Corrected errors on Xcode C++98 pure related to language extensions accidentially used.
This commit is contained in:
parent
b8adc27808
commit
0f5b544d5d
@ -70,7 +70,7 @@ namespace glm {
|
||||
GLM_INLINE T transferSign(T const& v, T const& s)
|
||||
{
|
||||
return ((s) >= 0 ? glm::abs(v) : -glm::abs(v));
|
||||
};
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
GLM_INLINE T pythag(T const& a, T const& b) {
|
||||
@ -86,7 +86,7 @@ namespace glm {
|
||||
absa /= absb;
|
||||
absa *= absa;
|
||||
return absb * glm::sqrt(static_cast<T>(1) + absa);
|
||||
};
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
@ -6,6 +6,33 @@
|
||||
#include <vector>
|
||||
#include <random>
|
||||
|
||||
template<glm::length_t D, typename T, glm::qualifier Q>
|
||||
bool vectorEpsilonEqual(glm::vec<D, T, Q> const& a, glm::vec<D, T, Q> const& b)
|
||||
{
|
||||
for (int c = 0; c < D; ++c)
|
||||
if (!glm::epsilonEqual(a[c], b[c], static_cast<T>(0.000001)))
|
||||
return false;
|
||||
return true;
|
||||
}
|
||||
|
||||
template<glm::length_t D, typename T, glm::qualifier Q>
|
||||
bool matrixEpsilonEqual(glm::mat<D, D, T, Q> const& a, glm::mat<D, D, T, Q> const& b)
|
||||
{
|
||||
for (int c = 0; c < D; ++c)
|
||||
for (int r = 0; r < D; ++r)
|
||||
if (!glm::epsilonEqual(a[c][r], b[c][r], static_cast<T>(0.000001)))
|
||||
return false;
|
||||
return true;
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
T failReport(T line)
|
||||
{
|
||||
printf("Failed in line %d\n", static_cast<int>(line));
|
||||
fprintf(stderr, "Failed in line %d\n", static_cast<int>(line));
|
||||
return line;
|
||||
}
|
||||
|
||||
// Test data: 1AGA 'agarose double helix'
|
||||
// https://www.rcsb.org/structure/1aga
|
||||
// The fourth coordinate is randomized
|
||||
@ -147,11 +174,11 @@ namespace _1aga
|
||||
3.830, 3.522, 5.367, -0.302,
|
||||
5.150, 4.461, 2.116, -1.615
|
||||
};
|
||||
static const size_t _1agaSize = sizeof(_1aga) / (4 * sizeof(double));
|
||||
static const glm::length_t _1agaSize = sizeof(_1aga) / (4 * sizeof(double));
|
||||
|
||||
outTestData.resize(_1agaSize);
|
||||
for(size_t i = 0; i < _1agaSize; ++i)
|
||||
for(size_t d = 0; d < static_cast<size_t>(vec::length()); ++d)
|
||||
for(glm::length_t i = 0; i < _1agaSize; ++i)
|
||||
for(glm::length_t d = 0; d < static_cast<glm::length_t>(vec::length()); ++d)
|
||||
outTestData[i][d] = static_cast<typename vec::value_type>(_1aga[i * 4 + d]);
|
||||
}
|
||||
|
||||
@ -182,10 +209,10 @@ namespace _1aga
|
||||
{
|
||||
const T* expectedCovarData = nullptr;
|
||||
getExpectedCovarDataPtr(expectedCovarData);
|
||||
for(size_t x = 0; x < D; ++x)
|
||||
for(size_t y = 0; y < D; ++y)
|
||||
for(glm::length_t x = 0; x < D; ++x)
|
||||
for(glm::length_t y = 0; y < D; ++y)
|
||||
if(!glm::equal(covarMat[y][x], expectedCovarData[x * 4 + y], static_cast<T>(0.000001)))
|
||||
return 1;
|
||||
return failReport(__LINE__);
