8 0x400DDDB4C515DAB5
|
|
data4 0x245F0537, 0x00000000
|
|
data8 0x400CF57ABE19A79F
|
|
data4 0x25D4EA9F, 0x00000000
|
|
data8 0x400C1A06D15298ED
|
|
data4 0x24AE40A0, 0x00000000
|
|
data8 0x400B4A4C164B2708
|
|
data4 0x25A5AAB6, 0x00000000
|
|
data8 0x400A855A5285B068
|
|
data4 0x25524F18, 0x00000000
|
|
data8 0x4009CA5A3FFA549F
|
|
data4 0x24C999C0, 0x00000000
|
|
data8 0x4009188A646AF623
|
|
data4 0x254FD801, 0x00000000
|
|
data8 0x40086F3C6084D0E7
|
|
data4 0x2560F5FD, 0x00000000
|
|
data8 0x4007CDD2A29A76EE
|
|
data4 0x255B9D19, 0x00000000
|
|
data8 0x400733BE6C8ECA95
|
|
data4 0x25CB021B, 0x00000000
|
|
data8 0x4006A07E1F8DDC52
|
|
data4 0x24AB4722, 0x00000000
|
|
data8 0x4006139BC298AD58
|
|
data4 0x252764E2, 0x00000000
|
|
data8 0x40058CABBAD7164B
|
|
data4 0x24DAF5DB, 0x00000000
|
|
data8 0x40050B4BAE31A5D3
|
|
data4 0x25EA20F4, 0x00000000
|
|
data8 0x40048F2189F85A8A
|
|
data4 0x2583A3E8, 0x00000000
|
|
data8 0x400417DAA862380D
|
|
data4 0x25DCC4CC, 0x00000000
|
|
data8 0x4003A52B1088FCFE
|
|
data4 0x2430A492, 0x00000000
|
|
data8 0x400336CCCD3527D5
|
|
data4 0x255F77CF, 0x00000000
|
|
data8 0x4002CC7F5760766D
|
|
data4 0x25DA0BDA, 0x00000000
|
|
data8 0x4002660711CE02E3
|
|
data4 0x256FF4A2, 0x00000000
|
|
data8 0x4002032CD37BBE04
|
|
data4 0x25208AED, 0x00000000
|
|
data8 0x4001A3BD7F050775
|
|
data4 0x24B72DD6, 0x00000000
|
|
data8 0x40014789A554848A
|
|
data4 0x24AB4DAA, 0x00000000
|
|
data8 0x4000EE65323E81B7
|
|
data4 0x2584C440, 0x00000000
|
|
data8 0x4000982721CF1293
|
|
data4 0x25C9428D, 0x00000000
|
|
data8 0x400044A93D415EEB
|
|
data4 0x25DC8482, 0x00000000
|
|
data8 0x3FFFE78FBD72C577
|
|
data4 0x257F5070, 0x00000000
|
|
data8 0x3FFF4AC375EFD28E
|
|
data4 0x23EBBF7A, 0x00000000
|
|
data8 0x3FFEB2AF60B52DDE
|
|
data4 0x22EECA07, 0x00000000
|
|
data8 0x3FFE1F1935204180
|
|
data4 0x24191079, 0x00000000
|
|
data8 0x3FFD8FCA54F7E60A
|
|
data4 0x248D3058, 0x00000000
|
|
LOCAL_OBJECT_END(tanl_table_cm2)
|
|
|
|
LOCAL_OBJECT_START(tanl_table_cm1)
|
|
//
|
|
// Entries C_hi double-precision memory format
|
|
// Index = 0,1,...,19 B = 2^(-1)*(1+Index/32+1/64)
|
|
// Entries C_lo single-precision memory format
|
|
// Index = 0,1,...,19 B = 2^(-1)*(1+Index/32+1/64)
|
|
//
|
|
data8 0x3FFCC06A79F6FADE
|
|
data4 0x239C7886, 0x00000000
|
|
data8 0x3FFBB91F891662A6
|
|
data4 0x250BD191, 0x00000000
|
|
data8 0x3FFABFB6529F155D
|
|
data4 0x256CC3E6, 0x00000000
|
|
data8 0x3FF9D3002E964AE9
|
|
data4 0x250843E3, 0x00000000
|
|
data8 0x3FF8F1EF89DCB383
|
|
data4 0x2277C87E, 0x00000000
|
|
data8 0x3FF81B937C87DBD6
|
|
data4 0x256DA6CF, 0x00000000
|
|
data8 0x3FF74F141042EDE4
|
|
data4 0x2573D28A, 0x00000000
|
|
data8 0x3FF68BAF1784B360
|
|
data4 0x242E489A, 0x00000000
|
|
data8 0x3FF5D0B57C923C4C
|
|
data4 0x2532D940, 0x00000000
|
|
data8 0x3FF51D88F418EF20
|
|
data4 0x253C7DD6, 0x00000000
|
|
data8 0x3FF4719A02F88DAE
|
|
data4 0x23DB59BF, 0x00000000
|
|
data8 0x3FF3CC6649DA0788
|
|
data4 0x252B4756, 0x00000000
|
|
data8 0x3FF32D770B980DB8
|
|
data4 0x23FE585F, 0x00000000
|
|
data8 0x3FF2945FE56C987A
|
|
data4 0x25378A63, 0x00000000
|
|
data8 0x3FF200BDB16523F6
|
|
data4 0x247BB2E0, 0x00000000
|
|
data8 0x3FF172358CE27778
|
|
data4 0x24446538, 0x00000000
|
|
data8 0x3FF0E873FDEFE692
|
|
data4 0x2514638F, 0x00000000
|
|
data8 0x3FF0632C33154062
|
|
data4 0x24A7FC27, 0x00000000
|
|
data8 0x3FEFC42EB3EF115F
|
|
data4 0x248FD0FE, 0x00000000
|
|
data8 0x3FEEC9E8135D26F6
|
|
data4 0x2385C719, 0x00000000
|
|
LOCAL_OBJECT_END(tanl_table_cm1)
|
|
|
|
LOCAL_OBJECT_START(tanl_table_scim2)
|
|
//
|
|
// Entries SC_inv in Swapped IEEE format (extended)
|
|
// Index = 0,1,...,31 B = 2^(-2)*(1+Index/32+1/64)
|
|
//
|
|
data8 0x839D6D4A1BF30C9E, 0x00004001
|
|
data8 0x80092804554B0EB0, 0x00004001
|
|
data8 0xF959F94CA1CF0DE9, 0x00004000
|
|
data8 0xF3086BA077378677, 0x00004000
|
|
data8 0xED154515CCD4723C, 0x00004000
|
|
data8 0xE77909441C27CF25, 0x00004000
|
|
data8 0xE22D037D8DDACB88, 0x00004000
|
|
data8 0xDD2B2D8A89C73522, 0x00004000
|
|
data8 0xD86E1A23BB2C1171, 0x00004000
|
|
data8 0xD3F0E288DFF5E0F9, 0x00004000
|
|
data8 0xCFAF16B1283BEBD5, 0x00004000
|
|
data8 0xCBA4AFAA0D88DD53, 0x00004000
|
|
data8 0xC7CE03CCCA67C43D, 0x00004000
|
|
data8 0xC427BC820CA0DDB0, 0x00004000
|
|
data8 0xC0AECD57F13D8CAB, 0x00004000
|
|
data8 0xBD606C3871ECE6B1, 0x00004000
|
|
data8 0xBA3A0A96A44C4929, 0x00004000
|
|
data8 0xB7394F6FE5CCCEC1, 0x00004000
|
|
data8 0xB45C12039637D8BC, 0x00004000
|
|
data8 0xB1A0552892CB051B, 0x00004000
|
|
data8 0xAF04432B6BA2FFD0, 0x00004000
|
|
data8 0xAC862A237221235F, 0x00004000
|
|
data8 0xAA2478AF5F00A9D1, 0x00004000
|
|
data8 0xA7DDBB0C81E082BF, 0x00004000
|
|
data8 0xA5B0987D45684FEE, 0x00004000
|
|
data8 0xA39BD0F5627A8F53, 0x00004000
|
|
data8 0xA19E3B036EC5C8B0, 0x00004000
|
|
data8 0x9FB6C1F091CD7C66, 0x00004000
|
|
data8 0x9DE464101FA3DF8A, 0x00004000
|
|
data8 0x9C263139A8F6B888, 0x00004000
|
|
data8 0x9A7B4968C27B0450, 0x00004000
|
|
data8 0x98E2DB7E5EE614EE, 0x00004000
|
|
LOCAL_OBJECT_END(tanl_table_scim2)
|
|
|
|
LOCAL_OBJECT_START(tanl_table_scim1)
|
|
//
|
|
// Entries SC_inv in Swapped IEEE format (extended)
|
|
// Index = 0,1,...,19 B = 2^(-1)*(1+Index/32+1/64)
|
|
//
|
|
data8 0x969F335C13B2B5BA, 0x00004000
|
|
data8 0x93D446D9D4C0F548, 0x00004000
|
|
data8 0x9147094F61B798AF, 0x00004000
|
|
data8 0x8EF317CC758787AC, 0x00004000
|
|
