glm/test/main.cpp
Christophe Riccio 8316b4a7fd Added test files
2010-04-29 12:16:00 +01:00

2314 lines
57 KiB
C++

///////////////////////////////////////////////////////////////////////////////////////////////////
// OpenGL Mathematics Copyright (c) 2005 - 2010 G-Truc Creation (www.g-truc.net)
///////////////////////////////////////////////////////////////////////////////////////////////////
// Created : 2005-01-12
// Updated : 2006-12-03
// Licence : This source is under MIT License
// File : main.cpp
///////////////////////////////////////////////////////////////////////////////////////////////////
#include "precompiled.hpp"
#include <glm/gtc/matrix_operation.hpp>
#include <glm/gtx/simd_vec4.hpp>
#include <glm/core/intrinsic_common.hpp>
#include <glm/core/intrinsic_exponential.hpp>
#include <glm/core/intrinsic_geometric.hpp>
#include <glm/core/intrinsic_matrix.hpp>
#include <glm/core/intrinsic_trigonometric.hpp>
#include <glm/core/intrinsic_vector_relational.hpp>
#include <glm/gtc/matrix_transform.hpp>
#include <glm/gtc/matrix_projection.hpp>
#include <glm/gtc/quaternion.hpp>
#include <glm/gtx/bit.hpp>
#include <glm/gtx/inverse.hpp>
#include <glm/gtx/inverse_transpose.hpp>
#include <glm/gtx/fast_square_root.hpp>
#include <glm/gtx/string_cast.hpp>
#include <glm/gtx/intersect.hpp>
#include <glm/gtx/matrix_operation.hpp>
#include <glm/gtx/integer.hpp>
#include <glm/gtx/random.hpp>
#include <glm/gtx/color_cast.hpp>
#include <glm/gtx/transform2.hpp>
#include <glm/gtx/gradient_paint.hpp>
#include <glm/gtx/perpendicular.hpp>
#include <glm/gtx/vector_angle.hpp>
#include <glm/gtx/rotate_vector.hpp>
#include "core.hpp"
#include "img.hpp"
#include "gtc.hpp"
#include "gtx.hpp"
#include <vector>
//namespace glm
//{
// using GLM_GTX_double_float;
// using GLM_GTX_inverse;
// using GLM_GTX_integer;
// using GLM_GTX_unsigned_int;
//using GLM_GTX_bit;
// using GLM_GTX_fast_square_root;
// using GLM_GTX_number_precision;
// using GLM_GTX_color_cast;
// using GLM_GTX_quaternion;
// using GLM_GTX_inverse_transpose;
// using GLM_GTX_transform;
// using GLM_GTX_transform2;
// using GLM_GTX_intersect;
// using GLM_GTX_random;
// using GLM_GTX_gradient_paint;
// using GLM_GTX_perpendicular;
//using GLM_GTX_compatibility;
//using GLM_GTX_quaternion;
//using GLM_GTX_string_cast;
//using GLM_GTX_fast_square_root;
//using GLM_GTX_half_float;
//using GLM_GTX_vector_angle;
//using GLM_GTX_matrix_projection;
//}
unsigned int GetCpuCycle()
{
unsigned int LowWord = 0;
unsigned int HighWord = 0;
// _asm
// {
// cpuid
// // Insert Real Time Stamp Counter opcodes
// _emit 0x0F
// _emit 0x31
// mov HighWord, edx
// mov LowWord, eax
// }
// return ((__int64)(HighWord) << 32) + LowWord;
return 0;
}
//namespace wip
//{
// inline glm::detail::fvec4SIMD rcp(glm::detail::fvec4SIMD const & v)
// {
// return glm::detail::fvec4SIMD(_mm_rcp_ps(v.Data));
// }
//
// inline glm::detail::fvec4SIMD sqrt(glm::detail::fvec4SIMD const & v)