|
||||
return 0;
|
||||
}
|
||||
|
||||
@ -280,12 +307,12 @@ namespace _1aga
|
||||
|
||||
for(int i = 0; i < D; ++i)
|
||||
if(!glm::equal(evals[i], expectedEvals[i], static_cast<T>(0.000001)))
|
||||
return 1;
|
||||
return failReport(__LINE__);
|
||||
|
||||
for (int i = 0; i < D; ++i)
|
||||
for (int d = 0; d < D; ++d)
|
||||
if (!glm::equal(evecs[i][d], expectedEvecs[i * D + d], static_cast<T>(0.000001)))
|
||||
return 1;
|
||||
return failReport(__LINE__);
|
||||
|
||||
return 0;
|
||||
}
|
||||
@ -296,29 +323,20 @@ namespace _1aga
|
||||
template<typename vec>
|
||||
vec computeCenter(const std::vector<vec>& testData)
|
||||
{
|
||||
double c[vec::length()];
|
||||
double c[4];
|
||||
std::fill(c, c + vec::length(), 0.0);
|
||||
|
||||
for(vec const& v : testData)
|
||||
for(size_t d = 0; d < static_cast<size_t>(vec::length()); ++d)
|
||||
c[d] += static_cast<double>(v[d]);
|
||||
typename std::vector<vec>::const_iterator e = testData.end();
|
||||
for(typename std::vector<vec>::const_iterator i = testData.begin(); i != e; ++i)
|
||||
for(glm::length_t d = 0; d < static_cast<glm::length_t>(vec::length()); ++d)
|
||||
c[d] += static_cast<double>((*i)[d]);
|
||||
|
||||
vec cVec;
|
||||
for(size_t d = 0; d < static_cast<size_t>(vec::length()); ++d)
|
||||
vec cVec(0);
|
||||
for(glm::length_t d = 0; d < static_cast<glm::length_t>(vec::length()); ++d)
|
||||
cVec[d] = static_cast<typename vec::value_type>(c[d] / static_cast<double>(testData.size()));
|
||||
return cVec;
|
||||
}
|
||||
|
||||
template<glm::length_t D, typename T, glm::qualifier Q>
|
||||
bool matrixEpsilonEqual(glm::mat<D, D, T, Q> const& a, glm::mat<D, D, T, Q> const& b)
|
||||
{
|
||||
for (int c = 0; c < D; ++c)
|
||||
for (int r = 0; r < D; ++r)
|
||||
if (!glm::epsilonEqual(a[c][r], b[c][r], static_cast<T>(0.000001)))
|
||||
return false;
|
||||
return true;
|
||||
}
|
||||
|
||||
// Test sorting of Eigenvalue&Eigenvector lists. Use exhaustive search.
|
||||
template<glm::length_t D, typename T, glm::qualifier Q>
|
||||
int testEigenvalueSort()
|
||||
@ -339,8 +357,7 @@ int testEigenvalueSort()
|
||||
)
|
||||
);
|
||||
// Permutations of test input data for exhaustive check, based on `D` (1 <= D <= 4)
|
||||
static const int permutationCount[]
|
||||
{
|
||||
static const int permutationCount[] = {
|
||||
0,
|
||||
1,
|
||||
2,
|
||||
@ -348,8 +365,7 @@ int testEigenvalueSort()
|
||||
24
|
||||
};
|
||||
// The permutations t perform, based on `D` (1 <= D <= 4)
|
||||
static const glm::ivec4 permutation[]
|
||||
{
|
||||
static const glm::ivec4 permutation[] = {
|
||||
{ 0, 1, 2, 3 },
|
||||
{ 1, 0, 2, 3 }, // last for D = 2
|
||||
{ 0, 2, 1, 3 },
|
||||
@ -377,10 +393,10 @@ int testEigenvalueSort()
|
||||
};
|
||||
|
||||
// initial sanity check
|
||||
if(!glm::all(glm::epsilonEqual(refVal, refVal, static_cast<T>(0.000001))))
|
||||
return 1;
|
||||
