Optimized findMSB and findLSB
This commit is contained in:
parent
20bdab33dd
commit
0bffce4f4b
@ -87,6 +87,117 @@ namespace detail
|
||||
return (v & Mask) + ((v >> Shift) & Mask);
|
||||
}
|
||||
};
|
||||
|
||||
template <typename genIUType, size_t Bits>
|
||||
struct compute_findLSB
|
||||
{
|
||||
GLM_FUNC_QUALIFIER static int call(genIUType Value)
|
||||
{
|
||||
if(Value == 0)
|
||||
return -1;
|
||||
|
||||
return glm::bitCount(~Value & (Value - static_cast<genIUType>(1)));
|
||||
}
|
||||
};
|
||||
|
||||
# if (GLM_ARCH != GLM_ARCH_PURE) && (GLM_COMPILER & (GLM_COMPILER_VC | GLM_COMPILER_APPLE_CLANG | GLM_COMPILER_LLVM))
|
||||
|
||||
template <typename genIUType>
|
||||
struct compute_findLSB<genIUType, 32>
|
||||
{
|
||||
GLM_FUNC_QUALIFIER static int call(genIUType Value)
|
||||
{
|
||||
unsigned long Result(0);
|
||||
unsigned char IsNotNull = _BitScanForward(&Result, *reinterpret_cast<unsigned long*>(&Value));
|
||||
return IsNotNull ? int(Result) : -1;
|
||||
}
|
||||
};
|
||||
|
||||
template <typename genIUType>
|
||||
struct compute_findLSB<genIUType, 64>
|
||||
{
|
||||
GLM_FUNC_QUALIFIER static int call(genIUType Value)
|
||||
{
|
||||
unsigned long Result(0);
|
||||
unsigned char IsNotNull = _BitScanForward64(&Result, *reinterpret_cast<unsigned __int64*>(&Value));
|
||||
return IsNotNull ? int(Result) : -1;
|
||||
}
|
||||
};
|
||||
|
||||
# endif
|
||||
|
||||
template <typename T, glm::precision P, template <class, glm::precision> class vecType, bool EXEC = true>
|
||||
struct compute_findMSB_step_vec
|
||||
{
|
||||
GLM_FUNC_QUALIFIER static vecType<T, P> call(vecType<T, P> const & x, T Shift)
|
||||
{
|
||||
return x | (x >> Shift);
|
||||
}
|
||||
};
|
||||
|
||||
template <typename T, glm::precision P, template <class, glm::precision> class vecType>
|
||||
struct compute_findMSB_step_vec<T, P, vecType, false>
|
||||
{
|
||||
GLM_FUNC_QUALIFIER static vecType<T, P> call(vecType<T, P> const & x, T)
|
||||
{
|
||||
return x;
|
||||
}
|
||||
};
|
||||
|
||||
template <typename T, glm::precision P, template <class, glm::precision> class vecType, std::size_t>
|
||||
struct compute_findMSB_vec
|
||||
{
|
||||
GLM_FUNC_QUALIFIER static vecType<int, P> call(vecType<T, P> const & vec)
|
||||
{
|
||||
vecType<T, P> x(vec);
|
||||
x = compute_findMSB_step_vec<T, P, vecType, sizeof(T) * 8 >= 8>::call(x, static_cast<T>( 1));
|
||||
x = compute_findMSB_step_vec<T, P, vecType, sizeof(T) * 8 >= 8>::call(x, static_cast<T>( 2));
|
||||
x = compute_findMSB_step_vec<T, P, vecType, sizeof(T) * 8 >= 8>::call(x, static_cast<T>( 4));
|
||||
x = compute_findMSB_step_vec<T, P, vecType, sizeof(T) * 8 >= 16>::call(x, static_cast<T>( 8));
|
||||
x = compute_findMSB_step_vec<T, P, vecType, sizeof(T) * 8 >= 32>::call(x, static_cast<T>(16));
|
||||
x = compute_findMSB_step_vec<T, P, vecType, sizeof(T) * 8 >= 64>::call(x, static_cast<T>(32));
|
||||
return vecType<int, P>(sizeof(T) * 8 - 1) - glm::bitCount(~x);
|
||||
}
|
||||
};
|
||||
|
||||
# if (GLM_ARCH != GLM_ARCH_PURE) && (GLM_COMPILER & (GLM_COMPILER_VC | GLM_COMPILER_APPLE_CLANG | GLM_COMPILER_LLVM))
|
||||
|
||||
template <typename genIUType>
|
||||
GLM_FUNC_QUALIFIER int compute_findMSB_32(genIUType Value)
|
||||
{
|
||||
unsigned long Result(0);
|
||||
unsigned char IsNotNull = _BitScanReverse(&Result, *reinterpret_cast<unsigned long*>(&Value));
|
||||
return IsNotNull ? int(Result) : -1;
|
||||
}
|
||||
|
||||
template <typename genIUType>
|
||||
GLM_FUNC_QUALIFIER int compute_findMSB_64(genIUType Value)
|
||||
{
|
||||
unsigned long Result(0);
|
||||
unsigned char IsNotNull = _BitScanReverse64(&Result, *reinterpret_cast<unsigned __int64*>(&Value));
|
||||
return IsNotNull ? int(Result) : -1;
|
||||
}
|
||||
|
||||
template <typename T, glm::precision P, template <class, glm::precision> class vecType>
|
||||
struct compute_findMSB_vec<T, P, vecType, 32>
|
||||
{
|
||||
GLM_FUNC_QUALIFIER static int call(vecType<T, P> const & x)
|
||||
{
|
||||
return detail::functor1<int, T, P, vecType>::call(compute_findMSB_32, x);
|
||||
}
|
||||
};
|
||||
|
||||
template <typename T, glm::precision P, template <class, glm::precision> class vecType>
|
||||
struct compute_findMSB_vec<T, P, vecType, 64>
|
||||
{
|
||||
GLM_FUNC_QUALIFIER static int call(vecType<T, P> const & x)
|
||||
{
|
||||
return detail::functor1<int, T, P, vecType>::call(compute_findMSB_64, x);
|
||||
}
|
||||
};
|
||||
|
||||
# endif
|
||||
|
||||
}//namespace detail
|
||||
|
||||
// uaddCarry
|
||||
@ -248,12 +359,8 @@ namespace detail
|
||||
GLM_FUNC_QUALIFIER int findLSB(genIUType Value)
|
||||
{
|
||||
GLM_STATIC_ASSERT(std::numeric_limits<genIUType>::is_integer, "'findLSB' only accept integer values");
|
||||
if(Value == 0)
|
||||
return -1;
|
||||
|
||||
genIUType Bit;
|
||||
for(Bit = genIUType(0); !(Value & (1 << Bit)); ++Bit){}
|
||||
return Bit;
|
||||
return detail::compute_findLSB<genIUType, sizeof(genIUType) * 8>::call(Value);
|
||||
}
|
||||
|
||||
template <typename T, precision P, template <typename, precision> class vecType>
|
||||
@ -265,89 +372,19 @@ namespace detail
|
||||
}
|
||||
|
||||
// findMSB
|
||||
#if (GLM_ARCH != GLM_ARCH_PURE) && (GLM_COMPILER & GLM_COMPILER_VC)
|
||||
|
||||
template <typename genIUType>
|
||||
GLM_FUNC_QUALIFIER int findMSB(genIUType Value)
|
||||
{
|
||||
GLM_STATIC_ASSERT(std::numeric_limits<genIUType>::is_integer, "'findMSB' only accept integer values");
|
||||
if(Value == 0)
|
||||
return -1;
|
||||
|
||||
unsigned long Result(0);
|
||||
_BitScanReverse(&Result, Value);
|
||||
return int(Result);
|
||||
}
|
||||
/*
|
||||
// __builtin_clz seems to be buggy as it crasks for some values, from 0x00200000 to 80000000
|
||||
#elif((GLM_ARCH != GLM_ARCH_PURE) && (GLM_COMPILER & GLM_COMPILER_GCC) && (GLM_COMPILER >= GLM_COMPILER_GCC40))
|
||||
|
||||
template <typename genIUType>
|
||||
GLM_FUNC_QUALIFIER int findMSB
|
||||
(
|
||||
genIUType const & Value
|
||||
)
|
||||
{
|
||||
GLM_STATIC_ASSERT(std::numeric_limits<genIUType>::is_integer, "'findMSB' only accept integer values");
|
||||
if(Value == 0)
|
||||
return -1;
|
||||
|
||||
// clz returns the number or trailing 0-bits; see
|
||||
// http://gcc.gnu.org/onlinedocs/gcc-4.7.1/gcc/Other-Builtins.html
|
||||
//
|
||||
// NoteBecause __builtin_clz only works for unsigned ints, this
|
||||
// implementation will not work for 64-bit integers.
|
||||
//
|
||||
return 31 - __builtin_clzl(Value);
|
||||
}
|
||||
*/
|
||||
#else
|
||||
|
||||
/* SSE implementation idea
|
||||
|
||||
__m128i const Zero = _mm_set_epi32( 0, 0, 0, 0);
|
||||
__m128i const One = _mm_set_epi32( 1, 1, 1, 1);
|
||||
__m128i Bit = _mm_set_epi32(-1, -1, -1, -1);
|
||||
__m128i Tmp = _mm_set_epi32(Value, Value, Value, Value);
|
||||
__m128i Mmi = Zero;
|
||||
for(int i = 0; i < 32; ++i)
|
||||
{
|
||||
__m128i Shilt = _mm_and_si128(_mm_cmpgt_epi32(Tmp, One), One);
|
||||
Tmp = _mm_srai_epi32(Tmp, One);
|
||||
Bit = _mm_add_epi32(Bit, _mm_and_si128(Shilt, i));
|
||||
Mmi = _mm_and_si128(Mmi, One);
|
||||
}
|
||||
return Bit;
|
||||
*/
|
||||
|
||||
template <typename genIUType>
|
||||
GLM_FUNC_QUALIFIER int findMSB(genIUType Value)
|
||||
GLM_FUNC_QUALIFIER int findMSB(genIUType x)
|
||||
{
|
||||
GLM_STATIC_ASSERT(std::numeric_limits<genIUType>::is_integer, "'findMSB' only accept integer values");
|
||||
|
||||
if(Value == genIUType(0) || Value == genIUType(-1))
|
||||
return -1;
|
||||
else if(Value > 0)
|
||||
{
|
||||
genIUType Bit = genIUType(-1);
|
||||
for(genIUType tmp = Value; tmp > 0; tmp >>= 1, ++Bit){}
|
||||
return Bit;
|
||||
}
|
||||
else //if(Value < 0)
|
||||
{
|
||||
int const BitCount(sizeof(genIUType) * 8);
|
||||
int MostSignificantBit(-1);
|
||||
for(int BitIndex(0); BitIndex < BitCount; ++BitIndex)
|
||||
MostSignificantBit = (Value & (1 << BitIndex)) ? MostSignificantBit : BitIndex;
|
||||
assert(MostSignificantBit >= 0);
|
||||
return MostSignificantBit;
|
||||
}
|
||||
return findMSB(tvec1<genIUType>(x)).x;
|
||||
}
|
||||
#endif//(GLM_COMPILER)
|
||||
|
||||
template <typename T, precision P, template <typename, precision> class vecType>
|
||||
GLM_FUNC_QUALIFIER vecType<int, P> findMSB(vecType<T, P> const & x)
|
||||
{
|
||||
return detail::functor1<int, T, P, vecType>::call(findMSB, x);
|
||||
GLM_STATIC_ASSERT(std::numeric_limits<T>::is_integer, "'findMSB' only accept integer values");
|
||||
|
||||
return detail::compute_findMSB_vec<T, P, vecType, sizeof(T) * 8>::call(x);
|
||||
}
|
||||
}//namespace glm
|
||||
|
@ -67,16 +67,16 @@ Improvements:
|
||||
- Undetected C++ compiler automatically compile with GLM_FORCE_CXX98 and
|
||||
GLM_FORCE_PURE
|
||||
- Added not function (from GLSL specification) on VC12
|
||||
- Optimized bitfield operations
|
||||
- Optimized bitfieldReverse and bitCount functions
|
||||
- Optimized findLSB and findMSB functions.