data8 0x8CD498B3B99EEFDB, 0x00004000
|
|
data8 0x8AE82A7DDFF8BC37, 0x00004000
|
|
data8 0x892AD546E3C55D42, 0x00004000
|
|
data8 0x8799FEA9D15573C1, 0x00004000
|
|
data8 0x86335F88435A4B4C, 0x00004000
|
|
data8 0x84F4FB6E3E93A87B, 0x00004000
|
|
data8 0x83DD195280A382FB, 0x00004000
|
|
data8 0x82EA3D7FA4CB8C9E, 0x00004000
|
|
data8 0x821B247C6861D0A8, 0x00004000
|
|
data8 0x816EBED163E8D244, 0x00004000
|
|
data8 0x80E42D9127E4CFC6, 0x00004000
|
|
data8 0x807ABF8D28E64AFD, 0x00004000
|
|
data8 0x8031EF26863B4FD8, 0x00004000
|
|
data8 0x800960ADAE8C11FD, 0x00004000
|
|
data8 0x8000E1475FDBEC21, 0x00004000
|
|
data8 0x80186650A07791FA, 0x00004000
|
|
LOCAL_OBJECT_END(tanl_table_scim1)
|
|
|
|
Arg = f8
|
|
Save_Norm_Arg = f8 // For input to reduction routine
|
|
Result = f8
|
|
r = f8 // For output from reduction routine
|
|
c = f9 // For output from reduction routine
|
|
U_2 = f10
|
|
rsq = f11
|
|
C_hi = f12
|
|
C_lo = f13
|
|
T_hi = f14
|
|
T_lo = f15
|
|
|
|
d_1 = f33
|
|
N_0 = f34
|
|
tail = f35
|
|
tanx = f36
|
|
Cx = f37
|
|
Sx = f38
|
|
sgn_r = f39
|
|
CORR = f40
|
|
P = f41
|
|
D = f42
|
|
ArgPrime = f43
|
|
P_0 = f44
|
|
|
|
P2_1 = f45
|
|
P2_2 = f46
|
|
P2_3 = f47
|
|
|
|
P1_1 = f45
|
|
P1_2 = f46
|
|
P1_3 = f47
|
|
|
|
P1_4 = f48
|
|
P1_5 = f49
|
|
P1_6 = f50
|
|
P1_7 = f51
|
|
P1_8 = f52
|
|
P1_9 = f53
|
|
|
|
x = f56
|
|
xsq = f57
|
|
Tx = f58
|
|
Tx1 = f59
|
|
Set = f60
|
|
poly1 = f61
|
|
poly2 = f62
|
|
Poly = f63
|
|
Poly1 = f64
|
|
Poly2 = f65
|
|
r_to_the_8 = f66
|
|
B = f67
|
|
SC_inv = f68
|
|
Pos_r = f69
|
|
N_0_fix = f70
|
|
d_2 = f71
|
|
PI_BY_4 = f72
|
|
TWO_TO_NEG14 = f74
|
|
TWO_TO_NEG33 = f75
|
|
NEGTWO_TO_NEG14 = f76
|
|
NEGTWO_TO_NEG33 = f77
|
|
two_by_PI = f78
|
|
N = f79
|
|
N_fix = f80
|
|
P_1 = f81
|
|
P_2 = f82
|
|
P_3 = f83
|
|
s_val = f84
|
|
w = f85
|
|
B_mask1 = f86
|
|
B_mask2 = f87
|
|
w2 = f88
|
|
A = f89
|
|
a = f90
|
|
t = f91
|
|
U_1 = f92
|
|
NEGTWO_TO_NEG2 = f93
|
|
TWO_TO_NEG2 = f94
|
|
Q1_1 = f95
|
|
Q1_2 = f96
|
|
Q1_3 = f97
|
|
Q1_4 = f98
|
|
Q1_5 = f99
|
|
Q1_6 = f100
|
|
Q1_7 = f101
|
|
Q1_8 = f102
|
|
S_hi = f103
|
|
S_lo = f104
|
|
V_hi = f105
|
|
V_lo = f106
|
|
U_hi = f107
|
|
U_lo = f108
|
|
U_hiabs = f109
|
|
V_hiabs = f110
|
|
V = f111
|
|
Inv_P_0 = f112
|
|
|
|
FR_inv_pi_2to63 = f113
|
|
FR_rshf_2to64 = f114
|
|
FR_2tom64 = f115
|
|
FR_rshf = f116
|
|
Norm_Arg = f117
|
|
Abs_Arg = f118
|
|
TWO_TO_NEG65 = f119
|
|
fp_tmp = f120
|
|
mOne = f121
|
|
|
|
GR_SAVE_B0 = r33
|
|
GR_SAVE_GP = r34
|
|
GR_SAVE_PFS = r35
|
|
table_base = r36
|
|
table_ptr1 = r37
|
|
table_ptr2 = r38
|
|
table_ptr3 = r39
|
|
lookup = r40
|
|
N_fix_gr = r41
|
|
GR_exp_2tom2 = r42
|
|
GR_exp_2tom65 = r43
|
|
exp_r = r44
|
|
sig_r = r45
|
|
bmask1 = r46
|
|
table_offset = r47
|
|
bmask2 = r48
|
|
gr_tmp = r49
|
|
cot_flag = r50
|
|
|
|
GR_sig_inv_pi = r51
|
|
GR_rshf_2to64 = r52
|
|
GR_exp_2tom64 = r53
|
|
GR_rshf = r54
|
|
GR_exp_2_to_63 = r55
|
|
GR_exp_2_to_24 = r56
|
|
GR_signexp_x = r57
|
|
GR_exp_x = r58
|
|
GR_exp_mask = r59
|
|
GR_exp_2tom14 = r60
|
|
GR_exp_m2tom14 = r61
|
|
GR_exp_2tom33 = r62
|
|
GR_exp_m2tom33 = r63
|
|
|
|
GR_SAVE_B0 = r64
|
|
GR_SAVE_PFS = r65
|
|
GR_SAVE_GP = r66
|
|
|
|
GR_Parameter_X = r67
|
|
GR_Parameter_Y = r68
|
|
GR_Parameter_RESULT = r69
|
|
GR_Parameter_Tag = r70
|
|
|
|
|
|
.section .text
|
|
.global __libm_tanl#
|
|
.global __libm_cotl#
|
|
|
|
.proc __libm_cotl#
|
|
__libm_cotl:
|
|
.endp __libm_cotl#
|
|
LOCAL_LIBM_ENTRY(cotl)
|
|
|
|
{ .mlx
|
|
alloc r32 = ar.pfs, 0,35,4,0
|
|
movl GR_sig_inv_pi = 0xa2f9836e4e44152a // significand of 1/pi
|
|
}
|
|
{ .mlx
|
|
mov GR_exp_mask = 0x1ffff // Exponent mask
|
|
movl GR_rshf_2to64 = 0x47e8000000000000 // 1.1000 2^(63+64)
|
|
}
|
|
;;
|
|
|
|
// Check for NatVals, Infs , NaNs, and Zeros
|
|
{ .mfi
|
|
getf.exp GR_signexp_x = Arg // Get sign and exponent of x
|
|
fclass.m p6,p0 = Arg, 0x1E7 // Test for natval, nan, inf, zero
|
|
mov cot_flag = 0x1
|
|
}
|
|
{ .mfb
|
|
addl table_base = @ltoff(TANL_BASE_CONSTANTS), gp // Pointer to table ptr
|
|
fnorm.s1 Norm_Arg = Arg // Normalize x
|
|
br.cond.sptk COMMON_PATH
|
|
};;
|
|
|
|
LOCAL_LIBM_END(cotl)
|
|
|
|
|
|
.proc __libm_tanl#
|
|
__libm_tanl:
|
|
.endp __libm_tanl#
|
|
GLOBAL_IEEE754_ENTRY(tanl)
|
|
|
|
{ .mlx
|
|
alloc r32 = ar.pfs, 0,35,4,0
|
|
movl GR_sig_inv_pi = 0xa2f9836e4e44152a // significand of 1/pi
|
|
}
|
|
{ .mlx
|
|
mov GR_exp_mask = 0x1ffff // Exponent mask
|
|
movl GR_rshf_2to64 = 0x47e8000000000000 // 1.1000 2^(63+64)
|
|
}
|
|
;;
|
|
|
|
// Check for NatVals, Infs , NaNs, and Zeros
|
|
{ .mfi
|
|
getf.exp GR_signexp_x = Arg // Get sign and exponent of x
|
|
fclass.m p6,p0 = Arg, 0x1E7 // Test for natval, nan, inf, zero
|
|
mov cot_flag = 0x0
|
|
}
|
|
{ .mfi
|
|
addl table_base = @ltoff(TANL_BASE_CONSTANTS), gp // Pointer to table ptr
|
|
fnorm.s1 Norm_Arg = Arg // Normalize x
|
|
nop.i 0
|
|
};;
|
|
|
|
// Common path for both tanl and cotl
|
|
COMMON_PATH:
|
|
{ .mfi
|
|
setf.sig FR_inv_pi_2to63 = GR_sig_inv_pi // Form 1/pi * 2^63
|
|
fclass.m p9, p0 = Arg, 0x0b // Test x denormal
|
|
mov GR_exp_2tom64 = 0xffff - 64 // Scaling constant to compute N
|
|
}
|
|
{ .mlx
|
|
setf.d FR_rshf_2to64 = GR_rshf_2to64 // Form const 1.1000 * 2^(63+64)
|
|
movl GR_rshf = 0x43e8000000000000 // Form const 1.1000 * 2^63
|
|
}
|
|
;;
|
|
|
|
// Check for everything - if false, then must be pseudo-zero or pseudo-nan.
