106 lines
3.2 KiB
C++
106 lines
3.2 KiB
C++
#define GLM_ENABLE_EXPERIMENTAL
|
|
#include <glm/gtx/matrix_factorisation.hpp>
|
|
#include <glm/gtc/constants.hpp>
|
|
#include <glm/gtc/epsilon.hpp>
|
|
|
|
template <glm::length_t C, glm::length_t R, typename T, glm::precision P, template<glm::length_t, glm::length_t, typename, glm::precision> class matType>
|
|
int test_qr(matType<C, R, T, P> m)
|
|
{
|
|
int Error = 0;
|
|
|
|
T const epsilon = static_cast<T>(1e-10);
|
|
|
|
matType<(C < R ? C : R), R, T, P> q(-999);
|
|
matType<C, (C < R ? C : R), T, P> r(-999);
|
|
|
|
glm::qr_decompose(m, q, r);
|
|
|
|
//Test if q*r really equals the input matrix
|
|
matType<C, R, T, P> tm = q*r;
|
|
matType<C, R, T, P> err = tm - m;
|
|
|
|
for (glm::length_t i = 0; i < C; i++)
|
|
for (glm::length_t j = 0; j < R; j++)
|
|
Error += glm::abs(err[i][j]) > epsilon ? 1 : 0;
|
|
|
|
//Test if the columns of q are orthonormal
|
|
for (glm::length_t i = 0; i < (C < R ? C : R); i++)
|
|
{
|
|
Error += (length(q[i]) - 1) > epsilon ? 1 : 0;
|
|
|
|
for (glm::length_t j = 0; j<i; j++)
|
|
Error += glm::abs(dot(q[i], q[j])) > epsilon ? 1 : 0;
|
|
}
|
|
|
|
//Test if the matrix r is upper triangular
|
|
for (glm::length_t i = 0; i < C; i++)
|
|
for (glm::length_t j = i + 1; j < (C < R ? C : R); j++)
|
|
Error += glm::epsilonEqual(r[i][j], static_cast<T>(0), glm::epsilon<T>()) ? 0 : 1;
|
|
|
|
return Error;
|
|
}
|
|
|
|
template <glm::length_t C, glm::length_t R, typename T, glm::precision P, template<glm::length_t, glm::length_t, typename, glm::precision> class matType>
|
|
int test_rq(matType<C, R, T, P> m)
|
|
{
|
|
int Error = 0;
|
|
|
|
T const epsilon = static_cast<T>(1e-10);
|
|
|
|
matType<C, (C < R ? C : R), T, P> q(-999);
|
|
matType<(C < R ? C : R), R, T, P> r(-999);
|
|
|
|
glm::rq_decompose(m, r, q);
|
|
|
|
//Test if q*r really equals the input matrix
|
|
matType<C, R, T, P> tm = r*q;
|
|
matType<C, R, T, P> err = tm - m;
|
|
|
|
for (glm::length_t i = 0; i < C; i++)
|
|
for (glm::length_t j = 0; j < R; j++)
|
|
Error += glm::abs(err[i][j]) > epsilon ? 1 : 0;
|
|
|
|
//Test if the rows of q are orthonormal
|
|
matType<(C < R ? C : R), C, T, P> tq = transpose(q);
|
|
|
|
for (glm::length_t i = 0; i < (C < R ? C : R); i++)
|
|
{
|
|
Error += (length(tq[i]) - 1) > epsilon ? 1 : 0;
|
|
|
|
for (glm::length_t j = 0; j<i; j++)
|
|
Error += glm::abs(dot(tq[i], tq[j])) > epsilon ? 1 : 0;
|
|
}
|
|
|
|
//Test if the matrix r is upper triangular
|
|
for (glm::length_t i = 0; i < (C < R ? C : R); i++)
|
|
for (glm::length_t j = R - (C < R ? C : R) + i + 1; j < R; j++)
|
|
Error += glm::epsilonEqual(r[i][j], static_cast<T>(0), glm::epsilon<T>()) ? 0 : 1;
|
|
|
|
return Error;
|
|
}
|
|
|
|
int main()
|
|
{
|
|
int Error = 0;
|
|
|
|
//Test QR square
|
|
Error += test_qr(glm::dmat3(12.0, 6.0, -4.0, -51.0, 167.0, 24.0, 4.0, -68.0, -41.0)) ? 1 : 0;
|
|
|
|
//Test RQ square
|
|
Error += test_rq(glm::dmat3(12.0, 6.0, -4.0, -51.0, 167.0, 24.0, 4.0, -68.0, -41.0)) ? 1 : 0;
|
|
|
|
//Test QR triangular 1
|
|
Error += test_qr(glm::dmat3x4(12.0, 6.0, -4.0, -51.0, 167.0, 24.0, 4.0, -68.0, -41.0, 7.0, 2.0, 15.0)) ? 1 : 0;
|
|
|
|
//Test QR triangular 2
|
|
Error += test_qr(glm::dmat4x3(12.0, 6.0, -4.0, -51.0, 167.0, 24.0, 4.0, -68.0, -41.0, 7.0, 2.0, 15.0)) ? 1 : 0;
|
|
|
|
//Test RQ triangular 1 : Fails at the triangular test
|
|
Error += test_rq(glm::dmat3x4(12.0, 6.0, -4.0, -51.0, 167.0, 24.0, 4.0, -68.0, -41.0, 7.0, 2.0, 15.0)) ? 1 : 0;
|
|
|
|
//Test QR triangular 2
|
|
Error += test_rq(glm::dmat4x3(12.0, 6.0, -4.0, -51.0, 167.0, 24.0, 4.0, -68.0, -41.0, 7.0, 2.0, 15.0)) ? 1 : 0;
|
|
|
|
return Error;
|
|
}
|