|
||||
- Optimized matrix-vector multiple performance with Cuda #257, #258
|
||||
- Reduced integer type redifinitions #233
|
||||
- Rewrited of GTX_fast_trigonometry #264 #265
|
||||
- Made types trivially copyable #263
|
||||
- Removed <iostream> in GLM tests
|
||||
- Used std features within GLM without redeclaring
|
||||
- Optimized glm::cot #272
|
||||
- Optimized glm::sign #272
|
||||
- Optimized cot function #272
|
||||
- Optimized sign function #272
|
||||
|
||||
Fixes:
|
||||
- Fixed std::nextafter not supported with C++11 on Android #217
|
||||
|
@ -22,6 +22,7 @@ glmCreateTestGTC(core_func_geometric)
|
||||
glmCreateTestGTC(core_func_integer)
|
||||
glmCreateTestGTC(core_func_integer_bit_count)
|
||||
glmCreateTestGTC(core_func_integer_find_lsb)
|
||||
glmCreateTestGTC(core_func_integer_find_msb)
|
||||
glmCreateTestGTC(core_func_matrix)
|
||||
glmCreateTestGTC(core_func_noise)
|
||||
glmCreateTestGTC(core_func_packing)
|
||||
|
@ -8,6 +8,7 @@
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
#include <glm/integer.hpp>
|
||||
#include <glm/vector_relational.hpp>
|
||||
#include <glm/gtc/vec1.hpp>
|
||||
#include <vector>
|
||||
#include <ctime>
|
||||
@ -555,6 +556,19 @@ namespace findMSB
|
||||
genType Return;
|
||||
};
|
||||
|
||||
template <typename genIUType>
|
||||
GLM_FUNC_QUALIFIER int findMSB_intrinsic(genIUType Value)
|
||||
{
|
||||
GLM_STATIC_ASSERT(std::numeric_limits<genIUType>::is_integer, "'findMSB' only accept integer values");
|
||||
|
||||
if(Value == 0)
|
||||
return -1;
|
||||
|
||||
unsigned long Result(0);
|
||||
_BitScanReverse(&Result, Value);
|
||||
return int(Result);
|
||||
}
|
||||
|
||||
template <typename genIUType>
|
||||
GLM_FUNC_QUALIFIER int findMSB_095(genIUType Value)
|
||||
{
|
||||
@ -583,27 +597,17 @@ namespace findMSB
|
||||
GLM_FUNC_QUALIFIER int findMSB_nlz1(genIUType x)
|
||||
{
|
||||
GLM_STATIC_ASSERT(std::numeric_limits<genIUType>::is_integer, "'findMSB' only accept integer values");
|
||||
/*
|
||||
int Result = 0;
|
||||
for(std::size_t i = 0, n = sizeof(genIUType) * 8; i < n; ++i)
|
||||
Result = Value & static_cast<genIUType>(1 << i) ? static_cast<int>(i) : Result;
|
||||
return Result;
|
||||
*/
|
||||
/*
|
||||
genIUType Bit = genIUType(-1);
|
||||
for(genIUType tmp = Value; tmp > 0; tmp >>= 1, ++Bit){}
|
||||
return Bit;
|
||||
*/
|
||||
int n;
|
||||
|
||||
if (x == 0) return(32);
|
||||
n = 0;
|
||||
if (x == 0)
|
||||
return -1;
|
||||
|
||||
int n = 0;
|
||||
if (x <= 0x0000FFFF) {n = n +16; x = x <<16;}
|
||||
if (x <= 0x00FFFFFF) {n = n + 8; x = x << 8;}
|
||||
if (x <= 0x0FFFFFFF) {n = n + 4; x = x << 4;}
|
||||
if (x <= 0x3FFFFFFF) {n = n + 2; x = x << 2;}
|
||||
if (x <= 0x7FFFFFFF) {n = n + 1;}
|
||||
return n;
|
||||
return 31 - n;
|
||||
}
|
||||
|
||||
int findMSB_nlz2(unsigned int x)
|
||||
@ -617,69 +621,20 @@ namespace findMSB
|
||||
y = x >> 4; if (y != 0) {n = n - 4; x = y;}
|
||||
y = x >> 2; if (y != 0) {n = n - 2; x = y;}
|
||||
y = x >> 1; if (y != 0) return n - 2;
|
||||
return n - x;
|
||||
return 32 - (n - x);
|
||||
}
|
||||
|
||||
int perf_950()
|
||||
int findMSB_pop(unsigned int x)
|
||||
{
|
||||
type<glm::uint> const Data[] =
|
||||
{
|
||||
//{0x00000000, -1},
|
||||
{0x00000001, 0},
|
||||
{0x00000002, 1},
|
||||
{0x00000003, 1},
|
||||
{0x00000004, 2},
|
||||
{0x00000005, 2},
|
||||
{0x00000007, 2},
|
||||
{0x00000008, 3},
|
||||
{0x00000010, 4},
|
||||
{0x00000020, 5},
|
||||
{0x00000040, 6},
|
||||
{0x00000080, 7},
|
||||
{0x00000100, 8},
|
||||
{0x00000200, 9},
|
||||
{0x00000400, 10},
|
||||
{0x00000800, 11},
|
||||
{0x00001000, 12},
|
||||
{0x00002000, 13},
|
||||
{0x00004000, 14},
|
||||
{0x00008000, 15},
|
||||
{0x00010000, 16},
|
||||
{0x00020000, 17},
|
||||
{0x00040000, 18},
|
||||
{0x00080000, 19},
|
||||
{0x00100000, 20},
|
||||
{0x00200000, 21},
|
||||
{0x00400000, 22},
|
||||
{0x00800000, 23},
|
||||
{0x01000000, 24},
|
||||
{0x02000000, 25},
|
||||
{0x04000000, 26},
|
||||
{0x08000000, 27},
|
||||
{0x10000000, 28},
|
||||
{0x20000000, 29},
|
||||
{0x40000000, 30}
|
||||
};
|
||||
|
||||
int Error(0);
|
||||
|
||||
std::clock_t Timestamps1 = std::clock();
|
||||
|
||||
for(std::size_t k = 0; k < 1000000; ++k)
|
||||
for(std::size_t i = 0; i < sizeof(Data) / sizeof(type<int>); ++i)
|
||||
{
|
||||
int Result = findMSB_095(Data[i].Value);
|
||||
Error += Data[i].Return == Result ? 0 : 1;
|
||||
}
|
||||
|
||||
std::clock_t Timestamps2 = std::clock();
|
||||
|
||||
std::printf("findMSB - 0.9.5: %d clocks\n", static_cast<unsigned int>(Timestamps2 - Timestamps1));
|
||||
|
||||
return Error;
|
||||
x = x | (x >> 1);
|
||||
x = x | (x >> 2);
|
||||
x = x | (x >> 4);
|
||||
x = x | (x >> 8);
|
||||
x = x | (x >>16);
|
||||
return 31 - glm::bitCount(~x);
|
||||
}
|
||||
|
||||
int perf_ops()
|
||||
int perf_int()
|
||||
{
|
||||
type<int> const Data[] =
|
||||
{
|
||||
@ -721,10 +676,20 @@ namespace findMSB
|
||||
};
|
||||
|
||||
int Error(0);
|
||||
std::size_t const Count(1000000);
|
||||
|
||||
std::clock_t Timestamps0 = std::clock();
|
||||
|
||||
for(std::size_t k = 0; k < Count; ++k)
|
||||
for(std::size_t i = 0; i < sizeof(Data) / sizeof(type<int>); ++i)
|
||||
{
|
||||
int Result = glm::findMSB(Data[i].Value);
|
||||
Error += Data[i].Return == Result ? 0 : 1;
|
||||
}
|
||||
|
||||
std::clock_t Timestamps1 = std::clock();
|
||||
|
||||
for(std::size_t k = 0; k < 1000000; ++k)
|
||||
for(std::size_t k = 0; k < Count; ++k)
|
||||
for(std::size_t i = 0; i < sizeof(Data) / sizeof(type<int>); ++i)
|
||||
{
|
||||
int Result = findMSB_nlz1(Data[i].Value);
|
||||
@ -733,70 +698,109 @@ namespace findMSB
|
||||
|
||||
std::clock_t Timestamps2 = std::clock();
|
||||
|
||||
for(std::size_t k = 0; k < Count; ++k)
|
||||
for(std::size_t i = 0; i < sizeof(Data) / sizeof(type<int>); ++i)
|
||||
{
|
||||
int Result = findMSB_nlz2(Data[i].Value);
|
||||
Error += Data[i].Return == Result ? 0 : 1;
|
||||
}
|
||||
|
||||
std::clock_t Timestamps3 = std::clock();
|
||||
|
||||
for(std::size_t k = 0; k < Count; ++k)
|
||||
for(std::size_t i = 0; i < sizeof(Data) / sizeof(type<int>); ++i)
|
||||
{
|
||||
int Result = findMSB_095(Data[i].Value);
|
||||
Error += Data[i].Return == Result ? 0 : 1;
|
||||
}
|
||||
|
||||
std::clock_t Timestamps4 = std::clock();
|
||||
|
||||
for(std::size_t k = 0; k < Count; ++k)
|
||||
for(std::size_t i = 0; i < sizeof(Data) / sizeof(type<int>); ++i)
|
||||
{
|
||||
int Result = findMSB_intrinsic(Data[i].Value);
|
||||
Error += Data[i].Return == Result ? 0 : 1;
|
||||
}
|
||||
|
||||
std::clock_t Timestamps5 = std::clock();
|
||||
|
||||
for(std::size_t k = 0; k < Count; ++k)
|
||||
for(std::size_t i = 0; i < sizeof(Data) / sizeof(type<int>); ++i)
|
||||
{
|
||||
int Result = findMSB_pop(Data[i].Value);
|
||||
Error += Data[i].Return == Result ? 0 : 1;
|
||||
}
|
||||
|
||||
std::clock_t Timestamps6 = std::clock();
|
||||
|
||||
std::printf("glm::findMSB: %d clocks\n", static_cast<unsigned int>(Timestamps1 - Timestamps0));
|
||||
std::printf("findMSB - nlz1: %d clocks\n", static_cast<unsigned int>(Timestamps2 - Timestamps1));
|
||||
std::printf("findMSB - nlz2: %d clocks\n", static_cast<unsigned int>(Timestamps3 - Timestamps2));
|
||||
std::printf("findMSB - 0.9.5: %d clocks\n", static_cast<unsigned int>(Timestamps4 - Timestamps3));
|
||||
std::printf("findMSB - intrinsics: %d clocks\n", static_cast<unsigned int>(Timestamps5 - Timestamps4));
|
||||
std::printf("findMSB - pop: %d clocks\n", static_cast<unsigned int>(Timestamps6 - Timestamps5));
|
||||
|
||||
return Error;
|
||||
}
|
||||
|
||||
|
||||
int test_findMSB()
|
||||
int test_ivec4()
|
||||
{
|
||||
type<glm::uint> const Data[] =
|
||||
type<glm::ivec4> const Data[] =
|
||||
{
|
||||
//{0x00000000, -1},
|
||||
{0x00000001, 0},
|
||||
{0x00000002, 1},
|
||||
{0x00000003, 1},
|
||||
{0x00000004, 2},
|
||||
{0x00000005, 2},
|
||||
{0x00000007, 2},
|
||||
{0x00000008, 3},
|
||||
{0x00000010, 4},
|
||||
{0x00000020, 5},
|
||||
{0x00000040, 6},
|
||||
{0x00000080, 7},
|
||||
{0x00000100, 8},
|
||||
{0x00000200, 9},
|
||||
{0x00000400, 10},
|
||||
{0x00000800, 11},
|
||||
{0x00001000, 12},
|
||||
{0x00002000, 13},
|
||||
{0x00004000, 14},
|
||||
{0x00008000, 15},
|
||||
{0x00010000, 16},
|
||||
{0x00020000, 17},
|
||||
{0x00040000, 18},
|
||||
{0x00080000, 19},
|
||||
{0x00100000, 20},
|
||||
{0x00200000, 21},
|
||||
{0x00400000, 22},
|
||||
{0x00800000, 23},
|
||||
{0x01000000, 24},
|
||||
{0x02000000, 25},
|
||||
{0x04000000, 26},
|
||||
{0x08000000, 27},
|
||||
{0x10000000, 28},
|
||||
{0x20000000, 29},
|
||||
{0x40000000, 30}
|
||||
{glm::ivec4(0x00000000), glm::ivec4(-1)},
|
||||
{glm::ivec4(0x00000001), glm::ivec4( 0)},
|
||||
{glm::ivec4(0x00000002), glm::ivec4( 1)},
|
||||
{glm::ivec4(0x00000003), glm::ivec4( 1)},
|
||||
{glm::ivec4(0x00000004), glm::ivec4( 2)},
|
||||
{glm::ivec4(0x00000005), glm::ivec4( 2)},
|
||||
{glm::ivec4(0x00000007), glm::ivec4( 2)},
|
||||
{glm::ivec4(0x00000008), glm::ivec4( 3)},
|
||||
{glm::ivec4(0x00000010), glm::ivec4( 4)},
|
||||
{glm::ivec4(0x00000020), glm::ivec4( 5)},
|
||||
{glm::ivec4(0x00000040), glm::ivec4( 6)},
|
||||
{glm::ivec4(0x00000080), glm::ivec4( 7)},
|
||||
{glm::ivec4(0x00000100), glm::ivec4( 8)},
|
||||
{glm::ivec4(0x00000200), glm::ivec4( 9)},
|
||||
{glm::ivec4(0x00000400), glm::ivec4(10)},
|
||||
{glm::ivec4(0x00000800), glm::ivec4(11)},