|
|
// Branch out to deal with special values.
|
|
{ .mfi
|
|
addl gr_tmp = -1,r0
|
|
fclass.nm p7,p0 = Arg, 0x1FF // Test x unsupported
|
|
mov GR_exp_2_to_63 = 0xffff + 63 // Exponent of 2^63
|
|
}
|
|
{ .mfb
|
|
ld8 table_base = [table_base] // Get pointer to constant table
|
|
fms.s1 mOne = f0, f0, f1
|
|
(p6) br.cond.spnt TANL_SPECIAL // Branch if x natval, nan, inf, zero
|
|
}
|
|
;;
|
|
|
|
{ .mmb
|
|
setf.sig fp_tmp = gr_tmp // Make a constant so fmpy produces inexact
|
|
mov GR_exp_2_to_24 = 0xffff + 24 // Exponent of 2^24
|
|
(p9) br.cond.spnt TANL_DENORMAL // Branch if x denormal
|
|
}
|
|
;;
|
|
|
|
TANL_COMMON:
|
|
// Return to here if x denormal
|
|
//
|
|
// Do fcmp to generate Denormal exception
|
|
// - can't do FNORM (will generate Underflow when U is unmasked!)
|
|
// Branch out to deal with unsupporteds values.
|
|
{ .mfi
|
|
setf.exp FR_2tom64 = GR_exp_2tom64 // Form 2^-64 for scaling N_float
|
|
fcmp.eq.s0 p0, p6 = Arg, f1 // Dummy to flag denormals
|
|
add table_ptr1 = 0, table_base // Point to tanl_table_1
|
|
}
|
|
{ .mib
|
|
setf.d FR_rshf = GR_rshf // Form right shift const 1.1000 * 2^63
|
|
add table_ptr2 = 80, table_base // Point to tanl_table_2
|
|
(p7) br.cond.spnt TANL_UNSUPPORTED // Branch if x unsupported type
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
and GR_exp_x = GR_exp_mask, GR_signexp_x // Get exponent of x
|
|
fmpy.s1 Save_Norm_Arg = Norm_Arg, f1 // Save x if large arg reduction
|
|
dep.z bmask1 = 0x7c, 56, 8 // Form mask to get 5 msb of r
|
|
// bmask1 = 0x7c00000000000000
|
|
}
|
|
;;
|
|
|
|
//
|
|
// Decide about the paths to take:
|
|
// Set PR_6 if |Arg| >= 2**63
|
|
// Set PR_9 if |Arg| < 2**24 - CASE 1 OR 2
|
|
// OTHERWISE Set PR_8 - CASE 3 OR 4
|
|
//
|
|
// Branch out if the magnitude of the input argument is >= 2^63
|
|
// - do this branch before the next.
|
|
{ .mfi
|
|
ldfe two_by_PI = [table_ptr1],16 // Load 2/pi
|
|
nop.f 999
|
|
dep.z bmask2 = 0x41, 57, 7 // Form mask to OR to produce B
|
|
// bmask2 = 0x8200000000000000
|
|
}
|
|
{ .mib
|
|
ldfe PI_BY_4 = [table_ptr2],16 // Load pi/4
|
|
cmp.ge p6,p0 = GR_exp_x, GR_exp_2_to_63 // Is |x| >= 2^63
|
|
(p6) br.cond.spnt TANL_ARG_TOO_LARGE // Branch if |x| >= 2^63
|
|
}
|
|
;;
|
|
|
|
{ .mmi
|
|
ldfe P_0 = [table_ptr1],16 // Load P_0
|
|
ldfe Inv_P_0 = [table_ptr2],16 // Load Inv_P_0
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
ldfe P_1 = [table_ptr1],16 // Load P_1
|
|
fmerge.s Abs_Arg = f0, Norm_Arg // Get |x|
|
|
mov GR_exp_m2tom33 = 0x2ffff - 33 // Form signexp of -2^-33
|
|
}
|
|
{ .mfi
|
|
ldfe d_1 = [table_ptr2],16 // Load d_1 for 2^24 <= |x| < 2^63
|
|
nop.f 999
|
|
mov GR_exp_2tom33 = 0xffff - 33 // Form signexp of 2^-33
|
|
}
|
|
;;
|
|
|
|
{ .mmi
|
|
ldfe P_2 = [table_ptr1],16 // Load P_2
|
|
ldfe d_2 = [table_ptr2],16 // Load d_2 for 2^24 <= |x| < 2^63
|
|
cmp.ge p8,p0 = GR_exp_x, GR_exp_2_to_24 // Is |x| >= 2^24
|
|
}
|
|
;;
|
|
|
|
// Use special scaling to right shift so N=Arg * 2/pi is in rightmost bits
|
|
// Branch to Cases 3 or 4 if Arg <= -2**24 or Arg >= 2**24
|
|
{ .mfb
|
|
ldfe P_3 = [table_ptr1],16 // Load P_3
|
|
fma.s1 N_fix = Norm_Arg, FR_inv_pi_2to63, FR_rshf_2to64
|
|
(p8) br.cond.spnt TANL_LARGER_ARG // Branch if 2^24 <= |x| < 2^63
|
|
}
|
|
;;
|
|
|
|
// Here if 0 < |x| < 2^24
|
|
// ARGUMENT REDUCTION CODE - CASE 1 and 2
|
|
//
|
|
{ .mmf
|
|
setf.exp TWO_TO_NEG33 = GR_exp_2tom33 // Form 2^-33
|
|
setf.exp NEGTWO_TO_NEG33 = GR_exp_m2tom33 // Form -2^-33
|
|
fmerge.s r = Norm_Arg,Norm_Arg // Assume r=x, ok if |x| < pi/4
|
|
}
|
|
;;
|
|
|
|
//
|
|
// If |Arg| < pi/4, set PR_8, else pi/4 <=|Arg| < 2^24 - set PR_9.
|
|
//
|
|
// Case 2: Convert integer N_fix back to normalized floating-point value.
|
|
{ .mfi
|
|
getf.sig sig_r = Norm_Arg // Get sig_r if 1/4 <= |x| < pi/4
|
|
fcmp.lt.s1 p8,p9= Abs_Arg,PI_BY_4 // Test |x| < pi/4
|
|
mov GR_exp_2tom2 = 0xffff - 2 // Form signexp of 2^-2
|
|
}
|
|
{ .mfi
|
|
ldfps TWO_TO_NEG2, NEGTWO_TO_NEG2 = [table_ptr2] // Load 2^-2, -2^-2
|
|
fms.s1 N = N_fix, FR_2tom64, FR_rshf // Use scaling to get N floated
|
|
mov N_fix_gr = r0 // Assume N=0, ok if |x| < pi/4
|
|
}
|
|
;;
|
|
|
|
//
|
|
// Case 1: Is |r| < 2**(-2).
|
|
// Arg is the same as r in this case.
|
|
// r = Arg
|
|
// c = 0
|
|
//
|
|
// Case 2: Place integer part of N in GP register.
|
|
{ .mfi
|
|
(p9) getf.sig N_fix_gr = N_fix
|
|
fmerge.s c = f0, f0 // Assume c=0, ok if |x| < pi/4
|
|
cmp.lt p10, p0 = GR_exp_x, GR_exp_2tom2 // Test if |x| < 1/4
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
setf.sig B_mask1 = bmask1 // Form mask to get 5 msb of r
|
|
nop.f 999
|
|
mov exp_r = GR_exp_x // Get exp_r if 1/4 <= |x| < pi/4
|
|
}
|
|
{ .mbb
|
|
setf.sig B_mask2 = bmask2 // Form mask to form B from r
|
|
(p10) br.cond.spnt TANL_SMALL_R // Branch if 0 < |x| < 1/4
|
|
(p8) br.cond.spnt TANL_NORMAL_R // Branch if 1/4 <= |x| < pi/4
|
|
}
|
|
;;
|
|
|
|
// Here if pi/4 <= |x| < 2^24
|
|
//
|
|
// Case 1: PR_3 is only affected when PR_1 is set.
|
|
//
|
|
//
|
|
// Case 2: w = N * P_2
|
|
// Case 2: s_val = -N * P_1 + Arg
|
|
//
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
fnma.s1 s_val = N, P_1, Norm_Arg
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
fmpy.s1 w = N, P_2 // w = N * P_2 for |s| >= 2^-33
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
// Case 2_reduce: w = N * P_3 (change sign)
|
|
{ .mfi
|
|
nop.m 999
|
|
fmpy.s1 w2 = N, P_3 // w = N * P_3 for |s| < 2^-33
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
// Case 1_reduce: r = s + w (change sign)
|
|
{ .mfi
|
|
nop.m 999
|
|
fsub.s1 r = s_val, w // r = s_val - w for |s| >= 2^-33
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
// Case 2_reduce: U_1 = N * P_2 + w
|
|
{ .mfi
|
|
nop.m 999
|
|
fma.s1 U_1 = N, P_2, w2 // U_1 = N * P_2 + w for |s| < 2^-33
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
//
|
|
// Decide between case_1 and case_2 reduce:
|
|
// Case 1_reduce: |s| >= 2**(-33)
|
|
// Case 2_reduce: |s| < 2**(-33)
|
|
//
|
|
{ .mfi
|
|
nop.m 999
|
|
fcmp.lt.s1 p9, p8 = s_val, TWO_TO_NEG33
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p9) fcmp.gt.s1 p9, p8 = s_val, NEGTWO_TO_NEG33
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
// Case 1_reduce: c = s - r
|
|
{ .mfi
|
|
nop.m 999
|
|
fsub.s1 c = s_val, r // c = s_val - r for |s| >= 2^-33
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
// Case 2_reduce: r is complete here - continue to calculate c .