if(!vectorEpsilonEqual(refVal, refVal))
|
||||
return failReport(__LINE__);
|
||||
if(!matrixEpsilonEqual(refVec, refVec))
|
||||
return 1;
|
||||
return failReport(__LINE__);
|
||||
|
||||
// Exhaustive search through all permutations
|
||||
for(int p = 0; p < permutationCount[D]; ++p)
|
||||
@ -395,10 +411,10 @@ int testEigenvalueSort()
|
||||
|
||||
glm::sortEigenvalues(testVal, testVec);
|
||||
|
||||
if (!glm::all(glm::epsilonEqual(testVal, refVal, static_cast<T>(0.000001))))
|
||||
return 2 + p * 2;
|
||||
if (!vectorEpsilonEqual(testVal, refVal))
|
||||
return failReport(__LINE__);
|
||||
if (!matrixEpsilonEqual(testVec, refVec))
|
||||
return 2 + 1 + p * 2;
|
||||
return failReport(__LINE__);
|
||||
}
|
||||
|
||||
return 0;
|
||||
@ -406,7 +422,7 @@ int testEigenvalueSort()
|
||||
|
||||
// Test covariance matrix creation functions
|
||||
template<glm::length_t D, typename T, glm::qualifier Q>
|
||||
int testCovar(unsigned int dataSize, unsigned int randomEngineSeed)
|
||||
int testCovar(glm::length_t dataSize, unsigned int randomEngineSeed)
|
||||
{
|
||||
typedef glm::vec<D, T, Q> vec;
|
||||
typedef glm::mat<D, D, T, Q> mat;
|
||||
@ -420,7 +436,7 @@ int testCovar(unsigned int dataSize, unsigned int randomEngineSeed)
|
||||
|
||||
mat covarMat = glm::computeCovarianceMatrix(testData.data(), testData.size(), center);
|
||||
if(_1aga::checkCovarMat(covarMat))
|
||||
return 1;
|
||||
return failReport(__LINE__);
|
||||
|
||||
// #2: test function variant consitency with random data
|
||||
std::default_random_engine rndEng(randomEngineSeed);
|
||||
@ -428,18 +444,19 @@ int testCovar(unsigned int dataSize, unsigned int randomEngineSeed)
|
||||
testData.resize(dataSize);
|
||||
// some common offset of all data
|
||||
T offset[D];
|
||||
for(size_t d = 0; d < D; ++d)
|
||||
for(glm::length_t d = 0; d < D; ++d)
|
||||
offset[d] = normalDist(rndEng);
|
||||
// init data
|
||||
for(size_t i = 0; i < dataSize; ++i)
|
||||
for(size_t d = 0; d < D; ++d)
|
||||
for(glm::length_t i = 0; i < dataSize; ++i)
|
||||
for(glm::length_t d = 0; d < D; ++d)
|
||||
testData[i][d] = offset[d] + normalDist(rndEng);
|
||||
center = computeCenter(testData);
|
||||
|
||||
std::vector<vec> centeredTestData;
|
||||
centeredTestData.reserve(testData.size());
|
||||
for(vec const& v : testData)
|
||||
centeredTestData.push_back(v - center);
|
||||
std::vector<vec>::const_iterator e = testData.end();
|
||||
for(std::vector<vec>::const_iterator i = testData.begin(); i != e; ++i)
|
||||
centeredTestData.push_back((*i) - center);
|
||||
|
||||
mat c1 = glm::computeCovarianceMatrix(centeredTestData.data(), centeredTestData.size());
|
||||
mat c2 = glm::computeCovarianceMatrix<D, T, Q>(centeredTestData.begin(), centeredTestData.end());
|
||||
@ -447,11 +464,11 @@ int testCovar(unsigned int dataSize, unsigned int randomEngineSeed)
|
||||