|
||||
{glm::ivec4(0x00001000), glm::ivec4(12)},
|
||||
{glm::ivec4(0x00002000), glm::ivec4(13)},
|
||||
{glm::ivec4(0x00004000), glm::ivec4(14)},
|
||||
{glm::ivec4(0x00008000), glm::ivec4(15)},
|
||||
{glm::ivec4(0x00010000), glm::ivec4(16)},
|
||||
{glm::ivec4(0x00020000), glm::ivec4(17)},
|
||||
{glm::ivec4(0x00040000), glm::ivec4(18)},
|
||||
{glm::ivec4(0x00080000), glm::ivec4(19)},
|
||||
{glm::ivec4(0x00100000), glm::ivec4(20)},
|
||||
{glm::ivec4(0x00200000), glm::ivec4(21)},
|
||||
{glm::ivec4(0x00400000), glm::ivec4(22)},
|
||||
{glm::ivec4(0x00800000), glm::ivec4(23)},
|
||||
{glm::ivec4(0x01000000), glm::ivec4(24)},
|
||||
{glm::ivec4(0x02000000), glm::ivec4(25)},
|
||||
{glm::ivec4(0x04000000), glm::ivec4(26)},
|
||||
{glm::ivec4(0x08000000), glm::ivec4(27)},
|
||||
{glm::ivec4(0x10000000), glm::ivec4(28)},
|
||||
{glm::ivec4(0x20000000), glm::ivec4(29)},
|
||||
{glm::ivec4(0x40000000), glm::ivec4(30)}
|
||||
};
|
||||
|
||||
int Error(0);
|
||||
|
||||
for(std::size_t i = 0; i < sizeof(Data) / sizeof(type<int>); ++i)
|
||||
for(std::size_t i = 0; i < sizeof(Data) / sizeof(type<glm::ivec4>); ++i)
|
||||
{
|
||||
int Result = glm::findMSB(Data[i].Value);
|
||||
Error += Data[i].Return == Result ? 0 : 1;
|
||||
assert(!Error);
|
||||
glm::ivec4 Result0 = glm::findMSB(Data[i].Value);
|
||||
Error += glm::all(glm::equal(Data[i].Return, Result0)) ? 0 : 1;
|
||||
}
|
||||
|
||||
return Error;
|
||||
}
|
||||
|
||||
int test_nlz1()
|
||||
int test_int()
|
||||
{
|
||||
type<glm::uint> const Data[] =
|
||||
{
|
||||
//{0x00000000, -1},
|
||||
{0x00000000, -1},
|
||||
{0x00000001, 0},
|
||||
{0x00000002, 1},
|
||||
{0x00000003, 1},
|
||||
@ -837,8 +841,38 @@ namespace findMSB
|
||||
|
||||
for(std::size_t i = 0; i < sizeof(Data) / sizeof(type<int>); ++i)
|
||||
{
|
||||
int Result = findMSB_nlz2(Data[i].Value);
|
||||
Error += Data[i].Return == Result ? 0 : 1;
|
||||
int Result0 = glm::findMSB(Data[i].Value);
|
||||
Error += Data[i].Return == Result0 ? 0 : 1;
|
||||
}
|
||||
|
||||
for(std::size_t i = 0; i < sizeof(Data) / sizeof(type<int>); ++i)
|
||||
{
|
||||
int Result0 = findMSB_nlz1(Data[i].Value);
|
||||
Error += Data[i].Return == Result0 ? 0 : 1;
|
||||
}
|
||||
/*
|
||||
for(std::size_t i = 0; i < sizeof(Data) / sizeof(type<int>); ++i)
|
||||
{
|
||||
int Result0 = findMSB_nlz2(Data[i].Value);
|
||||
Error += Data[i].Return == Result0 ? 0 : 1;
|
||||
}
|
||||
*/
|
||||
for(std::size_t i = 0; i < sizeof(Data) / sizeof(type<int>); ++i)
|
||||
{
|
||||
int Result0 = findMSB_095(Data[i].Value);
|
||||
Error += Data[i].Return == Result0 ? 0 : 1;
|
||||
}
|
||||
|
||||
for(std::size_t i = 0; i < sizeof(Data) / sizeof(type<int>); ++i)
|
||||
{
|
||||
int Result0 = findMSB_intrinsic(Data[i].Value);
|
||||
Error += Data[i].Return == Result0 ? 0 : 1;
|
||||
}
|
||||
|
||||
for(std::size_t i = 0; i < sizeof(Data) / sizeof(type<int>); ++i)
|
||||
{
|
||||
int Result0 = findMSB_pop(Data[i].Value);
|
||||
Error += Data[i].Return == Result0 ? 0 : 1;
|
||||
}
|
||||
|
||||
return Error;
|
||||
@ -848,8 +882,8 @@ namespace findMSB
|
||||
{
|
||||
int Error(0);
|
||||
|
||||
Error += test_findMSB();
|
||||
//Error += test_nlz1();
|
||||
Error += test_ivec4();
|
||||
Error += test_int();
|
||||
|
||||
return Error;
|
||||
}
|
||||
@ -858,8 +892,7 @@ namespace findMSB
|
||||
{
|
||||
int Error(0);
|
||||
|
||||
Error += perf_950();
|
||||
//Error += perf_ops();
|
||||
Error += perf_int();
|
||||
|
||||
return Error;
|
||||
}
|
||||
@ -878,10 +911,60 @@ namespace findLSB
|
||||
{
|
||||
{0x00000001, 0},
|
||||
{0x00000003, 0},
|
||||
{0x00000002, 1}
|
||||
{0x00000002, 1},
|
||||
{0x80000000, 31},
|
||||
{0x00010000, 16},
|
||||
{0xFFFF0000, 16},
|
||||
{0xFF000000, 24},
|
||||
{0xFF00FF00, 8},
|
||||
{0x00000000, -1}
|
||||
};
|
||||
|
||||
int test()
|
||||
template <typename genIUType>
|
||||
GLM_FUNC_QUALIFIER int findLSB_intrinsic(genIUType Value)
|
||||
{
|
||||
GLM_STATIC_ASSERT(std::numeric_limits<genIUType>::is_integer, "'findLSB' only accept integer values");
|
||||
|
||||
if(Value == 0)
|
||||
return -1;
|
||||
|
||||
unsigned long Result(0);
|
||||
_BitScanForward(&Result, Value);
|
||||
return int(Result);
|
||||
}
|
||||
|
||||
template <typename genIUType>
|
||||
GLM_FUNC_QUALIFIER int findLSB_095(genIUType Value)
|
||||
{
|
||||
GLM_STATIC_ASSERT(std::numeric_limits<genIUType>::is_integer, "'findLSB' only accept integer values");
|
||||
if(Value == 0)
|
||||
return -1;
|
||||
|
||||
genIUType Bit;
|
||||
for(Bit = genIUType(0); !(Value & (1 << Bit)); ++Bit){}
|
||||
return Bit;
|
||||
}
|
||||
|
||||
template <typename genIUType>
|
||||
GLM_FUNC_QUALIFIER int findLSB_ntz2(genIUType x)
|
||||
{
|
||||
if(x == 0)
|
||||
return -1;
|
||||
|
||||
return glm::bitCount(~x & (x - static_cast<genIUType>(1)));
|
||||
}
|
||||
|
||||
template <typename genIUType>
|
||||
GLM_FUNC_QUALIFIER int findLSB_branchfree(genIUType x)
|
||||
{
|
||||
bool IsNull(x == 0);
|
||||
int const Keep(!IsNull);
|
||||
int const Discard(IsNull);
|
||||
|
||||
return static_cast<int>(glm::bitCount(~x & (x - static_cast<genIUType>(1)))) * Keep + Discard * -1;
|
||||
}
|
||||
|
||||
int test_int()
|
||||
{
|
||||
int Error(0);
|
||||
|
||||
@ -889,9 +972,111 @@ namespace findLSB
|
||||
{
|
||||
int Result = glm::findLSB(DataI32[i].Value);
|
||||
Error += DataI32[i].Return == Result ? 0 : 1;
|
||||
assert(!Error);
|
||||
}
|
||||
|
||||
for(std::size_t i = 0; i < sizeof(DataI32) / sizeof(type<int>); ++i)
|
||||
{
|
||||
int Result = findLSB_095(DataI32[i].Value);
|
||||
Error += DataI32[i].Return == Result ? 0 : 1;
|
||||
}
|
||||
|
||||
for(std::size_t i = 0; i < sizeof(DataI32) / sizeof(type<int>); ++i)
|
||||
{
|
||||
int Result = findLSB_intrinsic(DataI32[i].Value);
|
||||
Error += DataI32[i].Return == Result ? 0 : 1;
|
||||
}
|
||||
|
||||
for(std::size_t i = 0; i < sizeof(DataI32) / sizeof(type<int>); ++i)
|
||||
{
|
||||
int Result = findLSB_ntz2(DataI32[i].Value);
|
||||
Error += DataI32[i].Return == Result ? 0 : 1;
|
||||
}
|
||||
|
||||
for(std::size_t i = 0; i < sizeof(DataI32) / sizeof(type<int>); ++i)
|
||||
{
|
||||
int Result = findLSB_branchfree(DataI32[i].Value);
|
||||
Error += DataI32[i].Return == Result ? 0 : 1;
|
||||
}
|
||||
|
||||
return Error;
|
||||
}
|
||||
|
||||
int test()
|
||||
{
|
||||
int Error(0);
|
||||
|
||||
Error += test_int();
|
||||
|
||||
return Error;
|
||||
}
|
||||
|
||||
int perf_int()
|
||||
{
|
||||
int Error(0);
|
||||
std::size_t const Count(10000000);
|
||||
|
||||
std::clock_t Timestamps0 = std::clock();
|
||||
|
||||
for(std::size_t k = 0; k < Count; ++k)
|
||||
for(std::size_t i = 0; i < sizeof(DataI32) / sizeof(type<int>); ++i)
|
||||
{
|
||||
int Result = glm::findLSB(DataI32[i].Value);
|
||||
Error += DataI32[i].Return == Result ? 0 : 1;
|
||||
}
|
||||
|
||||
std::clock_t Timestamps1 = std::clock();
|
||||
|
||||
for(std::size_t k = 0; k < Count; ++k)
|
||||
for(std::size_t i = 0; i < sizeof(DataI32) / sizeof(type<int>); ++i)
|
||||
{
|
||||
int Result = findLSB_095(DataI32[i].Value);
|
||||
Error += DataI32[i].Return == Result ? 0 : 1;
|
||||
}
|
||||
|
||||
std::clock_t Timestamps2 = std::clock();
|
||||
|
||||
for(std::size_t k = 0; k < Count; ++k)
|
||||
for(std::size_t i = 0; i < sizeof(DataI32) / sizeof(type<int>); ++i)
|
||||
{
|
||||
int Result = findLSB_intrinsic(DataI32[i].Value);
|
||||
Error += DataI32[i].Return == Result ? 0 : 1;
|
||||
}
|
||||
|
||||
std::clock_t Timestamps3 = std::clock();
|
||||
|
||||
for(std::size_t k = 0; k < Count; ++k)
|
||||
for(std::size_t i = 0; i < sizeof(DataI32) / sizeof(type<int>); ++i)
|
||||
{
|
||||
int Result = findLSB_ntz2(DataI32[i].Value);
|
||||
Error += DataI32[i].Return == Result ? 0 : 1;
|
||||
}
|
||||
|
||||
std::clock_t Timestamps4 = std::clock();
|
||||
|
||||
for(std::size_t k = 0; k < Count; ++k)
|
||||
for(std::size_t i = 0; i < sizeof(DataI32) / sizeof(type<int>); ++i)
|
||||
{
|
||||
int Result = findLSB_branchfree(DataI32[i].Value);
|
||||
Error += DataI32[i].Return == Result ? 0 : 1;
|
||||
}
|
||||
|
||||
std::clock_t Timestamps5 = std::clock();
|
||||
|
||||
std::printf("glm::findLSB: %d clocks\n", static_cast<unsigned int>(Timestamps1 - Timestamps0));
|
||||
std::printf("findLSB - 0.9.5: %d clocks\n", static_cast<unsigned int>(Timestamps2 - Timestamps1));
|
||||
std::printf("findLSB - intrinsics: %d clocks\n", static_cast<unsigned int>(Timestamps3 - Timestamps2));
|
||||
std::printf("findLSB - ntz2: %d clocks\n", static_cast<unsigned int>(Timestamps4 - Timestamps3));
|
||||
std::printf("findLSB - branchfree: %d clocks\n", static_cast<unsigned int>(Timestamps5 - Timestamps4));
|
||||
|
||||
return Error;
|
||||
}
|
||||
|
||||
int perf()
|
||||
{
|
||||
int Error(0);
|
||||
|
||||
Error += perf_int();
|
||||
|
||||
return Error;
|
||||
}
|
||||
}//findLSB
|
||||
@ -1324,6 +1509,7 @@ int main()
|
||||
Error += ::bitCount::perf();
|
||||
Error += ::bitfieldReverse::perf();
|
||||
Error += ::findMSB::perf();
|
||||
Error += ::findLSB::perf();
|
||||
# endif
|
||||
|
||||
return Error;
|
||||
|
@ -7,123 +7,14 @@
|
||||
// File : test/core/func_integer_find_lsb.cpp
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
// This has the programs for computing the number of leading zeros
|
||||
// This has the programs for computing the number of trailing zeros
|
||||
// in a word.