|
|
// r = s - U_1
|
|
{ .mfi
|
|
nop.m 999
|
|
(p9) fsub.s1 r = s_val, U_1
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p9) fms.s1 U_2 = N, P_2, U_1
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
//
|
|
// Case 1_reduce: Is |r| < 2**(-2), if so set PR_10
|
|
// else set PR_13.
|
|
//
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
fand B = B_mask1, r
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p8) fcmp.lt.unc.s1 p10, p13 = r, TWO_TO_NEG2
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
(p8) getf.sig sig_r = r // Get signif of r if |s| >= 2^-33
|
|
nop.f 999
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
(p8) getf.exp exp_r = r // Extract signexp of r if |s| >= 2^-33
|
|
(p10) fcmp.gt.s1 p10, p13 = r, NEGTWO_TO_NEG2
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
// Case 1_reduce: c is complete here.
|
|
// Case 1: Branch to SMALL_R or NORMAL_R.
|
|
// c = c + w (w has not been negated.)
|
|
{ .mfi
|
|
nop.m 999
|
|
(p8) fsub.s1 c = c, w // c = c - w for |s| >= 2^-33
|
|
nop.i 999
|
|
}
|
|
{ .mbb
|
|
nop.m 999
|
|
(p10) br.cond.spnt TANL_SMALL_R // Branch if pi/4 < |x| < 2^24 and |r|<1/4
|
|
(p13) br.cond.sptk TANL_NORMAL_R_A // Branch if pi/4 < |x| < 2^24 and |r|>=1/4
|
|
}
|
|
;;
|
|
|
|
|
|
// Here if pi/4 < |x| < 2^24 and |s| < 2^-33
|
|
//
|
|
// Is i_1 = lsb of N_fix_gr even or odd?
|
|
// if i_1 == 0, set p11, else set p12.
|
|
//
|
|
{ .mfi
|
|
nop.m 999
|
|
fsub.s1 s_val = s_val, r
|
|
add N_fix_gr = N_fix_gr, cot_flag // N = N + 1 (for cotl)
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// Case 2_reduce:
|
|
// U_2 = N * P_2 - U_1
|
|
// Not needed until later.
|
|
//
|
|
fadd.s1 U_2 = U_2, w2
|
|
//
|
|
// Case 2_reduce:
|
|
// s = s - r
|
|
// U_2 = U_2 + w
|
|
//
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
//
|
|
// Case 2_reduce:
|
|
// c = c - U_2
|
|
// c is complete here
|
|
// Argument reduction ends here.
|
|
//
|
|
{ .mfi
|
|
nop.m 999
|
|
fmpy.s1 rsq = r, r
|
|
tbit.z p11, p12 = N_fix_gr, 0 ;; // Set p11 if N even, p12 if odd
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p12) frcpa.s1 S_hi,p0 = f1, r
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
fsub.s1 c = s_val, U_1
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mmi
|
|
add table_ptr1 = 160, table_base ;; // Point to tanl_table_p1
|
|
ldfe P1_1 = [table_ptr1],144
|
|
nop.i 999 ;;
|
|
}
|
|
//
|
|
// Load P1_1 and point to Q1_1 .
|
|
//
|
|
{ .mfi
|
|
ldfe Q1_1 = [table_ptr1]
|
|
//
|
|
// N even: rsq = r * Z
|
|
// N odd: S_hi = frcpa(r)
|
|
//
|
|
(p12) fmerge.ns S_hi = S_hi, S_hi
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// Case 2_reduce:
|
|
// c = s - U_1
|
|
//
|
|
(p9) fsub.s1 c = c, U_2
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p12) fma.s1 poly1 = S_hi, r, f1
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// N odd: Change sign of S_hi
|
|
//
|
|
(p11) fmpy.s1 rsq = rsq, P1_1
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p12) fma.s1 S_hi = S_hi, poly1, S_hi
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// N even: rsq = rsq * P1_1
|
|
// N odd: poly1 = 1.0 + S_hi * r 16 bits partial account for necessary
|
|
//
|
|
(p11) fma.s1 Poly = r, rsq, c
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// N even: Poly = c + r * rsq
|
|
// N odd: S_hi = S_hi + S_hi*poly1 16 bits account for necessary
|
|
//
|
|
(p12) fma.s1 poly1 = S_hi, r, f1
|
|
(p11) tbit.z.unc p14, p15 = cot_flag, 0 ;; // p14=1 for tanl; p15=1 for cotl
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// N even: Result = Poly + r
|
|
// N odd: poly1 = 1.0 + S_hi * r 32 bits partial
|
|
//
|
|
(p14) fadd.s0 Result = r, Poly // for tanl
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p15) fms.s0 Result = r, mOne, Poly // for cotl
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p12) fma.s1 S_hi = S_hi, poly1, S_hi
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// N even: Result1 = Result + r
|
|
// N odd: S_hi = S_hi * poly1 + S_hi 32 bits
|
|
//
|
|
(p12) fma.s1 poly1 = S_hi, r, f1
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// N odd: poly1 = S_hi * r + 1.0 64 bits partial
|
|
//
|
|
(p12) fma.s1 S_hi = S_hi, poly1, S_hi
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// N odd: poly1 = S_hi * poly + 1.0 64 bits
|
|
//
|
|
(p12) fma.s1 poly1 = S_hi, r, f1
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// N odd: poly1 = S_hi * r + 1.0
|
|
//
|
|
(p12) fma.s1 poly1 = S_hi, c, poly1
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// N odd: poly1 = S_hi * c + poly1
|
|
//
|
|
(p12) fmpy.s1 S_lo = S_hi, poly1
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// N odd: S_lo = S_hi * poly1
|
|
//
|
|
(p12) fma.s1 S_lo = Q1_1, r, S_lo
|
|
(p12) tbit.z.unc p14, p15 = cot_flag, 0 // p14=1 for tanl; p15=1 for cotl
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// N odd: Result = S_hi + S_lo
|
|
//
|
|
fmpy.s0 fp_tmp = fp_tmp, fp_tmp // Dummy mult to set inexact
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// N odd: S_lo = S_lo + Q1_1 * r
|
|
//
|
|
(p14) fadd.s0 Result = S_hi, S_lo // for tanl
|
|
nop.i 999
|
|
}
|
|
{ .mfb
|
|
nop.m 999
|
|
(p15) fms.s0 Result = S_hi, mOne, S_lo // for cotl
|
|
br.ret.sptk b0 ;; // Exit for pi/4 <= |x| < 2^24 and |s| < 2^-33
|
|
}
|
|
|
|
|
|
TANL_LARGER_ARG:
|
|
// Here if 2^24 <= |x| < 2^63
|
|
//
|
|
// ARGUMENT REDUCTION CODE - CASE 3 and 4
|
|
//
|
|
|
|
{ .mmf
|
|
mov GR_exp_2tom14 = 0xffff - 14 // Form signexp of 2^-14
|
|
mov GR_exp_m2tom14 = 0x2ffff - 14 // Form signexp of -2^-14
|
|
fmpy.s1 N_0 = Norm_Arg, Inv_P_0
|
|
}
|
|
;;
|
|
|
|
{ .mmi
|
|
setf.exp TWO_TO_NEG14 = GR_exp_2tom14 // Form 2^-14
|
|
setf.exp NEGTWO_TO_NEG14 = GR_exp_m2tom14// Form -2^-14
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
|
|
//
|
|
// Adjust table_ptr1 to beginning of table.
|
|
// N_0 = Arg * Inv_P_0
|
|
//
|
|
{ .mmi
|
|
add table_ptr2 = 144, table_base ;; // Point to 2^-2
|
|
ldfps TWO_TO_NEG2, NEGTWO_TO_NEG2 = [table_ptr2]
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
//
|
|
// N_0_fix = integer part of N_0 .
|
|
//
|
|
//
|
|
// Make N_0 the integer part.
|
|
//
|
|
{ .mfi
|
|
nop.m 999
|
|
fcvt.fx.s1 N_0_fix = N_0
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mfi
|
|
setf.sig B_mask1 = bmask1 // Form mask to get 5 msb of r
|
|
fcvt.xf N_0 = N_0_fix
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mfi
|
|
setf.sig B_mask2 = bmask2 // Form mask to form B from r
|
|
fnma.s1 ArgPrime = N_0, P_0, Norm_Arg
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
fmpy.s1 w = N_0, d_1
|
|
nop.i 999 ;;
|
|
}
|
|
//
|
|
// ArgPrime = -N_0 * P_0 + Arg
|
|
// w = N_0 * d_1
|
|
//
|
|
//
|
|
// N = ArgPrime * 2/pi
|
|
//
|
|
// fcvt.fx.s1 N_fix = N
|
|
// Use special scaling to right shift so N=Arg * 2/pi is in rightmost bits
|
|
// Branch to Cases 3 or 4 if Arg <= -2**24 or Arg >= 2**24
|
|
{ .mfi
|
|
nop.m 999
|
|
fma.s1 N_fix = ArgPrime, FR_inv_pi_2to63, FR_rshf_2to64
|
|
|
|
nop.i 999 ;;
|
|
}
|
|
// Convert integer N_fix back to normalized floating-point value.