// {
// return glm::detail::fvec4SIMD(_mm_sqrt_ps(v.Data));
// }
//
// inline glm::detail::fvec4SIMD inversesqrt(glm::detail::fvec4SIMD const & v)
// {
// return glm::detail::fvec4SIMD(_mm_rsqrt_ps(v.Data));
// }
//
// inline glm::detail::fvec4SIMD min(glm::detail::fvec4SIMD const & v1, glm::detail::fvec4SIMD const & v2)
// {
// return glm::detail::fvec4SIMD(_mm_min_ps(v1.Data, v2.Data));
// }
//
// inline glm::detail::fvec4SIMD max(glm::detail::fvec4SIMD const & v1, glm::detail::fvec4SIMD const & v2)
// {
// return glm::detail::fvec4SIMD(_mm_max_ps(v1.Data, v2.Data));
// }
//}//namespace wip
void test_simd()
{
glm::detail::fvec4SIMD v1(1.0f, 2.0f, 3.0f, 4.0f);
glm::detail::fvec4SIMD v2(5.0f, 6.0f, 7.0f, 8.0f);
bool end = true;
}
namespace a
{
namespace b{}
}
namespace c = a::b;
//#include <glm/ext/virtrev/gl.hpp>
#include <cstdio>
#include <cstdlib>
#include <ctime>
//#include <windows.hpp>
//#include <boost/static_assert.hpp>
#ifdef min
#undef min
#endif
#ifdef max
#undef max
#endif
//#include "test/sse_vec4.h"
//#include "test/sse_mat4.h"
/*
inline float fastExp0(float x)
{
return 1.0f + x + (x * x * 0.5f) + (x * x * x * 0.1666666667f) + (x * x * x * x * 0.041666667f) + (x * x * x * x * x * 0.008333333333f) + (x * x * x * x * x * x * 0.00138888888888f) + (x * x * x * x * x * x * x * 0.000198412698f) + (x * x * x * x * x * x * x * x * 0.0000248015873f);
}
inline float fastExp1(float x)
{
float x2 = x * x;
float x3 = x2 * x;
float x4 = x3 * x;
float x5 = x4 * x;
float x6 = x5 * x;
float x7 = x6 * x;
float x8 = x7 * x;
return 1.0f + x + (x2 * 0.5f) + (x3 * 0.1666666667f) + (x4 * 0.041666667f) + (x5 * 0.008333333333f) + (x6 * 0.00138888888888f) + (x7 * 0.000198412698f) + (x8 * 0.0000248015873f);
}
inline float fastExp2(float x)
{
float x2 = x * x;
float x3 = x2 * x;
float x4 = x3 * x;
float x5 = x4 * x;
return 1.0f + x + (x2 * 0.5f) + (x3 * 0.1666666667f) + (x4 * 0.041666667f) + (x5 * 0.008333333333f);
}
inline float fastExp3(float x)
{
return 1.0f + x * (1.0f + x * 0.5f * (1.0f + x * 0.3333333333f * (1.0f + x * 0.25 * (1.0f + x * 0.2f))));
}
inline float fastExp4(float x)
{
if(x >= 0.0f && x <= 1.0f)
{
float x2 = x * x;
float x3 = x2 * x;
float x4 = x3 * x;
float x5 = x4 * x;
return 1.0f + x + (x2 * 0.5f) + (x3 * 0.1666666667f) + (x4 * 0.041666667f) + (x5 * 0.008333333333f);
}
else
{
float e = 2.718281828f;
float IntegerPart = glm::floor(x);
float FloatPart = x - IntegerPart;
float z = e;
for(int i = 1; i < int(IntegerPart); ++i)
z *= e;
float x2 = FloatPart * FloatPart;
float x3 = x2 * FloatPart;
float x4 = x3 * FloatPart;
float x5 = x4 * FloatPart;
return z * (1.0f + FloatPart + (x2 * 0.5f) + (x3 * 0.1666666667f) + (x4 * 0.041666667f) + (x5 * 0.008333333333f));
}
}
__forceinline float fastExp5(float x)
{
const float e = 2.718281828f;
const float IntegerPart = glm::floor(x);
const float FloatPart = x - IntegerPart;
float z = 1.f;