|
||||
// Max line length is 57, to fit in hacker.book.
|
||||
// Compile with g++, not gcc.
|
||||
#include <cstdio>
|
||||
#include <cstdlib> // To define "exit", req'd by XLC.
|
||||
#include <cstdlib> //To define "exit", req'd by XLC.
|
||||
#include <ctime>
|
||||
|
||||
#define LE 1 // 1 for little-endian, 0 for big-endian.
|
||||
|
||||
int pop(unsigned x) {
|
||||
x = x - ((x >> 1) & 0x55555555);
|
||||
x = (x & 0x33333333) + ((x >> 2) & 0x33333333);
|
||||
x = (x + (x >> 4)) & 0x0F0F0F0F;
|
||||
x = x + (x << 8);
|
||||
x = x + (x << 16);
|
||||
return x >> 24;
|
||||
}
|
||||
|
||||
int nlz1(unsigned x) {
|
||||
int n;
|
||||
|
||||
if (x == 0) return(32);
|
||||
n = 0;
|
||||
if (x <= 0x0000FFFF) {n = n +16; x = x <<16;}
|
||||
if (x <= 0x00FFFFFF) {n = n + 8; x = x << 8;}
|
||||
if (x <= 0x0FFFFFFF) {n = n + 4; x = x << 4;}
|
||||
if (x <= 0x3FFFFFFF) {n = n + 2; x = x << 2;}
|
||||
if (x <= 0x7FFFFFFF) {n = n + 1;}
|
||||
return n;
|
||||
}
|
||||
|
||||
int nlz1a(unsigned x) {
|
||||
int n;
|
||||
|
||||
/* if (x == 0) return(32); */
|
||||
if ((int)x <= 0) return (~x >> 26) & 32;
|
||||
n = 1;
|
||||
if ((x >> 16) == 0) {n = n +16; x = x <<16;}
|
||||
if ((x >> 24) == 0) {n = n + 8; x = x << 8;}
|
||||
if ((x >> 28) == 0) {n = n + 4; x = x << 4;}
|
||||
if ((x >> 30) == 0) {n = n + 2; x = x << 2;}
|
||||
n = n - (x >> 31);
|
||||
return n;
|
||||
}
|
||||
// On basic Risc, 12 to 20 instructions.
|
||||
|
||||
int nlz2(unsigned x) {
|
||||
unsigned y;
|
||||
int n;
|
||||
|
||||
n = 32;
|
||||
y = x >>16; if (y != 0) {n = n -16; x = y;}
|
||||
y = x >> 8; if (y != 0) {n = n - 8; x = y;}
|
||||
y = x >> 4; if (y != 0) {n = n - 4; x = y;}
|
||||
y = x >> 2; if (y != 0) {n = n - 2; x = y;}
|
||||
y = x >> 1; if (y != 0) return n - 2;
|
||||
return n - x;
|
||||
}
|
||||
|
||||
// As above but coded as a loop for compactness:
|
||||
// 23 to 33 basic Risc instructions.
|
||||
int nlz2a(unsigned x) {
|
||||
unsigned y;
|
||||
int n, c;
|
||||
|
||||
n = 32;
|
||||
c = 16;
|
||||
do {
|
||||
y = x >> c; if (y != 0) {n = n - c; x = y;}
|
||||
c = c >> 1;
|
||||
} while (c != 0);
|
||||
return n - x;
|
||||
}
|
||||
|
||||
int nlz3(int x) {
|
||||
int y, n;
|
||||
|
||||
n = 0;
|
||||
y = x;
|
||||
L: if (x < 0) return n;
|
||||
if (y == 0) return 32 - n;
|
||||
n = n + 1;
|
||||
x = x << 1;
|
||||
y = y >> 1;
|
||||
goto L;
|
||||
}
|
||||
|
||||
int nlz4(unsigned x) {
|
||||
int y, m, n;
|
||||
|
||||
y = -(x >> 16); // If left half of x is 0,
|
||||
m = (y >> 16) & 16; // set n = 16. If left half
|
||||
n = 16 - m; // is nonzero, set n = 0 and
|
||||
x = x >> m; // shift x right 16.
|
||||
// Now x is of the form 0000xxxx.
|
||||
y = x - 0x100; // If positions 8-15 are 0,
|
||||
m = (y >> 16) & 8; // add 8 to n and shift x left 8.
|
||||
n = n + m;
|
||||
x = x << m;
|
||||
|
||||
y = x - 0x1000; // If positions 12-15 are 0,
|
||||
m = (y >> 16) & 4; // add 4 to n and shift x left 4.
|
||||
n = n + m;
|
||||
x = x << m;
|
||||
|
||||
y = x - 0x4000; // If positions 14-15 are 0,
|
||||
m = (y >> 16) & 2; // add 2 to n and shift x left 2.
|
||||
n = n + m;
|
||||
x = x << m;
|
||||
|
||||
y = x >> 14; // Set y = 0, 1, 2, or 3.
|
||||
m = y & ~(y >> 1); // Set m = 0, 1, 2, or 2 resp.
|
||||
return n + 2 - m;
|
||||
}
|
||||
|
||||
int nlz5(unsigned x) {
|
||||
int nlz(unsigned x) {
|
||||
int pop(unsigned x);
|
||||
|
||||
x = x | (x >> 1);
|
||||
@ -134,172 +25,239 @@ int nlz5(unsigned x) {
|
||||
return pop(~x);
|
||||
}
|
||||
|
||||
/* The four programs below are not valid ANSI C programs. This is
|
||||
because they refer to the same storage locations as two different types.
|
||||
However, they work with xlc/AIX, gcc/AIX, and gcc/NT. If you try to
|
||||
code them more compactly by declaring a variable xx to be "double," and
|
||||
then using
|
||||
int pop(unsigned x) {
|
||||
x = x - ((x >> 1) & 0x55555555);
|
||||
x = (x & 0x33333333) + ((x >> 2) & 0x33333333);
|
||||
x = (x + (x >> 4)) & 0x0F0F0F0F;
|
||||
x = x + (x << 8);
|
||||
x = x + (x << 16);
|
||||
return x >> 24;
|
||||
}
|
||||
|
||||
n = 1054 - (*((unsigned *)&xx + LE) >> 20);
|
||||
int ntz1(unsigned x) {
|
||||
return 32 - nlz(~x & (x-1));
|
||||
}
|
||||
|
||||
then you are violating not only the rule above, but also the ANSI C
|
||||
rule that pointer arithmetic can be performed only on pointers to
|
||||
array elements.
|
||||
When coded with the above statement, the program fails with xlc,
|
||||
gcc/AIX, and gcc/NT, at some optimization levels.
|
||||
BTW, these programs use the "anonymous union" feature of C++, not
|
||||
available in C. */
|
||||
int ntz2(unsigned x) {
|
||||
return pop(~x & (x - 1));
|
||||
}
|
||||
|
||||
int nlz6(unsigned k) {
|
||||
union {
|
||||
unsigned asInt[2];
|
||||
double asDouble;
|
||||
};
|
||||
int ntz3(unsigned x) {
|
||||
int n;
|
||||
|
||||
asDouble = (double)k + 0.5;
|
||||
n = 1054 - (asInt[LE] >> 20);
|
||||
if (x == 0) return(32);
|
||||
n = 1;
|
||||
if ((x & 0x0000FFFF) == 0) {n = n +16; x = x >>16;}
|
||||
if ((x & 0x000000FF) == 0) {n = n + 8; x = x >> 8;}
|
||||
if ((x & 0x0000000F) == 0) {n = n + 4; x = x >> 4;}
|
||||
if ((x & 0x00000003) == 0) {n = n + 2; x = x >> 2;}
|
||||
return n - (x & 1);
|
||||
}
|
||||
|
||||
int ntz4(unsigned x) {
|
||||
unsigned y;
|
||||
int n;
|
||||
|
||||
if (x == 0) return 32;
|
||||
n = 31;
|
||||
y = x <<16; if (y != 0) {n = n -16; x = y;}
|
||||
y = x << 8; if (y != 0) {n = n - 8; x = y;}
|
||||
y = x << 4; if (y != 0) {n = n - 4; x = y;}
|
||||
y = x << 2; if (y != 0) {n = n - 2; x = y;}
|
||||
y = x << 1; if (y != 0) {n = n - 1;}
|
||||
return n;
|
||||
}
|
||||
|
||||
int nlz7(unsigned k) {
|
||||
union {
|
||||
unsigned asInt[2];
|
||||
double asDouble;
|
||||
};
|
||||
int ntz4a(unsigned x) {
|
||||
unsigned y;
|
||||
int n;
|
||||
|
||||
asDouble = (double)k;
|
||||
n = 1054 - (asInt[LE] >> 20);
|
||||
n = (n & 31) + (n >> 9);
|
||||
if (x == 0) return 32;
|
||||
n = 31;
|
||||
y = x <<16; if (y != 0) {n = n -16; x = y;}
|
||||
y = x << 8; if (y != 0) {n = n - 8; x = y;}
|
||||
y = x << 4; if (y != 0) {n = n - 4; x = y;}
|
||||
y = x << 2; if (y != 0) {n = n - 2; x = y;}
|
||||
n = n - ((x << 1) >> 31);
|
||||
return n;
|
||||
}
|
||||
|
||||
/* In single precision, round-to-nearest mode, the basic method fails for:
|
||||
k = 0, k = 01FFFFFF, 03FFFFFE <= k <= 03FFFFFF,
|
||||
07FFFFFC <= k <= 07FFFFFF,
|
||||
0FFFFFF8 <= k <= 0FFFFFFF,
|
||||
...