|
|
{ .mfi
|
|
nop.m 999
|
|
fms.s1 N = N_fix, FR_2tom64, FR_rshf // Use scaling to get N floated
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
//
|
|
// N is the integer part of the reduced-reduced argument.
|
|
// Put the integer in a GP register.
|
|
//
|
|
{ .mfi
|
|
getf.sig N_fix_gr = N_fix
|
|
nop.f 999
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
//
|
|
// s_val = -N*P_1 + ArgPrime
|
|
// w = -N*P_2 + w
|
|
//
|
|
{ .mfi
|
|
nop.m 999
|
|
fnma.s1 s_val = N, P_1, ArgPrime
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
fnma.s1 w = N, P_2, w
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
// Case 4: V_hi = N * P_2
|
|
// Case 4: U_hi = N_0 * d_1
|
|
{ .mfi
|
|
nop.m 999
|
|
fmpy.s1 V_hi = N, P_2 // V_hi = N * P_2 for |s| < 2^-14
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
fmpy.s1 U_hi = N_0, d_1 // U_hi = N_0 * d_1 for |s| < 2^-14
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
// Case 3: r = s_val + w (Z complete)
|
|
// Case 4: w = N * P_3
|
|
{ .mfi
|
|
nop.m 999
|
|
fadd.s1 r = s_val, w // r = s_val + w for |s| >= 2^-14
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
fmpy.s1 w2 = N, P_3 // w = N * P_3 for |s| < 2^-14
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
// Case 4: A = U_hi + V_hi
|
|
// Note: Worry about switched sign of V_hi, so subtract instead of add.
|
|
// Case 4: V_lo = -N * P_2 - V_hi (U_hi is in place of V_hi in writeup)
|
|
// Note: the (-) is still missing for V_hi.
|
|
{ .mfi
|
|
nop.m 999
|
|
fsub.s1 A = U_hi, V_hi // A = U_hi - V_hi for |s| < 2^-14
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
fnma.s1 V_lo = N, P_2, V_hi // V_lo = V_hi - N * P_2 for |s| < 2^-14
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
// Decide between case 3 and 4:
|
|
// Case 3: |s| >= 2**(-14) Set p10
|
|
// Case 4: |s| < 2**(-14) Set p11
|
|
//
|
|
// Case 4: U_lo = N_0 * d_1 - U_hi
|
|
{ .mfi
|
|
nop.m 999
|
|
fms.s1 U_lo = N_0, d_1, U_hi // U_lo = N_0*d_1 - U_hi for |s| < 2^-14
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
fcmp.lt.s1 p11, p10 = s_val, TWO_TO_NEG14
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
// Case 4: We need abs of both U_hi and V_hi - dont
|
|
// worry about switched sign of V_hi.
|
|
{ .mfi
|
|
nop.m 999
|
|
fabs V_hiabs = V_hi // |V_hi| for |s| < 2^-14
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p11) fcmp.gt.s1 p11, p10 = s_val, NEGTWO_TO_NEG14
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
// Case 3: c = s_val - r
|
|
{ .mfi
|
|
nop.m 999
|
|
fabs U_hiabs = U_hi // |U_hi| for |s| < 2^-14
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
fsub.s1 c = s_val, r // c = s_val - r for |s| >= 2^-14
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
// For Case 3, |s| >= 2^-14, determine if |r| < 1/4
|
|
//
|
|
// Case 4: C_hi = s_val + A
|
|
//
|
|
{ .mfi
|
|
nop.m 999
|
|
(p11) fadd.s1 C_hi = s_val, A // C_hi = s_val + A for |s| < 2^-14
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p10) fcmp.lt.unc.s1 p14, p15 = r, TWO_TO_NEG2
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
getf.sig sig_r = r // Get signif of r if |s| >= 2^-33
|
|
fand B = B_mask1, r
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
// Case 4: t = U_lo + V_lo
|
|
{ .mfi
|
|
getf.exp exp_r = r // Extract signexp of r if |s| >= 2^-33
|
|
(p11) fadd.s1 t = U_lo, V_lo // t = U_lo + V_lo for |s| < 2^-14
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p14) fcmp.gt.s1 p14, p15 = r, NEGTWO_TO_NEG2
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
// Case 3: c = (s - r) + w (c complete)
|
|
{ .mfi
|
|
nop.m 999
|
|
(p10) fadd.s1 c = c, w // c = c + w for |s| >= 2^-14
|
|
nop.i 999
|
|
}
|
|
{ .mbb
|
|
nop.m 999
|
|
(p14) br.cond.spnt TANL_SMALL_R // Branch if 2^24 <= |x| < 2^63 and |r|< 1/4
|
|
(p15) br.cond.sptk TANL_NORMAL_R_A // Branch if 2^24 <= |x| < 2^63 and |r|>=1/4
|
|
}
|
|
;;
|
|
|
|
|
|
// Here if 2^24 <= |x| < 2^63 and |s| < 2^-14 >>>>>>> Case 4.
|
|
//
|
|
// Case 4: Set P_12 if U_hiabs >= V_hiabs
|
|
// Case 4: w = w + N_0 * d_2
|
|
// Note: the (-) is now incorporated in w .
|
|
{ .mfi
|
|
add table_ptr1 = 160, table_base // Point to tanl_table_p1
|
|
fcmp.ge.unc.s1 p12, p13 = U_hiabs, V_hiabs
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
fms.s1 w2 = N_0, d_2, w2
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
// Case 4: C_lo = s_val - C_hi
|
|
{ .mfi
|
|
ldfe P1_1 = [table_ptr1], 16 // Load P1_1
|
|
fsub.s1 C_lo = s_val, C_hi
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
//
|
|
// Case 4: a = U_hi - A
|
|
// a = V_hi - A (do an add to account for missing (-) on V_hi
|
|
//
|
|
{ .mfi
|
|
ldfe P1_2 = [table_ptr1], 128 // Load P1_2
|
|
(p12) fsub.s1 a = U_hi, A
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p13) fadd.s1 a = V_hi, A
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
// Case 4: t = U_lo + V_lo + w
|
|
{ .mfi
|
|
ldfe Q1_1 = [table_ptr1], 16 // Load Q1_1
|
|
fadd.s1 t = t, w2
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
// Case 4: a = (U_hi - A) + V_hi
|
|
// a = (V_hi - A) + U_hi
|
|
// In each case account for negative missing form V_hi .
|
|
//
|
|
{ .mfi
|
|
ldfe Q1_2 = [table_ptr1], 16 // Load Q1_2
|
|
(p12) fsub.s1 a = a, V_hi
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p13) fsub.s1 a = U_hi, a
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
//
|
|
// Case 4: C_lo = (s_val - C_hi) + A
|
|
//
|
|
{ .mfi
|
|
nop.m 999
|
|
fadd.s1 C_lo = C_lo, A
|
|
nop.i 999 ;;
|
|
}
|
|
//
|
|
// Case 4: t = t + a
|
|
//
|
|
{ .mfi
|
|
nop.m 999
|
|
fadd.s1 t = t, a
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
// Case 4: C_lo = C_lo + t
|
|
// Case 4: r = C_hi + C_lo
|
|
{ .mfi
|
|
nop.m 999
|
|
fadd.s1 C_lo = C_lo, t
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
fadd.s1 r = C_hi, C_lo
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
//
|
|
// Case 4: c = C_hi - r
|
|
//
|
|
{ .mfi
|
|
nop.m 999
|
|
fsub.s1 c = C_hi, r
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
fmpy.s1 rsq = r, r
|
|
add N_fix_gr = N_fix_gr, cot_flag // N = N + 1 (for cotl)
|
|
}
|
|
;;
|
|
|
|
// Case 4: c = c + C_lo finished.
|
|
//
|
|
// Is i_1 = lsb of N_fix_gr even or odd?
|
|
// if i_1 == 0, set PR_11, else set PR_12.
|
|
//
|
|
{ .mfi
|
|
nop.m 999
|
|
fadd.s1 c = c , C_lo
|
|
tbit.z p11, p12 = N_fix_gr, 0
|
|
}
|
|
;;
|
|
|
|
// r and c have been computed.