mat c4 = glm::computeCovarianceMatrix<D, T, Q>(testData.rbegin(), testData.rend(), center);
|
||||
|
||||
if(!matrixEpsilonEqual(c1, c2))
|
||||
return 1;
|
||||
return failReport(__LINE__);
|
||||
if(!matrixEpsilonEqual(c1, c3))
|
||||
return 1;
|
||||
return failReport(__LINE__);
|
||||
if(!matrixEpsilonEqual(c1, c4))
|
||||
return 1;
|
||||
return failReport(__LINE__);
|
||||
|
||||
return 0;
|
||||
}
|
||||
@ -471,11 +488,11 @@ int testEigenvectors()
|
||||
mat eigenvectors;
|
||||
unsigned int c = glm::findEigenvaluesSymReal(covarMat, eigenvalues, eigenvectors);
|
||||
if(c != D)
|
||||
return 1;
|
||||
return failReport(__LINE__);
|
||||
glm::sortEigenvalues(eigenvalues, eigenvectors);
|
||||
|
||||
if(_1aga::checkEigenvaluesEigenvectors(eigenvalues, eigenvectors) != 0)
|
||||
return 1;
|
||||
return failReport(__LINE__);
|
||||
|
||||
return 0;
|
||||
}
|
||||
@ -501,7 +518,7 @@ int smokeTest()
|
||||
vec3 eVal;
|
||||
int eCnt = glm::findEigenvaluesSymReal(covar, eVal, eVec);
|
||||
if(eCnt != 3)
|
||||
return 1;
|
||||
return failReport(__LINE__);
|
||||
|
||||
// sort eVec by decending eVal
|
||||
if(eVal[0] < eVal[1])
|
||||
@ -520,12 +537,12 @@ int smokeTest()
|
||||
std::swap(eVec[1], eVec[2]);
|
||||
}
|
||||
|
||||
if(!glm::all(glm::equal(glm::abs(eVec[0]), vec3(0, 1, 0))))
|
||||
return 2;
|
||||
if(!glm::all(glm::equal(glm::abs(eVec[1]), vec3(1, 0, 0))))
|
||||
return 3;
|
||||
if(!glm::all(glm::equal(glm::abs(eVec[2]), vec3(0, 0, 1))))
|
||||
return 4;
|
||||
if(!vectorEpsilonEqual(glm::abs(eVec[0]), vec3(0, 1, 0)))
|
||||
return failReport(__LINE__);
|
||||
if(!vectorEpsilonEqual(glm::abs(eVec[1]), vec3(1, 0, 0)))
|
||||
return failReport(__LINE__);
|
||||
if(!vectorEpsilonEqual(glm::abs(eVec[2]), vec3(0, 0, 1)))
|
||||
return failReport(__LINE__);
|
||||
|
||||
return 0;
|
||||
}
|
||||
@ -586,7 +603,7 @@ int rndTest(unsigned int randomEngineSeed)
|
||||
glm::dmat3 evecs;
|
||||
int evcnt = glm::findEigenvaluesSymReal(covarMat, evals, evecs);
|
||||
if(evcnt != 3)
|
||||
return 1;
|
||||
return failReport(__LINE__);
|
||||
glm::sortEigenvalues(evals, evecs);
|
||||
|
||||
//printf("\n");
|
||||
@ -595,11 +612,11 @@ int rndTest(unsigned int randomEngineSeed)
|
||||
//printf("evec1: %.10lf, %.10lf, %.10lf\n", evecs[1].x, evecs[1].y, evecs[1].z);
|
||||
|
||||
if(glm::length(glm::abs(x) - glm::abs(evecs[0])) > 0.000001)
|
||||
return 1;
|
||||
return failReport(__LINE__);
|
||||
if(glm::length(glm::abs(y) - glm::abs(evecs[2])) > 0.000001)
|
||||
return 1;
|
||||
return failReport(__LINE__);
|
||||
if(glm::length(glm::abs(z) - glm::abs(evecs[1])) > 0.000001)
|
||||
return 1;
|
||||
return failReport(__LINE__);
|
||||
|
||||
return 0;
|
||||
}
|
||||
@ -609,56 +626,56 @@ int main()
|
||||
|
||||
// A small smoke test to fail early with most problems
|
||||
if(smokeTest())
|
||||
return __LINE__;
|
||||
return failReport(__LINE__);
|
||||
|
||||
// test sorting utility.