|
||||
7FFFFFC0 <= k <= 7FFFFFFF.
|
||||
FFFFFF80 <= k <= FFFFFFFF.
|
||||
For k = 0 it gives 158, and for the other values it is too low by 1. */
|
||||
|
||||
int nlz8(unsigned k) {
|
||||
union {
|
||||
unsigned asInt;
|
||||
float asFloat;
|
||||
};
|
||||
int n;
|
||||
|
||||
k = k & ~(k >> 1); /* Fix problem with rounding. */
|
||||
asFloat = (float)k + 0.5f;
|
||||
n = 158 - (asInt >> 23);
|
||||
return n;
|
||||
int ntz5(char x)
|
||||
{
|
||||
if (x & 15) {
|
||||
if (x & 3) {
|
||||
if (x & 1) return 0;
|
||||
else return 1;
|
||||
}
|
||||
else if (x & 4) return 2;
|
||||
else return 3;
|
||||
}
|
||||
else if (x & 0x30) {
|
||||
if (x & 0x10) return 4;
|
||||
else return 5;
|
||||
}
|
||||
else if (x & 0x40) return 6;
|
||||
else if (x) return 7;
|
||||
else return 8;
|
||||
}
|
||||
|
||||
/* The example below shows how to make a macro for nlz. It uses an
|
||||
extension to the C and C++ languages that is provided by the GNU C/C++
|
||||
compiler, namely, that of allowing statements and declarations in
|
||||
expressions (see "Using and Porting GNU CC", by Richard M. Stallman
|
||||
(1998). The underscores are necessary to protect against the
|
||||
possibility that the macro argument will conflict with one of its local
|
||||
variables, e.g., NLZ(k). */
|
||||
|
||||
int nlz9(unsigned k) {
|
||||
union {
|
||||
unsigned asInt;
|
||||
float asFloat;
|
||||
};
|
||||
int ntz6(unsigned x) {
|
||||
int n;
|
||||
|
||||
k = k & ~(k >> 1); /* Fix problem with rounding. */
|
||||
asFloat = (float)k;
|
||||
n = 158 - (asInt >> 23);
|
||||
n = (n & 31) + (n >> 6); /* Fix problem with k = 0. */
|
||||
return n;
|
||||
x = ~x & (x - 1);
|
||||
n = 0; // n = 32;
|
||||
while(x != 0) { // while (x != 0) {
|
||||
n = n + 1; // n = n - 1;
|
||||
x = x >> 1; // x = x + x;
|
||||
} // }
|
||||
return n; // return n;
|
||||
}
|
||||
|
||||
/* Below are three nearly equivalent programs for computing the number
|
||||
of leading zeros in a word. This material is not in HD, but may be in a
|
||||
future edition.
|
||||
Immediately below is Robert Harley's algorithm, found at the
|
||||
comp.arch newsgroup entry dated 7/12/96, pointed out to me by Norbert
|
||||
Juffa.
|
||||
Table entries marked "u" are unused. 14 ops including a multiply,
|
||||
plus an indexed load.
|
||||
The smallest multiplier that works is 0x045BCED1 = 17*65*129*513 (all
|
||||
of form 2**k + 1). There are no multipliers of three terms of the form
|
||||
2**k +- 1 that work, with a table size of 64 or 128. There are some,
|
||||
with a table size of 64, if you precede the multiplication with x = x -
|
||||
(x >> 1), but that seems less elegant. There are also some if you use a
|
||||
table size of 256, the smallest is 0x01033CBF = 65*255*1025 (this would
|
||||
save two instructions in the form of this algorithm with the
|
||||
multiplication expanded into shifts and adds, but the table size is
|
||||
getting a bit large). */
|
||||
int ntz6a(unsigned x)
|
||||
{
|
||||
int n = 32;
|
||||
|
||||
while (x != 0) {
|
||||
n = n - 1;
|
||||
x = x + x;
|
||||
}
|
||||
return n;
|
||||
}
|
||||
|
||||
/* Dean Gaudet's algorithm. To be most useful there must be a good way
|
||||
to evaluate the C "conditional expression" (a?b:c construction) without
|
||||
branching. The result of a?b:c is b if a is true (nonzero), and c if a
|
||||
is false (0).
|
||||
For example, a compare to zero op that sets a target GPR to 1 if the
|
||||
operand is 0, and to 0 if the operand is nonzero, will do it. With this
|
||||
instruction, the algorithm is entirely branch-free. But the most
|
||||
interesting thing about it is the high degree of parallelism. All six
|
||||
lines with conditional expressions can be executed in parallel (on a
|
||||
machine with sufficient computational units).
|
||||
Although the instruction count is 30 measured statically, it could
|
||||
execute in only 10 cycles on a machine with sufficient parallelism.
|
||||
The first two uses of y can instead be x, which would increase the
|
||||
useful parallelism on most machines (the assignments to y, bz, and b4
|
||||
could then all run in parallel). */
|
||||
|
||||
int ntz7(unsigned x)
|
||||
{
|
||||
unsigned y, bz, b4, b3, b2, b1, b0;
|
||||
|
||||
y = x & -x; // Isolate rightmost 1-bit.
|
||||
bz = y ? 0 : 1; // 1 if y = 0.
|
||||
b4 = (y & 0x0000FFFF) ? 0 : 16;
|
||||
b3 = (y & 0x00FF00FF) ? 0 : 8;
|
||||
b2 = (y & 0x0F0F0F0F) ? 0 : 4;
|
||||
b1 = (y & 0x33333333) ? 0 : 2;
|
||||
b0 = (y & 0x55555555) ? 0 : 1;
|
||||
return bz + b4 + b3 + b2 + b1 + b0;
|
||||
}
|
||||
|
||||
int ntz7_christophe(unsigned x)
|
||||
{
|
||||
unsigned y, bz, b4, b3, b2, b1, b0;
|
||||
|
||||
y = x & -x; // Isolate rightmost 1-bit.
|
||||
bz = unsigned(!bool(y)); // 1 if y = 0.
|
||||
b4 = unsigned(!bool(y & 0x0000FFFF)) * 16;
|
||||
b3 = unsigned(!bool(y & 0x00FF00FF)) * 8;
|
||||
b2 = unsigned(!bool(y & 0x0F0F0F0F)) * 4;
|
||||
b1 = unsigned(!bool(y & 0x33333333)) * 2;
|
||||
b0 = unsigned(!bool(y & 0x55555555)) * 1;
|
||||
return bz + b4 + b3 + b2 + b1 + b0;
|
||||
}
|
||||
|
||||
/* Below is David Seal's algorithm, found at
|
||||
http://www.ciphersbyritter.com/NEWS4/BITCT.HTM Table
|
||||
entries marked "u" are unused. 6 ops including a
|
||||
multiply, plus an indexed load. */
|
||||
|
||||
#define u 99
|
||||
int nlz10(unsigned x) {
|
||||
int ntz8(unsigned x)
|
||||
{
|
||||
static char table[64] =
|
||||
{32, 0, 1,12, 2, 6, u,13, 3, u, 7, u, u, u, u,14,
|
||||
10, 4, u, u, 8, u, u,25, u, u, u, u, u,21,27,15,
|
||||
31,11, 5, u, u, u, u, u, 9, u, u,24, u, u,20,26,
|
||||
30, u, u, u, u,23, u,19, 29, u,22,18,28,17,16, u};
|
||||
|
||||
static char table[64] =
|
||||
{32,31, u,16, u,30, 3, u, 15, u, u, u,29,10, 2, u,
|
||||
u, u,12,14,21, u,19, u, u,28, u,25, u, 9, 1, u,
|
||||
17, u, 4, u, u, u,11, u, 13,22,20, u,26, u, u,18,
|
||||
5, u, u,23, u,27, u, 6, u,24, 7, u, 8, u, 0, u};
|
||||
|
||||
x = x | (x >> 1); // Propagate leftmost
|
||||
x = x | (x >> 2); // 1-bit to the right.
|
||||
x = x | (x >> 4);
|
||||
x = x | (x >> 8);
|
||||
x = x | (x >>16);
|
||||
x = x*0x06EB14F9; // Multiplier is 7*255**3.
|
||||
return table[x >> 26];
|
||||
x = (x & -x)*0x0450FBAF;
|
||||
return table[x >> 26];
|
||||
}
|
||||
|
||||
/* Harley's algorithm with multiply expanded.
|
||||
19 elementary ops plus an indexed load. */
|
||||
/* Seal's algorithm with multiply expanded.
|
||||
9 elementary ops plus an indexed load. */
|
||||
|
||||
int nlz10a(unsigned x) {
|
||||
int ntz8a(unsigned x)
|
||||
{
|
||||
static char table[64] =
|
||||
{32, 0, 1,12, 2, 6, u,13, 3, u, 7, u, u, u, u,14,
|
||||
10, 4, u, u, 8, u, u,25, u, u, u, u, u,21,27,15,
|
||||
31,11, 5, u, u, u, u, u, 9, u, u,24, u, u,20,26,
|
||||
30, u, u, u, u,23, u,19, 29, u,22,18,28,17,16, u};
|
||||
|
||||
static char table[64] =
|
||||
{32,31, u,16, u,30, 3, u, 15, u, u, u,29,10, 2, u,
|
||||
u, u,12,14,21, u,19, u, u,28, u,25, u, 9, 1, u,
|
||||
17, u, 4, u, u, u,11, u, 13,22,20, u,26, u, u,18,
|
||||
5, u, u,23, u,27, u, 6, u,24, 7, u, 8, u, 0, u};
|
||||
|
||||
x = x | (x >> 1); // Propagate leftmost
|
||||
x = x | (x >> 2); // 1-bit to the right.
|
||||
x = x | (x >> 4);
|
||||
x = x | (x >> 8);
|
||||
x = x | (x >> 16);
|
||||
x = (x << 3) - x; // Multiply by 7.
|
||||
x = (x << 8) - x; // Multiply by 255.
|
||||
x = (x << 8) - x; // Again.
|
||||
x = (x << 8) - x; // Again.
|
||||
return table[x >> 26];
|
||||
x = (x & -x);
|
||||
x = (x << 4) + x; // x = x*17.
|
||||
x = (x << 6) + x; // x = x*65.
|
||||
x = (x << 16) - x; // x = x*65535.
|
||||
return table[x >> 26];
|
||||
}
|
||||
|
||||
/* Julius Goryavsky's version of Harley's algorithm.
|
||||
17 elementary ops plus an indexed load, if the machine
|
||||
has "and not." */
|
||||
/* Reiser's algorithm. Three ops including a "remainder,"
|
||||
plus an indexed load. */
|
||||
|
||||
int nlz10b(unsigned x) {
|
||||
int ntz9(unsigned x) {
|
||||
|
||||
static char table[64] =
|
||||
{32,20,19, u, u,18, u, 7, 10,17, u, u,14, u, 6, u,
|
||||
u, 9, u,16, u, u, 1,26, u,13, u, u,24, 5, u, u,
|
||||
u,21, u, 8,11, u,15, u, u, u, u, 2,27, 0,25, u,
|
||||
22, u,12, u, u, 3,28, u, 23, u, 4,29, u, u,30,31};
|
||||
static char table[37] = {32, 0, 1, 26, 2, 23, 27,
|
||||
u, 3, 16, 24, 30, 28, 11, u, 13, 4,
|
||||
7, 17, u, 25, 22, 31, 15, 29, 10, 12,
|
||||
6, u, 21, 14, 9, 5, 20, 8, 19, 18};
|
||||
|
||||
x = x | (x >> 1); // Propagate leftmost
|
||||
x = x | (x >> 2); // 1-bit to the right.