|
|
{ .mfi
|
|
nop.m 999
|
|
(p12) frcpa.s1 S_hi, p0 = f1, r
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// N odd: Change sign of S_hi
|
|
//
|
|
(p11) fma.s1 Poly = rsq, P1_2, P1_1
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p12) fma.s1 P = rsq, Q1_2, Q1_1
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// N odd: Result = S_hi + S_lo (User supplied rounding mode for C1)
|
|
//
|
|
fmpy.s0 fp_tmp = fp_tmp, fp_tmp // Dummy mult to set inexact
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// N even: rsq = r * r
|
|
// N odd: S_hi = frcpa(r)
|
|
//
|
|
(p12) fmerge.ns S_hi = S_hi, S_hi
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// N even: rsq = rsq * P1_2 + P1_1
|
|
// N odd: poly1 = 1.0 + S_hi * r 16 bits partial account for necessary
|
|
//
|
|
(p11) fmpy.s1 Poly = rsq, Poly
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p12) fma.s1 poly1 = S_hi, r,f1
|
|
(p11) tbit.z.unc p14, p15 = cot_flag, 0 // p14=1 for tanl; p15=1 for cotl
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// N even: Poly = Poly * rsq
|
|
// N odd: S_hi = S_hi + S_hi*poly1 16 bits account for necessary
|
|
//
|
|
(p11) fma.s1 Poly = r, Poly, c
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p12) fma.s1 S_hi = S_hi, poly1, S_hi
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// N odd: S_hi = S_hi * poly1 + S_hi 32 bits
|
|
//
|
|
(p14) fadd.s0 Result = r, Poly // for tanl
|
|
nop.i 999 ;;
|
|
}
|
|
|
|
.pred.rel "mutex",p15,p12
|
|
{ .mfi
|
|
nop.m 999
|
|
(p15) fms.s0 Result = r, mOne, Poly // for cotl
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p12) fma.s1 poly1 = S_hi, r, f1
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// N even: Poly = Poly * r + c
|
|
// N odd: poly1 = 1.0 + S_hi * r 32 bits partial
|
|
//
|
|
(p12) fma.s1 S_hi = S_hi, poly1, S_hi
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p12) fma.s1 poly1 = S_hi, r, f1
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// N even: Result = Poly + r (Rounding mode S0)
|
|
// N odd: poly1 = S_hi * r + 1.0 64 bits partial
|
|
//
|
|
(p12) fma.s1 S_hi = S_hi, poly1, S_hi
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// N odd: poly1 = S_hi * poly + S_hi 64 bits
|
|
//
|
|
(p12) fma.s1 poly1 = S_hi, r, f1
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// N odd: poly1 = S_hi * r + 1.0
|
|
//
|
|
(p12) fma.s1 poly1 = S_hi, c, poly1
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// N odd: poly1 = S_hi * c + poly1
|
|
//
|
|
(p12) fmpy.s1 S_lo = S_hi, poly1
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// N odd: S_lo = S_hi * poly1
|
|
//
|
|
(p12) fma.s1 S_lo = P, r, S_lo
|
|
(p12) tbit.z.unc p14, p15 = cot_flag, 0 ;; // p14=1 for tanl; p15=1 for cotl
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p14) fadd.s0 Result = S_hi, S_lo // for tanl
|
|
nop.i 999
|
|
}
|
|
{ .mfb
|
|
nop.m 999
|
|
//
|
|
// N odd: S_lo = S_lo + r * P
|
|
//
|
|
(p15) fms.s0 Result = S_hi, mOne, S_lo // for cotl
|
|
br.ret.sptk b0 ;; // Exit for 2^24 <= |x| < 2^63 and |s| < 2^-14
|
|
}
|
|
|
|
|
|
TANL_SMALL_R:
|
|
// Here if |r| < 1/4
|
|
// r and c have been computed.
|
|
// *****************************************************************
|
|
// *****************************************************************
|
|
// *****************************************************************
|
|
// N odd: S_hi = frcpa(r)
|
|
// Get [i_1] - lsb of N_fix_gr. Set p11 if N even, p12 if N odd.
|
|
// N even: rsq = r * r
|
|
{ .mfi
|
|
add table_ptr1 = 160, table_base // Point to tanl_table_p1
|
|
frcpa.s1 S_hi, p0 = f1, r // S_hi for N odd
|
|
add N_fix_gr = N_fix_gr, cot_flag // N = N + 1 (for cotl)
|
|
}
|
|
{ .mfi
|
|
add table_ptr2 = 400, table_base // Point to Q1_7
|
|
fmpy.s1 rsq = r, r
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mmi
|
|
ldfe P1_1 = [table_ptr1], 16
|
|
;;
|
|
ldfe P1_2 = [table_ptr1], 16
|
|
tbit.z p11, p12 = N_fix_gr, 0
|
|
}
|
|
;;
|
|
|
|
|
|
{ .mfi
|
|
ldfe P1_3 = [table_ptr1], 96
|
|
nop.f 999
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
(p11) ldfe P1_9 = [table_ptr1], -16
|
|
(p12) fmerge.ns S_hi = S_hi, S_hi
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p11) fmpy.s1 r_to_the_8 = rsq, rsq
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
//
|
|
// N even: Poly2 = P1_7 + Poly2 * rsq
|
|
// N odd: poly2 = Q1_5 + poly2 * rsq
|
|
//
|
|
{ .mfi
|
|
(p11) ldfe P1_8 = [table_ptr1], -16
|
|
(p11) fadd.s1 CORR = rsq, f1
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
//
|
|
// N even: Poly1 = P1_2 + P1_3 * rsq
|
|
// N odd: poly1 = 1.0 + S_hi * r
|
|
// 16 bits partial account for necessary (-1)
|
|
//
|
|
{ .mmi
|
|
(p11) ldfe P1_7 = [table_ptr1], -16
|
|
;;
|
|
(p11) ldfe P1_6 = [table_ptr1], -16
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
//
|
|
// N even: Poly1 = P1_1 + Poly1 * rsq
|
|
// N odd: S_hi = S_hi + S_hi * poly1) 16 bits account for necessary
|
|
//
|
|
//
|
|
// N even: Poly2 = P1_5 + Poly2 * rsq
|
|
// N odd: poly2 = Q1_3 + poly2 * rsq
|
|
//
|
|
{ .mfi
|
|
(p11) ldfe P1_5 = [table_ptr1], -16
|
|
(p11) fmpy.s1 r_to_the_8 = r_to_the_8, r_to_the_8
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p12) fma.s1 poly1 = S_hi, r, f1
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
//
|
|
// N even: Poly1 = Poly1 * rsq
|
|
// N odd: poly1 = 1.0 + S_hi * r 32 bits partial
|
|
//
|
|
|
|
//
|
|
// N even: CORR = CORR * c
|
|
// N odd: S_hi = S_hi * poly1 + S_hi 32 bits
|
|
//
|
|
|
|
//
|
|
// N even: Poly2 = P1_6 + Poly2 * rsq
|
|
// N odd: poly2 = Q1_4 + poly2 * rsq
|
|
//
|
|
|
|
{ .mmf
|
|
(p11) ldfe P1_4 = [table_ptr1], -16
|
|
nop.m 999
|
|
(p11) fmpy.s1 CORR = CORR, c
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p11) fma.s1 Poly1 = P1_3, rsq, P1_2
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mfi
|
|
(p12) ldfe Q1_7 = [table_ptr2], -16
|
|
(p12) fma.s1 S_hi = S_hi, poly1, S_hi
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mfi
|
|
(p12) ldfe Q1_6 = [table_ptr2], -16
|
|
(p11) fma.s1 Poly2 = P1_9, rsq, P1_8
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mmi
|
|
(p12) ldfe Q1_5 = [table_ptr2], -16 ;;
|
|
(p12) ldfe Q1_4 = [table_ptr2], -16
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mfi
|
|
(p12) ldfe Q1_3 = [table_ptr2], -16
|
|
//
|
|
// N even: Poly2 = P1_8 + P1_9 * rsq
|
|
// N odd: poly2 = Q1_6 + Q1_7 * rsq
|
|
//
|
|
(p11) fma.s1 Poly1 = Poly1, rsq, P1_1
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mfi
|
|
(p12) ldfe Q1_2 = [table_ptr2], -16
|
|
(p12) fma.s1 poly1 = S_hi, r, f1
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mfi
|
|
(p12) ldfe Q1_1 = [table_ptr2], -16
|
|
(p11) fma.s1 Poly2 = Poly2, rsq, P1_7
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// N even: CORR = rsq + 1
|
|
// N even: r_to_the_8 = rsq * rsq
|
|
//
|
|
(p11) fmpy.s1 Poly1 = Poly1, rsq
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p12) fma.s1 S_hi = S_hi, poly1, S_hi
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p12) fma.s1 poly2 = Q1_7, rsq, Q1_6
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p11) fma.s1 Poly2 = Poly2, rsq, P1_6
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p12) fma.s1 poly1 = S_hi, r, f1
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p12) fma.s1 poly2 = poly2, rsq, Q1_5
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p11) fma.s1 Poly2= Poly2, rsq, P1_5
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p12) fma.s1 S_hi = S_hi, poly1, S_hi
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p12) fma.s1 poly2 = poly2, rsq, Q1_4
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// N even: r_to_the_8 = r_to_the_8 * r_to_the_8
|
|
// N odd: poly1 = S_hi * r + 1.0 64 bits partial
|
|
//
|
|
(p11) fma.s1 Poly2 = Poly2, rsq, P1_4
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// N even: Poly = CORR + Poly * r
|
|
// N odd: P = Q1_1 + poly2 * rsq
|
|
//
|
|
(p12) fma.s1 poly1 = S_hi, r, f1
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p12) fma.s1 poly2 = poly2, rsq, Q1_3
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// N even: Poly2 = P1_4 + Poly2 * rsq
|
|
// N odd: poly2 = Q1_2 + poly2 * rsq
|
|
//
|
|
(p11) fma.s1 Poly = Poly2, r_to_the_8, Poly1
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p12) fma.s1 poly1 = S_hi, c, poly1
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p12) fma.s1 poly2 = poly2, rsq, Q1_2
|
|
nop.i 999 ;;
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// N even: Poly = Poly1 + Poly2 * r_to_the_8
|
|
// N odd: S_hi = S_hi * poly1 + S_hi 64 bits
|
|
//
|
|
(p11) fma.s1 Poly = Poly, r, CORR
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// N even: Result = r + Poly (User supplied rounding mode)
|
|
// N odd: poly1 = S_hi * c + poly1
|
|
//
|
|
(p12) fmpy.s1 S_lo = S_hi, poly1
|
|
(p11) tbit.z.unc p14, p15 = cot_flag, 0 // p14=1 for tanl; p15=1 for cotl
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p12) fma.s1 P = poly2, rsq, Q1_1
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// N odd: poly1 = S_hi * r + 1.0
|
|
//
|
|
//
|
|
// N odd: S_lo = S_hi * poly1
|
|
//
|
|
(p14) fadd.s0 Result = Poly, r // for tanl
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p15) fms.s0 Result = Poly, mOne, r // for cotl
|
|
nop.i 999 ;;
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// N odd: S_lo = Q1_1 * c + S_lo
|
|
//
|
|
(p12) fma.s1 S_lo = Q1_1, c, S_lo
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
fmpy.s0 fp_tmp = fp_tmp, fp_tmp // Dummy mult to set inexact
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// N odd: Result = S_lo + r * P
|
|
//
|
|
(p12) fma.s1 Result = P, r, S_lo
|
|
(p12) tbit.z.unc p14, p15 = cot_flag, 0 ;; // p14=1 for tanl; p15=1 for cotl
|
|
}
|
|
|
|
//
|
|
// N odd: Result = Result + S_hi (user supplied rounding mode)
|
|
//
|
|
{ .mfi
|
|
nop.m 999
|
|
(p14) fadd.s0 Result = Result, S_hi // for tanl
|
|
nop.i 999
|
|
}
|
|
{ .mfb
|
|
nop.m 999
|
|
(p15) fms.s0 Result = Result, mOne, S_hi // for cotl
|
|
br.ret.sptk b0 ;; // Exit |r| < 1/4 path
|
|
}
|
|
|
|
|
|
TANL_NORMAL_R:
|
|
// Here if 1/4 <= |x| < pi/4 or if |x| >= 2^63 and |r| >= 1/4
|
|
// *******************************************************************
|
|
// *******************************************************************
|
|
// *******************************************************************
|
|
//
|
|
// r and c have been computed.