|
||||
if(testEigenvalueSort<2, float, glm::defaultp>() != 0)
|
||||
return __LINE__;
|
||||
return failReport(__LINE__);
|
||||
if(testEigenvalueSort<2, double, glm::defaultp>() != 0)
|
||||
return __LINE__;
|
||||
return failReport(__LINE__);
|
||||
if(testEigenvalueSort<3, float, glm::defaultp>() != 0)
|
||||
return __LINE__;
|
||||
return failReport(__LINE__);
|
||||
if(testEigenvalueSort<3, double, glm::defaultp>() != 0)
|
||||
return __LINE__;
|
||||
return failReport(__LINE__);
|
||||
if(testEigenvalueSort<4, float, glm::defaultp>() != 0)
|
||||
return __LINE__;
|
||||
return failReport(__LINE__);
|
||||
if(testEigenvalueSort<4, double, glm::defaultp>() != 0)
|
||||
return __LINE__;
|
||||
return failReport(__LINE__);
|
||||
|
||||
// Note: the random engine uses a fixed seed to create consistent and reproducible test data
|
||||
// test covariance matrix computation from different data sources
|
||||
if(testCovar<2, float, glm::defaultp>(100, 12345) != 0)
|
||||
return __LINE__;
|
||||
return failReport(__LINE__);
|
||||
if(testCovar<2, double, glm::defaultp>(100, 42) != 0)
|
||||
return __LINE__;
|
||||
return failReport(__LINE__);
|
||||
if(testCovar<3, float, glm::defaultp>(100, 2021) != 0)
|
||||
return __LINE__;
|
||||
return failReport(__LINE__);
|
||||
if(testCovar<3, double, glm::defaultp>(100, 815) != 0)
|
||||
return __LINE__;
|
||||
return failReport(__LINE__);
|
||||
if(testCovar<4, float, glm::defaultp>(100, 3141) != 0)
|
||||
return __LINE__;
|
||||
return failReport(__LINE__);
|
||||
if(testCovar<4, double, glm::defaultp>(100, 174) != 0)
|
||||
return __LINE__;
|
||||
return failReport(__LINE__);
|
||||
|
||||
// test PCA eigen vector reconstruction
|
||||
if(testEigenvectors<2, float, glm::defaultp>() != 0)
|
||||
return __LINE__;
|
||||
return failReport(__LINE__);
|
||||
if(testEigenvectors<2, double, glm::defaultp>() != 0)
|
||||
return __LINE__;
|
||||
return failReport(__LINE__);
|
||||
if(testEigenvectors<3, float, glm::defaultp>() != 0)
|
||||
return __LINE__;
|
||||
return failReport(__LINE__);
|
||||
if(testEigenvectors<3, double, glm::defaultp>() != 0)
|
||||
return __LINE__;
|
||||
return failReport(__LINE__);
|
||||
if (testEigenvectors<4, float, glm::defaultp>() != 0)
|
||||
return __LINE__;
|
||||
return failReport(__LINE__);
|
||||
if (testEigenvectors<4, double, glm::defaultp>() != 0)
|
||||
return __LINE__;
|
||||
return failReport(__LINE__);
|
||||
|
||||
// Final tests with randomized data
|
||||
if(rndTest(12345) != 0)
|
||||
return __LINE__;
|
||||
return failReport(__LINE__);
|
||||
if(rndTest(42) != 0)
|
||||
return __LINE__;
|
||||
return failReport(__LINE__);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user