|
||||
x = x | (x >> 4);
|
||||
x = x | (x >> 8);
|
||||
x = x & ~(x >> 16);
|
||||
x = x*0xFD7049FF; // Activate this line or the following 3.
|
||||
// x = (x << 9) - x; // Multiply by 511.
|
||||
// x = (x << 11) - x; // Multiply by 2047.
|
||||
// x = (x << 14) - x; // Multiply by 16383.
|
||||
return table[x >> 26];
|
||||
x = (x & -x)%37;
|
||||
return table[x];
|
||||
}
|
||||
|
||||
/* Using a de Bruijn sequence. This is a table lookup with a 32-entry
|
||||
table. The de Bruijn sequence used here is
|
||||
0000 0100 1101 0111 0110 0101 0001 1111,
|
||||
obtained from Danny Dube's October 3, 1997, posting in
|
||||
comp.compression.research. Thanks to Norbert Juffa for this reference. */
|
||||
|
||||
int ntz10(unsigned x) {
|
||||
|
||||
static char table[32] =
|
||||
{ 0, 1, 2,24, 3,19, 6,25, 22, 4,20,10,16, 7,12,26,
|
||||
31,23,18, 5,21, 9,15,11, 30,17, 8,14,29,13,28,27};
|
||||
|
||||
if (x == 0) return 32;
|
||||
x = (x & -x)*0x04D7651F;
|
||||
return table[x >> 27];
|
||||
}
|
||||
|
||||
/* Norbert Juffa's code, answer to exercise 1 of Chapter 5 (2nd ed). */
|
||||
|
||||
#define SLOW_MUL
|
||||
int ntz11 (unsigned int n) {
|
||||
|
||||
static unsigned char tab[32] =
|
||||
{ 0, 1, 2, 24, 3, 19, 6, 25,
|
||||
22, 4, 20, 10, 16, 7, 12, 26,
|
||||
31, 23, 18, 5, 21, 9, 15, 11,
|
||||
30, 17, 8, 14, 29, 13, 28, 27
|
||||
};
|
||||
unsigned int k;
|
||||
n = n & (-n); /* isolate lsb */
|
||||
printf("n = %d\n", n);
|
||||
#if defined(SLOW_MUL)
|
||||
k = (n << 11) - n;
|
||||
k = (k << 2) + k;
|
||||
k = (k << 8) + n;
|
||||
k = (k << 5) - k;
|
||||
#else
|
||||
k = n * 0x4d7651f;
|
||||
#endif
|
||||
return n ? tab[k>>27] : 32;
|
||||
}
|
||||
|
||||
int errors;
|
||||
@ -308,19 +266,22 @@ void error(int x, int y) {
|
||||
printf("Error for x = %08x, got %d\n", x, y);
|
||||
}
|
||||
|
||||
/* ------------------------------ main ------------------------------ */
|
||||
|
||||
int main()
|
||||
{
|
||||
# ifdef GLM_TEST_ENABLE_PERF
|
||||
|
||||
int i, n;
|
||||
static unsigned test[] = {0,32, 1,31, 2,30, 3,30, 4,29, 5,29, 6,29,
|
||||
7,29, 8,28, 9,28, 16,27, 32,26, 64,25, 128,24, 255,24, 256,23,
|
||||
512,22, 1024,21, 2048,20, 4096,19, 8192,18, 16384,17, 32768,16,
|
||||
65536,15, 0x20000,14, 0x40000,13, 0x80000,12, 0x100000,11,
|
||||
0x200000,10, 0x400000,9, 0x800000,8, 0x1000000,7, 0x2000000,6,
|
||||
0x4000000,5, 0x8000000,4, 0x0FFFFFFF,4, 0x10000000,3,
|
||||
0x3000FFFF,2, 0x50003333,1, 0x7FFFFFFF,1, 0x80000000,0,
|
||||
0xFFFFFFFF,0};
|
||||
int i, m, n;
|
||||
static unsigned test[] = {0,32, 1,0, 2,1, 3,0, 4,2, 5,0, 6,1, 7,0,
|
||||
8,3, 9,0, 16,4, 32,5, 64,6, 128,7, 255,0, 256,8, 512,9, 1024,10,
|
||||
2048,11, 4096,12, 8192,13, 16384,14, 32768,15, 65536,16,
|
||||
0x20000,17, 0x40000,18, 0x80000,19, 0x100000,20, 0x200000,21,
|
||||
0x400000,22, 0x800000,23, 0x1000000,24, 0x2000000,25,
|
||||
0x4000000,26, 0x8000000,27, 0x10000000,28, 0x20000000,29,
|
||||
0x40000000,30, 0x80000000,31, 0xFFFFFFF0,4, 0x3000FF00,8,
|
||||
0xC0000000,30, 0x60000000,29, 0x00011000, 12};
|
||||
|
||||
std::size_t const Count = 10000000;
|
||||
|
||||
n = sizeof(test)/4;
|
||||
@ -331,114 +292,115 @@ int main()
|
||||
TimestampBeg = std::clock();
|
||||
for (std::size_t k = 0; k < Count; ++k)
|
||||
for (i = 0; i < n; i += 2) {
|
||||
if (nlz1(test[i]) != test[i+1]) error(test[i], nlz1(test[i]));}
|
||||
if (ntz1(test[i]) != test[i+1]) error(test[i], ntz1(test[i]));}
|
||||
TimestampEnd = std::clock();
|
||||
|
||||
printf("nlz1: %d clocks\n", TimestampEnd - TimestampBeg);
|
||||
printf("ntz1: %d clocks\n", TimestampEnd - TimestampBeg);
|
||||
|
||||
TimestampBeg = std::clock();
|
||||
for (std::size_t k = 0; k < Count; ++k)
|
||||
for (i = 0; i < n; i += 2) {
|
||||
if (nlz1a(test[i]) != test[i+1]) error(test[i], nlz1a(test[i]));}
|
||||
if (ntz2(test[i]) != test[i+1]) error(test[i], ntz2(test[i]));}
|
||||
TimestampEnd = std::clock();
|
||||
|
||||
printf("nlz1a: %d clocks\n", TimestampEnd - TimestampBeg);
|
||||
printf("ntz2: %d clocks\n", TimestampEnd - TimestampBeg);
|
||||
|
||||
TimestampBeg = std::clock();
|
||||
for (std::size_t k = 0; k < Count; ++k)
|
||||
for (i = 0; i < n; i += 2) {
|
||||
if (nlz2(test[i]) != test[i+1]) error(test[i], nlz2(test[i]));}
|
||||
if (ntz3(test[i]) != test[i+1]) error(test[i], ntz3(test[i]));}
|
||||
TimestampEnd = std::clock();
|
||||
|
||||
printf("nlz2: %d clocks\n", TimestampEnd - TimestampBeg);
|
||||
printf("ntz3: %d clocks\n", TimestampEnd - TimestampBeg);
|
||||
|
||||
TimestampBeg = std::clock();
|
||||
for (std::size_t k = 0; k < Count; ++k)
|
||||
for (i = 0; i < n; i += 2) {
|
||||
if (nlz2a(test[i]) != test[i+1]) error(test[i], nlz2a(test[i]));}
|
||||
if (ntz4(test[i]) != test[i+1]) error(test[i], ntz4(test[i]));}
|
||||
TimestampEnd = std::clock();
|
||||
|
||||
printf("nlz2a: %d clocks\n", TimestampEnd - TimestampBeg);
|
||||
printf("ntz4: %d clocks\n", TimestampEnd - TimestampBeg);
|
||||
|
||||
TimestampBeg = std::clock();
|
||||
for (std::size_t k = 0; k < Count; ++k)
|
||||
for (i = 0; i < n; i += 2) {
|
||||
if (nlz3(test[i]) != test[i+1]) error(test[i], nlz3(test[i]));}
|
||||
if (ntz4a(test[i]) != test[i+1]) error(test[i], ntz4a(test[i]));}
|
||||
TimestampEnd = std::clock();
|
||||
|
||||
printf("nlz3: %d clocks\n", TimestampEnd - TimestampBeg);
|
||||
printf("ntz4a: %d clocks\n", TimestampEnd - TimestampBeg);
|
||||
|
||||
TimestampBeg = std::clock();
|
||||
for (std::size_t k = 0; k < Count; ++k)
|
||||
for (i = 0; i < n; i += 2) {
|
||||
if (nlz4(test[i]) != test[i+1]) error(test[i], nlz4(test[i]));}
|
||||
m = test[i+1]; if (m > 8) m = 8;
|
||||
if (ntz5(test[i]) != m) error(test[i], ntz5(test[i]));}
|
||||
TimestampEnd = std::clock();
|
||||
|
||||
printf("nlz4: %d clocks\n", TimestampEnd - TimestampBeg);
|
||||
printf("ntz5: %d clocks\n", TimestampEnd - TimestampBeg);
|
||||
|
||||
TimestampBeg = std::clock();
|
||||
for (std::size_t k = 0; k < Count; ++k)
|
||||
for (i = 0; i < n; i += 2) {
|
||||
if (nlz5(test[i]) != test[i+1]) error(test[i], nlz5(test[i]));}
|
||||
if (ntz6(test[i]) != test[i+1]) error(test[i], ntz6(test[i]));}
|
||||
TimestampEnd = std::clock();
|
||||
|
||||
printf("nlz5: %d clocks\n", TimestampEnd - TimestampBeg);
|
||||
printf("ntz6: %d clocks\n", TimestampEnd - TimestampBeg);
|
||||
|
||||
TimestampBeg = std::clock();
|
||||
for (std::size_t k = 0; k < Count; ++k)
|
||||
for (i = 0; i < n; i += 2) {
|
||||
if (nlz6(test[i]) != test[i+1]) error(test[i], nlz6(test[i]));}
|
||||
if (ntz6a(test[i]) != test[i+1]) error(test[i], ntz6a(test[i]));}
|
||||
TimestampEnd = std::clock();
|
||||
|
||||
printf("nlz6: %d clocks\n", TimestampEnd - TimestampBeg);
|
||||
printf("ntz6a: %d clocks\n", TimestampEnd - TimestampBeg);
|
||||
|
||||
TimestampBeg = std::clock();
|
||||
for (std::size_t k = 0; k < Count; ++k)
|
||||
for (i = 0; i < n; i += 2) {
|
||||
if (nlz7(test[i]) != test[i+1]) error(test[i], nlz7(test[i]));}
|
||||
if (ntz7(test[i]) != test[i+1]) error(test[i], ntz7(test[i]));}
|
||||
TimestampEnd = std::clock();
|
||||
|
||||
printf("nlz7: %d clocks\n", TimestampEnd - TimestampBeg);
|
||||
printf("ntz7: %d clocks\n", TimestampEnd - TimestampBeg);
|
||||
|
||||
TimestampBeg = std::clock();
|
||||
for (std::size_t k = 0; k < Count; ++k)
|
||||
for (i = 0; i < n; i += 2) {
|
||||
if (nlz8(test[i]) != test[i+1]) error(test[i], nlz8(test[i]));}
|
||||
if (ntz7_christophe(test[i]) != test[i+1]) error(test[i], ntz7(test[i]));}
|
||||
TimestampEnd = std::clock();
|
||||
|
||||
printf("nlz8: %d clocks\n", TimestampEnd - TimestampBeg);
|
||||
printf("ntz7_christophe: %d clocks\n", TimestampEnd - TimestampBeg);
|
||||
|
||||
TimestampBeg = std::clock();
|
||||
for (std::size_t k = 0; k < Count; ++k)
|
||||
for (i = 0; i < n; i += 2) {
|
||||
if (nlz9(test[i]) != test[i+1]) error(test[i], nlz9(test[i]));}
|
||||
if (ntz8(test[i]) != test[i+1]) error(test[i], ntz8(test[i]));}
|
||||
TimestampEnd = std::clock();
|
||||
|
||||
printf("nlz9: %d clocks\n", TimestampEnd - TimestampBeg);
|
||||
printf("ntz8: %d clocks\n", TimestampEnd - TimestampBeg);
|
||||
|
||||
TimestampBeg = std::clock();
|
||||
for (std::size_t k = 0; k < Count; ++k)
|
||||
for (i = 0; i < n; i += 2) {
|
||||
if (nlz10(test[i]) != test[i+1]) error(test[i], nlz10(test[i]));}
|
||||
if (ntz8a(test[i]) != test[i+1]) error(test[i], ntz8a(test[i]));}
|
||||
TimestampEnd = std::clock();
|
||||
|
||||
printf("nlz10: %d clocks\n", TimestampEnd - TimestampBeg);
|
||||
printf("ntz8a: %d clocks\n", TimestampEnd - TimestampBeg);
|
||||
|
||||
TimestampBeg = std::clock();
|
||||
for (std::size_t k = 0; k < Count; ++k)
|
||||
for (i = 0; i < n; i += 2) {
|
||||
if (nlz10a(test[i]) != test[i+1]) error(test[i], nlz10a(test[i]));}
|
||||
if (ntz9(test[i]) != test[i+1]) error(test[i], ntz9(test[i]));}
|
||||
TimestampEnd = std::clock();
|
||||
|
||||
printf("nlz10a: %d clocks\n", TimestampEnd - TimestampBeg);
|
||||
printf("ntz9: %d clocks\n", TimestampEnd - TimestampBeg);
|
||||
|
||||
TimestampBeg = std::clock();
|
||||
for (std::size_t k = 0; k < Count; ++k)
|
||||
for (i = 0; i < n; i += 2) {
|
||||
if (nlz10b(test[i]) != test[i+1]) error(test[i], nlz10b(test[i]));}
|
||||
if (ntz10(test[i]) != test[i+1]) error(test[i], ntz10(test[i]));}
|
||||
TimestampEnd = std::clock();
|
||||
|
||||
printf("nlz10b: %d clocks\n", TimestampEnd - TimestampBeg);
|
||||
printf("ntz10: %d clocks\n", TimestampEnd - TimestampBeg);
|
||||
|
||||
if (errors == 0)
|
||||
printf("Passed all %d cases.\n", sizeof(test)/8);
|
||||
|
447
test/core/core_func_integer_find_msb.cpp
Normal file
447
test/core/core_func_integer_find_msb.cpp
Normal file
@ -0,0 +1,447 @@
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// OpenGL Mathematics Copyright (c) 2005 - 2014 G-Truc Creation (www.g-truc.net)
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Created : 2014-10-27
|
||||
// Updated : 2014-10-27
|
||||
// Licence : This source is under MIT licence
|
||||
// File : test/core/func_integer_find_lsb.cpp
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
// This has the programs for computing the number of leading zeros
|
||||
// in a word.