|
|
//
|
|
{ .mfi
|
|
nop.m 999
|
|
fand B = B_mask1, r
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
TANL_NORMAL_R_A:
|
|
// Enter here if pi/4 <= |x| < 2^63 and |r| >= 1/4
|
|
// Get the 5 bits or r for the lookup. 1.xxxxx ....
|
|
{ .mmi
|
|
add table_ptr1 = 416, table_base // Point to tanl_table_p2
|
|
mov GR_exp_2tom65 = 0xffff - 65 // Scaling constant for B
|
|
extr.u lookup = sig_r, 58, 5
|
|
}
|
|
;;
|
|
|
|
{ .mmi
|
|
ldfe P2_1 = [table_ptr1], 16
|
|
setf.exp TWO_TO_NEG65 = GR_exp_2tom65 // 2^-65 for scaling B if exp_r=-2
|
|
add N_fix_gr = N_fix_gr, cot_flag // N = N + 1 (for cotl)
|
|
}
|
|
;;
|
|
|
|
.pred.rel "mutex",p11,p12
|
|
// B = 2^63 * 1.xxxxx 100...0
|
|
{ .mfi
|
|
ldfe P2_2 = [table_ptr1], 16
|
|
for B = B_mask2, B
|
|
mov table_offset = 512 // Assume table offset is 512
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
ldfe P2_3 = [table_ptr1], 16
|
|
fmerge.s Pos_r = f1, r
|
|
tbit.nz p8,p9 = exp_r, 0
|
|
}
|
|
;;
|
|
|
|
// Is B = 2** -2 or B= 2** -1? If 2**-1, then
|
|
// we want an offset of 512 for table addressing.
|
|
{ .mii
|
|
add table_ptr2 = 1296, table_base // Point to tanl_table_cm2
|
|
(p9) shladd table_offset = lookup, 4, table_offset
|
|
(p8) shladd table_offset = lookup, 4, r0
|
|
}
|
|
;;
|
|
|
|
{ .mmi
|
|
add table_ptr1 = table_ptr1, table_offset // Point to T_hi
|
|
add table_ptr2 = table_ptr2, table_offset // Point to C_hi
|
|
add table_ptr3 = 2128, table_base // Point to tanl_table_scim2
|
|
}
|
|
;;
|
|
|
|
{ .mmi
|
|
ldfd T_hi = [table_ptr1], 8 // Load T_hi
|
|
;;
|
|
ldfd C_hi = [table_ptr2], 8 // Load C_hi
|
|
add table_ptr3 = table_ptr3, table_offset // Point to SC_inv
|
|
}
|
|
;;
|
|
|
|
//
|
|
// x = |r| - B
|
|
//
|
|
// Convert B so it has the same exponent as Pos_r before subtracting
|
|
{ .mfi
|
|
ldfs T_lo = [table_ptr1] // Load T_lo
|
|
(p9) fnma.s1 x = B, FR_2tom64, Pos_r
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p8) fnma.s1 x = B, TWO_TO_NEG65, Pos_r
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
ldfs C_lo = [table_ptr2] // Load C_lo
|
|
nop.f 999
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
ldfe SC_inv = [table_ptr3] // Load SC_inv
|
|
fmerge.s sgn_r = r, f1
|
|
tbit.z p11, p12 = N_fix_gr, 0 // p11 if N even, p12 if odd
|
|
|
|
}
|
|
;;
|
|
|
|
//
|
|
// xsq = x * x
|
|
// N even: Tx = T_hi * x
|
|
//
|
|
// N even: Tx1 = Tx + 1
|
|
// N odd: Cx1 = 1 - Cx
|
|
//
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
fmpy.s1 xsq = x, x
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p11) fmpy.s1 Tx = T_hi, x
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
//
|
|
// N odd: Cx = C_hi * x
|
|
//
|
|
{ .mfi
|
|
nop.m 999
|
|
(p12) fmpy.s1 Cx = C_hi, x
|
|
nop.i 999
|
|
}
|
|
;;
|
|
//
|
|
// N even and odd: P = P2_3 + P2_2 * xsq
|
|
//
|
|
{ .mfi
|
|
nop.m 999
|
|
fma.s1 P = P2_3, xsq, P2_2
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p11) fadd.s1 Tx1 = Tx, f1
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// N even: D = C_hi - tanx
|
|
// N odd: D = T_hi + tanx
|
|
//
|
|
(p11) fmpy.s1 CORR = SC_inv, T_hi
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
fmpy.s1 Sx = SC_inv, x
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p12) fmpy.s1 CORR = SC_inv, C_hi
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p12) fsub.s1 V_hi = f1, Cx
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
fma.s1 P = P, xsq, P2_1
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// N even and odd: P = P2_1 + P * xsq
|
|
//
|
|
(p11) fma.s1 V_hi = Tx, Tx1, f1
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// N even: Result = sgn_r * tail + T_hi (user rounding mode for C1)
|
|
// N odd: Result = sgn_r * tail + C_hi (user rounding mode for C1)
|
|
//
|
|
fmpy.s0 fp_tmp = fp_tmp, fp_tmp // Dummy mult to set inexact
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
fmpy.s1 CORR = CORR, c
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p12) fnma.s1 V_hi = Cx,V_hi,f1
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// N even: V_hi = Tx * Tx1 + 1
|
|
// N odd: Cx1 = 1 - Cx * Cx1
|
|
//
|
|
fmpy.s1 P = P, xsq
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// N even and odd: P = P * xsq
|
|
//
|
|
(p11) fmpy.s1 V_hi = V_hi, T_hi
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// N even and odd: tail = P * tail + V_lo
|
|
//
|
|
(p11) fmpy.s1 T_hi = sgn_r, T_hi
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
fmpy.s1 CORR = CORR, sgn_r
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p12) fmpy.s1 V_hi = V_hi,C_hi
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// N even: V_hi = T_hi * V_hi
|
|
// N odd: V_hi = C_hi * V_hi
|
|
//
|
|
fma.s1 tanx = P, x, x
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p12) fnmpy.s1 C_hi = sgn_r, C_hi
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// N even: V_lo = 1 - V_hi + C_hi
|
|
// N odd: V_lo = 1 - V_hi + T_hi
|
|
//
|
|
(p11) fadd.s1 CORR = CORR, T_lo
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p12) fsub.s1 CORR = CORR, C_lo
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// N even and odd: tanx = x + x * P
|
|
// N even and odd: Sx = SC_inv * x
|
|
//
|
|
(p11) fsub.s1 D = C_hi, tanx
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p12) fadd.s1 D = T_hi, tanx
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// N odd: CORR = SC_inv * C_hi
|
|
// N even: CORR = SC_inv * T_hi
|
|
//
|
|
fnma.s1 D = V_hi, D, f1
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// N even and odd: D = 1 - V_hi * D
|
|
// N even and odd: CORR = CORR * c
|
|
//
|
|
fma.s1 V_hi = V_hi, D, V_hi
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// N even and odd: V_hi = V_hi + V_hi * D
|
|
// N even and odd: CORR = sgn_r * CORR
|
|
//
|
|
(p11) fnma.s1 V_lo = V_hi, C_hi, f1
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p12) fnma.s1 V_lo = V_hi, T_hi, f1
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// N even: CORR = COOR + T_lo
|
|
// N odd: CORR = CORR - C_lo
|
|
//
|
|
(p11) fma.s1 V_lo = tanx, V_hi, V_lo
|
|
tbit.nz p15, p0 = cot_flag, 0 // p15=1 if we compute cotl
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p12) fnma.s1 V_lo = tanx, V_hi, V_lo
|
|
nop.i 999 ;;
|
|
}
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p15) fms.s1 T_hi = f0, f0, T_hi // to correct result's sign for cotl
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p15) fms.s1 C_hi = f0, f0, C_hi // to correct result's sign for cotl
|
|
nop.i 999
|
|
};;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p15) fms.s1 sgn_r = f0, f0, sgn_r // to correct result's sign for cotl
|
|
nop.i 999
|
|
};;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// N even: V_lo = V_lo + V_hi * tanx
|
|
// N odd: V_lo = V_lo - V_hi * tanx
|
|
//
|
|
(p11) fnma.s1 V_lo = C_lo, V_hi, V_lo
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p12) fnma.s1 V_lo = T_lo, V_hi, V_lo
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// N even: V_lo = V_lo - V_hi * C_lo
|
|
// N odd: V_lo = V_lo - V_hi * T_lo
|
|
//
|
|
fmpy.s1 V_lo = V_hi, V_lo
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// N even and odd: V_lo = V_lo * V_hi
|
|
//
|
|
fadd.s1 tail = V_hi, V_lo
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// N even and odd: tail = V_hi + V_lo
|
|
//
|
|
fma.s1 tail = tail, P, V_lo
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// N even: T_hi = sgn_r * T_hi
|
|
// N odd : C_hi = -sgn_r * C_hi
|
|
//
|
|
fma.s1 tail = tail, Sx, CORR
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// N even and odd: tail = Sx * tail + CORR
|
|
//
|
|
fma.s1 tail = V_hi, Sx, tail
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// N even an odd: tail = Sx * V_hi + tail
|
|
//
|
|
(p11) fma.s0 Result = sgn_r, tail, T_hi
|
|
nop.i 999
|
|
}
|
|
{ .mfb
|
|
nop.m 999
|
|
(p12) fma.s0 Result = sgn_r, tail, C_hi
|
|
br.ret.sptk b0 ;; // Exit for 1/4 <= |r| < pi/4
|
|
}
|
|
|
|
TANL_DENORMAL:
|
|
// Here if x denormal
|
|
{ .mfb
|
|
getf.exp GR_signexp_x = Norm_Arg // Get sign and exponent of x
|
|
nop.f 999
|
|
br.cond.sptk TANL_COMMON // Return to common code
|
|
}
|
|
;;
|
|
|
|
|
|
TANL_SPECIAL:
|
|
TANL_UNSUPPORTED:
|
|
//
|
|
// Code for NaNs, Unsupporteds, Infs, or +/- zero ?