//for(int i = 0; i < int(IntegerPart); ++i)
// z *= e;
const float x2 = FloatPart * FloatPart;
const float x3 = x2 * FloatPart;
const float x4 = x3 * FloatPart;
const float x5 = x4 * FloatPart;
return z * (1.0f + FloatPart + (x2 * 0.5f) + (x3 * 0.1666666667f) + (x4 * 0.041666667f) + (x5 * 0.008333333333f));
}
inline float fastLn0(float x)
{
float y1 = (x - 1.0f) / (x + 1.0f);
float y2 = y1 * y1;
float y4 = y2 * y2;
float y6 = y4 * y2;
float y8 = y4 * y4;
return 2.0f * y1 * (1.0f + y2 * 0.3333333333f + y4 * 0.2f + y6 * 0.1428571429f);// + y8 * 0.1111111111f);
}
inline float fastLn1(float x)
{
float y1 = (x - 1.0f) / (x + 1.0f);
float y2 = y1 * y1;
return 2.0f * y1 * (1.0f + y2 * (0.3333333333f + y2 * (0.2f + y2 * 0.1428571429f)));
}
*/
using namespace std;
using namespace glm;
void subtitiution()
{
//--------------------------------------------------------------------
//AX=B
mat4 L(0.f);
mat4 U(0.f);
mat4 A = mat4(
vec4(4.f),
vec4(4.f),
vec4(4.f),
vec4(4.f));
for(int i=0;i < 4;i++)
for(int j=0;j < 4;j++)
{
if(i>j)
U[i][j]=0;
else if(i==j)
L[i][j]=1;
else
L[i][j]=0;
}
printf("A:\n");
for(int j = 0; j < 4; ++j)
{
printf("(");
for(int i = 0; i < 4; ++i)
printf("%f ", A[j][i]);
printf(")\n");
}
printf("\n");
//Decomposition of A into L and U
for(int i = 0; i < 4; ++i)
for(int j = 0; j < 4; ++j)
{
float Sum = 0.f;
if(i <= j)
{
for(int k = 0; k < 4; ++k)
if(k != i)
Sum += L[i][k] * U[k][j];
U[i][j] = (A[i][j] - Sum);// / U[j][j];
}
else
{
for(int k = 0; k < 4; k++)
if(k != j)
Sum += L[i][k] * U[k][j];
L[i][j] = (A[i][j] - Sum) / U[j][j];
}
}
printf("L:\n");
for(int j = 0; j < 4; ++j)
{
printf("(");
for(int i = 0; i < 4; ++i)
printf("%f ", L[j][i]);
printf(")\n");
}
printf("\n");
printf("U:\n");
for(int j = 0; j < 4; ++j)
{
printf("(");
for(int i = 0; i < 4; ++i)
printf("%f ", U[j][i]);
printf(")\n");
}
printf("\n");
system("pause");
}
void LUDecompsition(
const detail::tmat4x4<float>& m,
detail::tmat4x4<float>& l,
detail::tmat4x4<float>& u)
{
for(int i = 0; i < 4; ++i)
l[i][i] = 1.f;
for(int j = 0; j < 4; ++j)
{
//for(int i = 0; i <= j; ++i)
for(int i = 0; i < j; ++i)
{
u[j][i] = m[j][i];
for(int k = 0; k < i - 1; ++k)
//for(int k = 0; k < i; ++k)
u[j][i] -= l[k][i] * u[j][k];
}
//for(int i = j + 1; i < 4; ++i)
for(int i = j; i < 4; ++i)
{
l[j][i] = m[j][i];
for(int k = 0; k < j - 1; ++k)
//for(int k = 0; k < j; ++k)
l[j][i] -= l[k][i] * u[j][k];
}
}
}
/*
ivec3& operator+=(const ivec3& v, const int s)
{
ivec3 Result = v;
Result.x &= s;
Result.y &= s;
Result.z &= s;
return Result;
}
*/
void g()
{
mat4 m = glm::inverse(mat4(4.0f));
}
void test_gtx_bit()
{
int Number1 = 76;
int NumberA = glm::highestBit(Number1);
int NumberB = glm::highestBitValue(Number1);
bool NumberC = glm::isPowerOfTwo(Number1);
int NumberD = glm::powerOfTwoAbove(Number1);
int NumberE = glm::powerOfTwoBelow(Number1);
int NumberF = glm::powerOfTwoNearest(Number1);
int Number2 = 256;