|
||||
// Max line length is 57, to fit in hacker.book.
|
||||
// Compile with g++, not gcc.
|
||||
#include <cstdio>
|
||||
#include <cstdlib> // To define "exit", req'd by XLC.
|
||||
#include <ctime>
|
||||
|
||||
#define LE 1 // 1 for little-endian, 0 for big-endian.
|
||||
|
||||
int pop(unsigned x) {
|
||||
x = x - ((x >> 1) & 0x55555555);
|
||||
x = (x & 0x33333333) + ((x >> 2) & 0x33333333);
|
||||
x = (x + (x >> 4)) & 0x0F0F0F0F;
|
||||
x = x + (x << 8);
|
||||
x = x + (x << 16);
|
||||
return x >> 24;
|
||||
}
|
||||
|
||||
int nlz1(unsigned x) {
|
||||
int n;
|
||||
|
||||
if (x == 0) return(32);
|
||||
n = 0;
|
||||
if (x <= 0x0000FFFF) {n = n +16; x = x <<16;}
|
||||
if (x <= 0x00FFFFFF) {n = n + 8; x = x << 8;}
|
||||
if (x <= 0x0FFFFFFF) {n = n + 4; x = x << 4;}
|
||||
if (x <= 0x3FFFFFFF) {n = n + 2; x = x << 2;}
|
||||
if (x <= 0x7FFFFFFF) {n = n + 1;}
|
||||
return n;
|
||||
}
|
||||
|
||||
int nlz1a(unsigned x) {
|
||||
int n;
|
||||
|
||||
/* if (x == 0) return(32); */
|
||||
if ((int)x <= 0) return (~x >> 26) & 32;
|
||||
n = 1;
|
||||
if ((x >> 16) == 0) {n = n +16; x = x <<16;}
|
||||
if ((x >> 24) == 0) {n = n + 8; x = x << 8;}
|
||||
if ((x >> 28) == 0) {n = n + 4; x = x << 4;}
|
||||
if ((x >> 30) == 0) {n = n + 2; x = x << 2;}
|
||||
n = n - (x >> 31);
|
||||
return n;
|
||||
}
|
||||
// On basic Risc, 12 to 20 instructions.
|
||||
|
||||
int nlz2(unsigned x) {
|
||||
unsigned y;
|
||||
int n;
|
||||
|
||||
n = 32;
|
||||
y = x >>16; if (y != 0) {n = n -16; x = y;}
|
||||
y = x >> 8; if (y != 0) {n = n - 8; x = y;}
|
||||
y = x >> 4; if (y != 0) {n = n - 4; x = y;}
|
||||
y = x >> 2; if (y != 0) {n = n - 2; x = y;}
|
||||
y = x >> 1; if (y != 0) return n - 2;
|
||||
return n - x;
|
||||
}
|
||||
|
||||
// As above but coded as a loop for compactness:
|
||||
// 23 to 33 basic Risc instructions.
|
||||
int nlz2a(unsigned x) {
|
||||
unsigned y;
|
||||
int n, c;
|
||||
|
||||
n = 32;
|
||||
c = 16;
|
||||
do {
|
||||
y = x >> c; if (y != 0) {n = n - c; x = y;}
|
||||
c = c >> 1;
|
||||
} while (c != 0);
|
||||
return n - x;
|
||||
}
|
||||
|
||||
int nlz3(int x) {
|
||||
int y, n;
|
||||
|
||||
n = 0;
|
||||
y = x;
|
||||
L: if (x < 0) return n;
|
||||
if (y == 0) return 32 - n;
|
||||
n = n + 1;
|
||||
x = x << 1;
|
||||
y = y >> 1;
|
||||
goto L;
|
||||
}
|
||||
|
||||
int nlz4(unsigned x) {
|
||||
int y, m, n;
|
||||
|
||||
y = -(x >> 16); // If left half of x is 0,
|
||||
m = (y >> 16) & 16; // set n = 16. If left half
|
||||
n = 16 - m; // is nonzero, set n = 0 and
|
||||
x = x >> m; // shift x right 16.
|
||||
// Now x is of the form 0000xxxx.
|
||||
y = x - 0x100; // If positions 8-15 are 0,
|
||||
m = (y >> 16) & 8; // add 8 to n and shift x left 8.
|
||||
n = n + m;
|
||||
x = x << m;
|
||||
|
||||
y = x - 0x1000; // If positions 12-15 are 0,
|
||||
m = (y >> 16) & 4; // add 4 to n and shift x left 4.
|
||||
n = n + m;
|
||||
x = x << m;
|
||||
|
||||
y = x - 0x4000; // If positions 14-15 are 0,
|
||||
m = (y >> 16) & 2; // add 2 to n and shift x left 2.
|
||||
n = n + m;
|
||||
x = x << m;
|
||||
|
||||
y = x >> 14; // Set y = 0, 1, 2, or 3.
|
||||
m = y & ~(y >> 1); // Set m = 0, 1, 2, or 2 resp.
|
||||
return n + 2 - m;
|
||||
}
|
||||
|
||||
int nlz5(unsigned x) {
|
||||
int pop(unsigned x);
|
||||
|
||||
x = x | (x >> 1);
|
||||
x = x | (x >> 2);
|
||||
x = x | (x >> 4);
|
||||
x = x | (x >> 8);
|
||||
x = x | (x >>16);
|
||||
return pop(~x);
|
||||
}
|
||||
|
||||
/* The four programs below are not valid ANSI C programs. This is
|
||||
because they refer to the same storage locations as two different types.
|
||||
However, they work with xlc/AIX, gcc/AIX, and gcc/NT. If you try to
|
||||
code them more compactly by declaring a variable xx to be "double," and
|
||||
then using
|
||||
|
||||
n = 1054 - (*((unsigned *)&xx + LE) >> 20);
|
||||
|
||||
then you are violating not only the rule above, but also the ANSI C
|
||||
rule that pointer arithmetic can be performed only on pointers to
|
||||
array elements.
|
||||
When coded with the above statement, the program fails with xlc,
|
||||
gcc/AIX, and gcc/NT, at some optimization levels.
|
||||
BTW, these programs use the "anonymous union" feature of C++, not
|
||||
available in C. */
|
||||
|
||||
int nlz6(unsigned k) {
|
||||
union {
|
||||
unsigned asInt[2];
|
||||
double asDouble;
|
||||
};
|
||||
int n;
|
||||
|
||||
asDouble = (double)k + 0.5;
|
||||
n = 1054 - (asInt[LE] >> 20);
|
||||
return n;
|
||||
}
|
||||
|
||||
int nlz7(unsigned k) {
|
||||
union {
|
||||
unsigned asInt[2];
|
||||
double asDouble;
|
||||
};
|
||||
int n;
|
||||
|
||||
asDouble = (double)k;
|
||||
n = 1054 - (asInt[LE] >> 20);
|
||||
n = (n & 31) + (n >> 9);
|
||||
return n;
|
||||
}
|
||||
|
||||
/* In single precision, round-to-nearest mode, the basic method fails for:
|
||||
k = 0, k = 01FFFFFF, 03FFFFFE <= k <= 03FFFFFF,
|
||||
07FFFFFC <= k <= 07FFFFFF,
|
||||
0FFFFFF8 <= k <= 0FFFFFFF,
|
||||
...
|
||||
7FFFFFC0 <= k <= 7FFFFFFF.
|
||||
FFFFFF80 <= k <= FFFFFFFF.
|
||||
For k = 0 it gives 158, and for the other values it is too low by 1. */
|
||||
|
||||
int nlz8(unsigned k) {
|
||||
union {
|
||||
unsigned asInt;
|
||||
float asFloat;
|
||||
};
|
||||
int n;
|
||||
|
||||
k = k & ~(k >> 1); /* Fix problem with rounding. */
|
||||
asFloat = (float)k + 0.5f;
|
||||
n = 158 - (asInt >> 23);
|
||||
return n;
|
||||
}
|
||||
|
||||
/* The example below shows how to make a macro for nlz. It uses an
|
||||
extension to the C and C++ languages that is provided by the GNU C/C++
|
||||
compiler, namely, that of allowing statements and declarations in
|
||||
expressions (see "Using and Porting GNU CC", by Richard M. Stallman
|
||||
(1998). The underscores are necessary to protect against the
|
||||
possibility that the macro argument will conflict with one of its local
|
||||
variables, e.g., NLZ(k). */
|
||||
|
||||
int nlz9(unsigned k) {
|
||||
union {
|
||||
unsigned asInt;
|
||||
float asFloat;
|
||||
};
|
||||
int n;
|
||||
|
||||
k = k & ~(k >> 1); /* Fix problem with rounding. */
|
||||
asFloat = (float)k;
|
||||
n = 158 - (asInt >> 23);
|
||||
n = (n & 31) + (n >> 6); /* Fix problem with k = 0. */
|
||||
return n;
|
||||
}
|
||||
|
||||
/* Below are three nearly equivalent programs for computing the number
|
||||
of leading zeros in a word. This material is not in HD, but may be in a
|
||||
future edition.
|
||||
Immediately below is Robert Harley's algorithm, found at the
|
||||
comp.arch newsgroup entry dated 7/12/96, pointed out to me by Norbert
|
||||
Juffa.