|
|
// Invalid raised for Infs and SNaNs.
|
|
//
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
fmerge.s f10 = f8, f8 // Save input for error call
|
|
tbit.nz p6, p7 = cot_flag, 0 // p6=1 if we compute cotl
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p6) fclass.m p6, p7 = f8, 0x7 // Test for zero (cotl only)
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
.pred.rel "mutex", p6, p7
|
|
{ .mfi
|
|
(p6) mov GR_Parameter_Tag = 225 // (cotl)
|
|
(p6) frcpa.s0 f8, p0 = f1, f8 // cotl(+-0) = +-Inf
|
|
nop.i 999
|
|
}
|
|
{ .mfb
|
|
nop.m 999
|
|
(p7) fmpy.s0 f8 = f8, f0
|
|
(p7) br.ret.sptk b0
|
|
}
|
|
;;
|
|
|
|
GLOBAL_IEEE754_END(tanl)
|
|
libm_alias_ldouble_other (__tan, tan)
|
|
|
|
|
|
LOCAL_LIBM_ENTRY(__libm_error_region)
|
|
.prologue
|
|
|
|
// (1)
|
|
{ .mfi
|
|
add GR_Parameter_Y=-32,sp // Parameter 2 value
|
|
nop.f 0
|
|
.save ar.pfs,GR_SAVE_PFS
|
|
mov GR_SAVE_PFS=ar.pfs // Save ar.pfs
|
|
}
|
|
{ .mfi
|
|
.fframe 64
|
|
add sp=-64,sp // Create new stack
|
|
nop.f 0
|
|
mov GR_SAVE_GP=gp // Save gp
|
|
};;
|
|
|
|
// (2)
|
|
{ .mmi
|
|
stfe [GR_Parameter_Y] = f1,16 // STORE Parameter 2 on stack
|
|
add GR_Parameter_X = 16,sp // Parameter 1 address
|
|
.save b0, GR_SAVE_B0
|
|
mov GR_SAVE_B0=b0 // Save b0
|
|
};;
|
|
|
|
.body
|
|
// (3)
|
|
{ .mib
|
|
stfe [GR_Parameter_X] = f10 // STORE Parameter 1 on stack
|
|
add GR_Parameter_RESULT = 0,GR_Parameter_Y // Parameter 3 address
|
|
nop.b 0
|
|
}
|
|
{ .mib
|
|
stfe [GR_Parameter_Y] = f8 // STORE Parameter 3 on stack
|
|
add GR_Parameter_Y = -16,GR_Parameter_Y
|
|
br.call.sptk b0=__libm_error_support# // Call error handling function
|
|
};;
|
|
{ .mmi
|
|
nop.m 0
|
|
nop.m 0
|
|
add GR_Parameter_RESULT = 48,sp
|
|
};;
|
|
|
|
// (4)
|
|
{ .mmi
|
|
ldfe f8 = [GR_Parameter_RESULT] // Get return result off stack
|
|
.restore sp
|
|
add sp = 64,sp // Restore stack pointer
|
|
mov b0 = GR_SAVE_B0 // Restore return address
|
|
};;
|
|
{ .mib
|
|
mov gp = GR_SAVE_GP // Restore gp
|
|
mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs
|
|
br.ret.sptk b0 // Return
|
|
};;
|
|
|
|
LOCAL_LIBM_END(__libm_error_region)
|
|
|
|
.type __libm_error_support#,@function
|
|
.global __libm_error_support#
|
|
|
|
|
|
// *******************************************************************
|
|
// *******************************************************************
|
|
// *******************************************************************
|
|
//
|
|
// Special Code to handle very large argument case.
|
|
// Call int __libm_pi_by_2_reduce(x,r,c) for |arguments| >= 2**63
|
|
// The interface is custom:
|
|
// On input:
|
|
// (Arg or x) is in f8
|
|
// On output:
|
|
// r is in f8
|
|
// c is in f9
|
|
// N is in r8
|
|
// We know also that __libm_pi_by_2_reduce preserves f10-15, f71-127. We
|
|
// use this to eliminate save/restore of key fp registers in this calling
|
|
// function.
|
|
//
|
|
// *******************************************************************
|
|
// *******************************************************************
|
|
// *******************************************************************
|
|
|
|
LOCAL_LIBM_ENTRY(__libm_callout)
|
|
TANL_ARG_TOO_LARGE:
|
|
.prologue
|
|
{ .mfi
|
|
add table_ptr2 = 144, table_base // Point to 2^-2
|
|
nop.f 999
|
|
.save ar.pfs,GR_SAVE_PFS
|
|
mov GR_SAVE_PFS=ar.pfs // Save ar.pfs
|
|
}
|
|
;;
|
|
|
|
// Load 2^-2, -2^-2
|
|
{ .mmi
|
|
ldfps TWO_TO_NEG2, NEGTWO_TO_NEG2 = [table_ptr2]
|
|
setf.sig B_mask1 = bmask1 // Form mask to get 5 msb of r
|
|
.save b0, GR_SAVE_B0
|
|
mov GR_SAVE_B0=b0 // Save b0
|
|
};;
|
|
|
|
.body
|
|
//
|
|
// Call argument reduction with x in f8
|
|
// Returns with N in r8, r in f8, c in f9
|
|
// Assumes f71-127 are preserved across the call
|
|
//
|
|
{ .mib
|
|
setf.sig B_mask2 = bmask2 // Form mask to form B from r
|
|
mov GR_SAVE_GP=gp // Save gp
|
|
br.call.sptk b0=__libm_pi_by_2_reduce#
|
|
}
|
|
;;
|
|
|
|
//
|
|
// Is |r| < 2**(-2)
|
|
//
|
|
{ .mfi
|
|
getf.sig sig_r = r // Extract significand of r
|
|
fcmp.lt.s1 p6, p0 = r, TWO_TO_NEG2
|
|
mov gp = GR_SAVE_GP // Restore gp
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
getf.exp exp_r = r // Extract signexp of r
|
|
nop.f 999
|
|
mov b0 = GR_SAVE_B0 // Restore return address
|
|
}
|
|
;;
|
|
|
|
//
|
|
// Get N_fix_gr
|
|
//
|
|
{ .mfi
|
|
mov N_fix_gr = r8
|
|
(p6) fcmp.gt.unc.s1 p6, p0 = r, NEGTWO_TO_NEG2
|
|
mov ar.pfs = GR_SAVE_PFS // Restore pfs
|
|
}
|
|
;;
|
|
|
|
{ .mbb
|
|
nop.m 999
|
|
(p6) br.cond.spnt TANL_SMALL_R // Branch if |r| < 1/4
|
|
br.cond.sptk TANL_NORMAL_R // Branch if 1/4 <= |r| < pi/4
|
|
}
|
|
;;
|
|
|
|
LOCAL_LIBM_END(__libm_callout)
|
|
|
|
.type __libm_pi_by_2_reduce#,@function
|
|
.global __libm_pi_by_2_reduce#
|