|
||||
Table entries marked "u" are unused. 14 ops including a multiply,
|
||||
plus an indexed load.
|
||||
The smallest multiplier that works is 0x045BCED1 = 17*65*129*513 (all
|
||||
of form 2**k + 1). There are no multipliers of three terms of the form
|
||||
2**k +- 1 that work, with a table size of 64 or 128. There are some,
|
||||
with a table size of 64, if you precede the multiplication with x = x -
|
||||
(x >> 1), but that seems less elegant. There are also some if you use a
|
||||
table size of 256, the smallest is 0x01033CBF = 65*255*1025 (this would
|
||||
save two instructions in the form of this algorithm with the
|
||||
multiplication expanded into shifts and adds, but the table size is
|
||||
getting a bit large). */
|
||||
|
||||
#define u 99
|
||||
int nlz10(unsigned x) {
|
||||
|
||||
static char table[64] =
|
||||
{32,31, u,16, u,30, 3, u, 15, u, u, u,29,10, 2, u,
|
||||
u, u,12,14,21, u,19, u, u,28, u,25, u, 9, 1, u,
|
||||
17, u, 4, u, u, u,11, u, 13,22,20, u,26, u, u,18,
|
||||
5, u, u,23, u,27, u, 6, u,24, 7, u, 8, u, 0, u};
|
||||
|
||||
x = x | (x >> 1); // Propagate leftmost
|
||||
x = x | (x >> 2); // 1-bit to the right.
|
||||
x = x | (x >> 4);
|
||||
x = x | (x >> 8);
|
||||
x = x | (x >>16);
|
||||
x = x*0x06EB14F9; // Multiplier is 7*255**3.
|
||||
return table[x >> 26];
|
||||
}
|
||||
|
||||
/* Harley's algorithm with multiply expanded.
|
||||
19 elementary ops plus an indexed load. */
|
||||
|
||||
int nlz10a(unsigned x) {
|
||||
|
||||
static char table[64] =
|
||||
{32,31, u,16, u,30, 3, u, 15, u, u, u,29,10, 2, u,
|
||||
u, u,12,14,21, u,19, u, u,28, u,25, u, 9, 1, u,
|
||||
17, u, 4, u, u, u,11, u, 13,22,20, u,26, u, u,18,
|
||||
5, u, u,23, u,27, u, 6, u,24, 7, u, 8, u, 0, u};
|
||||
|
||||
x = x | (x >> 1); // Propagate leftmost
|
||||
x = x | (x >> 2); // 1-bit to the right.
|
||||
x = x | (x >> 4);
|
||||
x = x | (x >> 8);
|
||||
x = x | (x >> 16);
|
||||
x = (x << 3) - x; // Multiply by 7.
|
||||
x = (x << 8) - x; // Multiply by 255.
|
||||
x = (x << 8) - x; // Again.
|
||||
x = (x << 8) - x; // Again.
|
||||
return table[x >> 26];
|
||||
}
|
||||
|
||||
/* Julius Goryavsky's version of Harley's algorithm.
|
||||
17 elementary ops plus an indexed load, if the machine
|
||||
has "and not." */
|
||||
|
||||
int nlz10b(unsigned x) {
|
||||
|
||||
static char table[64] =
|
||||
{32,20,19, u, u,18, u, 7, 10,17, u, u,14, u, 6, u,
|
||||
u, 9, u,16, u, u, 1,26, u,13, u, u,24, 5, u, u,
|
||||
u,21, u, 8,11, u,15, u, u, u, u, 2,27, 0,25, u,
|
||||
22, u,12, u, u, 3,28, u, 23, u, 4,29, u, u,30,31};
|
||||
|
||||
x = x | (x >> 1); // Propagate leftmost
|
||||
x = x | (x >> 2); // 1-bit to the right.
|
||||
x = x | (x >> 4);
|
||||
x = x | (x >> 8);
|
||||
x = x & ~(x >> 16);
|
||||
x = x*0xFD7049FF; // Activate this line or the following 3.
|
||||
// x = (x << 9) - x; // Multiply by 511.
|
||||
// x = (x << 11) - x; // Multiply by 2047.
|
||||
// x = (x << 14) - x; // Multiply by 16383.
|
||||
return table[x >> 26];
|
||||
}
|
||||
|
||||
int errors;
|
||||
void error(int x, int y) {
|
||||
errors = errors + 1;
|
||||
printf("Error for x = %08x, got %d\n", x, y);
|
||||
}
|
||||
|
||||
int main()
|
||||
{
|
||||
# ifdef GLM_TEST_ENABLE_PERF
|
||||
|
||||
int i, n;
|
||||
static unsigned test[] = {0,32, 1,31, 2,30, 3,30, 4,29, 5,29, 6,29,
|
||||
7,29, 8,28, 9,28, 16,27, 32,26, 64,25, 128,24, 255,24, 256,23,
|
||||
512,22, 1024,21, 2048,20, 4096,19, 8192,18, 16384,17, 32768,16,
|
||||
65536,15, 0x20000,14, 0x40000,13, 0x80000,12, 0x100000,11,
|
||||
0x200000,10, 0x400000,9, 0x800000,8, 0x1000000,7, 0x2000000,6,
|
||||
0x4000000,5, 0x8000000,4, 0x0FFFFFFF,4, 0x10000000,3,
|
||||
0x3000FFFF,2, 0x50003333,1, 0x7FFFFFFF,1, 0x80000000,0,
|
||||
0xFFFFFFFF,0};
|
||||
std::size_t const Count = 10000000;
|
||||
|
||||
n = sizeof(test)/4;
|
||||
|
||||
std::clock_t TimestampBeg = 0;
|
||||
std::clock_t TimestampEnd = 0;
|
||||
|
||||
TimestampBeg = std::clock();
|
||||
for (std::size_t k = 0; k < Count; ++k)
|
||||
for (i = 0; i < n; i += 2) {
|
||||
if (nlz1(test[i]) != test[i+1]) error(test[i], nlz1(test[i]));}
|
||||
TimestampEnd = std::clock();
|
||||
|
||||
printf("nlz1: %d clocks\n", TimestampEnd - TimestampBeg);
|
||||
|
||||
TimestampBeg = std::clock();
|
||||
for (std::size_t k = 0; k < Count; ++k)
|
||||
for (i = 0; i < n; i += 2) {
|
||||
if (nlz1a(test[i]) != test[i+1]) error(test[i], nlz1a(test[i]));}
|
||||
TimestampEnd = std::clock();
|
||||
|
||||
printf("nlz1a: %d clocks\n", TimestampEnd - TimestampBeg);
|
||||
|
||||
TimestampBeg = std::clock();
|
||||
for (std::size_t k = 0; k < Count; ++k)
|
||||
for (i = 0; i < n; i += 2) {
|
||||
if (nlz2(test[i]) != test[i+1]) error(test[i], nlz2(test[i]));}
|
||||
TimestampEnd = std::clock();
|
||||
|
||||
printf("nlz2: %d clocks\n", TimestampEnd - TimestampBeg);
|
||||
|
||||
TimestampBeg = std::clock();
|
||||
for (std::size_t k = 0; k < Count; ++k)
|
||||
for (i = 0; i < n; i += 2) {
|
||||
if (nlz2a(test[i]) != test[i+1]) error(test[i], nlz2a(test[i]));}
|
||||
TimestampEnd = std::clock();
|
||||
|
||||
printf("nlz2a: %d clocks\n", TimestampEnd - TimestampBeg);
|
||||
|
||||
TimestampBeg = std::clock();
|
||||
for (std::size_t k = 0; k < Count; ++k)
|
||||
for (i = 0; i < n; i += 2) {
|
||||
if (nlz3(test[i]) != test[i+1]) error(test[i], nlz3(test[i]));}
|
||||
TimestampEnd = std::clock();
|
||||
|
||||
printf("nlz3: %d clocks\n", TimestampEnd - TimestampBeg);
|
||||
|
||||
TimestampBeg = std::clock();
|
||||
for (std::size_t k = 0; k < Count; ++k)
|
||||
for (i = 0; i < n; i += 2) {
|
||||
if (nlz4(test[i]) != test[i+1]) error(test[i], nlz4(test[i]));}
|
||||
TimestampEnd = std::clock();
|
||||
|
||||
printf("nlz4: %d clocks\n", TimestampEnd - TimestampBeg);
|
||||
|
||||
TimestampBeg = std::clock();
|
||||
for (std::size_t k = 0; k < Count; ++k)
|
||||
for (i = 0; i < n; i += 2) {
|
||||
if (nlz5(test[i]) != test[i+1]) error(test[i], nlz5(test[i]));}
|
||||
TimestampEnd = std::clock();
|
||||
|
||||
printf("nlz5: %d clocks\n", TimestampEnd - TimestampBeg);
|
||||
|
||||
TimestampBeg = std::clock();
|
||||
for (std::size_t k = 0; k < Count; ++k)
|
||||
for (i = 0; i < n; i += 2) {
|
||||
if (nlz6(test[i]) != test[i+1]) error(test[i], nlz6(test[i]));}
|
||||
TimestampEnd = std::clock();
|
||||
|
||||
printf("nlz6: %d clocks\n", TimestampEnd - TimestampBeg);
|
||||
|
||||
TimestampBeg = std::clock();
|
||||
for (std::size_t k = 0; k < Count; ++k)
|
||||
for (i = 0; i < n; i += 2) {
|
||||
if (nlz7(test[i]) != test[i+1]) error(test[i], nlz7(test[i]));}
|
||||
TimestampEnd = std::clock();
|
||||
|
||||
printf("nlz7: %d clocks\n", TimestampEnd - TimestampBeg);
|
||||
|
||||
TimestampBeg = std::clock();
|
||||
for (std::size_t k = 0; k < Count; ++k)
|
||||
for (i = 0; i < n; i += 2) {
|
||||
if (nlz8(test[i]) != test[i+1]) error(test[i], nlz8(test[i]));}
|
||||
TimestampEnd = std::clock();
|
||||
|
||||
printf("nlz8: %d clocks\n", TimestampEnd - TimestampBeg);
|
||||
|
||||
TimestampBeg = std::clock();
|
||||
for (std::size_t k = 0; k < Count; ++k)
|
||||
for (i = 0; i < n; i += 2) {
|
||||
if (nlz9(test[i]) != test[i+1]) error(test[i], nlz9(test[i]));}
|
||||
TimestampEnd = std::clock();
|
||||
|
||||
printf("nlz9: %d clocks\n", TimestampEnd - TimestampBeg);
|
||||
|
||||
TimestampBeg = std::clock();
|
||||
for (std::size_t k = 0; k < Count; ++k)
|
||||
for (i = 0; i < n; i += 2) {
|
||||
if (nlz10(test[i]) != test[i+1]) error(test[i], nlz10(test[i]));}
|
||||
TimestampEnd = std::clock();
|
||||
|
||||
printf("nlz10: %d clocks\n", TimestampEnd - TimestampBeg);
|
||||
|
||||
TimestampBeg = std::clock();
|
||||
for (std::size_t k = 0; k < Count; ++k)
|
||||
for (i = 0; i < n; i += 2) {
|
||||
if (nlz10a(test[i]) != test[i+1]) error(test[i], nlz10a(test[i]));}
|
||||
TimestampEnd = std::clock();
|
||||
|
||||
printf("nlz10a: %d clocks\n", TimestampEnd - TimestampBeg);
|
||||
|
||||
TimestampBeg = std::clock();
|
||||
for (std::size_t k = 0; k < Count; ++k)
|
||||
for (i = 0; i < n; i += 2) {
|
||||
if (nlz10b(test[i]) != test[i+1]) error(test[i], nlz10b(test[i]));}
|
||||
TimestampEnd = std::clock();
|
||||
|
||||
printf("nlz10b: %d clocks\n", TimestampEnd - TimestampBeg);
|
||||
|
||||
if (errors == 0)
|
||||
printf("Passed all %d cases.\n", sizeof(test)/8);
|
||||
|
||||
# endif//GLM_TEST_ENABLE_PERF
|
||||
}
|
Loading…
Reference in New Issue
Block a user