int NumberG = glm::highestBit(Number2);
int NumberH = glm::highestBitValue(Number2);
bool NumberI = glm::isPowerOfTwo(Number2);
int NumberJ = glm::powerOfTwoAbove(Number2);
int NumberK = glm::powerOfTwoBelow(Number2);
int NumberL = glm::powerOfTwoNearest(Number2);
int NumberZ = 0;
}
/*
struct gni
{
void constructor(short i)
{
data = i;
}
gni& assignement(const gni& i)
{
data = i.data;
return *this;
}
short data;
}
union pouet
{
pouet(detail::thalf x, detail::thalf y, detail::thalf z) :
x(x), y(y), z(z)
{}
struct{detail::thalf x, y, z;};
struct{detail::thalf r, g, b;};
struct{detail::thalf s, t, q;};
};
*/
//#include GLM_EXTENSION(GLM_GTX_compatibility, glm::required);
vec4 mix_fpu(const vec4& x, const vec4& y, const vec4& a)
{
return x * (vec4(1) - a) + y * a;
}
/*
namespace glm
{
template<class T, int N>
struct traits
{
typedef T value_type;
typedef T* pointer;
typedef T& reference;
typedef std::size_t size_type;
static const size_type value_size;
};
template<class T, int N>
static const traits::size_type traits::value_size = N;
template<class Type>
struct traits<Type*>
{
typedef Type value_type;
typedef Type* pointer;
typedef Type& reference;
};
template<class Type>
struct traits<const Type*>
{
typedef Type value_type;
typedef const Type* pointer;
typedef const Type& reference;
};
}
*/
vec2 reference_swizzle(const vec3& a, const vec3& b)
{
return vec2(0.0f);
}
//void test_random()
//{
// float Value = gaussRand1GTX(1.0f, 2.0f);
// detail::_xvecxGTX<8, float> vecN;
// vecN = compRandGTX(vecN, vecN);
//}
void test_matrix()
{
// glm::mat4 Transform = glm::translateGTX(
// glm::rotateGTX(45.f, glm::core::func_geometric::normalize(glm::vec3(1))), glm::vec3(1, 2, 3));
glm::vec3 Normalized = glm::normalize(glm::vec3(1));
glm::mat4 Transform = glm::gtc::matrix_transform::translate(
glm::gtc::matrix_transform::rotate(glm::mat4(1.0f), 45.f, Normalized),
glm::vec3(1, 2, 3));
glm::mat4 TransformA = glm::inverse(Transform);
glm::mat4 TransformB = glm::affineInverse(Transform);
glm::mat4 End;
}
void test_vec4()
{
{
glm::vec4 v(1.0);
glm::vec4 const* const pv = &v;
glm::vec4 const& rv = v;
//float const* pointer1 = &v;
//float const* pointer2 = v;
//float const* pointer3 = pv;
//float const* pointer4 = &rv;
//glm::vec4* p = &v;
//glm::vec4 v6 = v + long(3);
float const* pointer1 = &v[0];
}
//{
// glm::mat4 m;
// glm::mat4 const* const pm = &m;
// glm::mat4 const& rm = m;
// float const* pointer1 = &m;
// float const* pointer2 = m;
// float const* pointer3 = pm;
// float const* pointer4 = &rm;
//}
}
void test_mat4(const glm::mat4& m)
{
//glm::mat4 copy = m;
//glLoadMatrix(GL_MODELVIEW, copy);
}
void test_string_cast()
{
printf("Test string cast: %s\n", glm::string(glm::vec4(1, 2, 3, 4)).c_str());
}
void test_isPowerOfTwo()
{
bool resultA = glm::isPowerOfTwo(unsigned(512));
bool resultB = glm::isPowerOfTwo(unsigned(513));
bool end = true;
}
//#include <glm/glw.hpp>
//
//void test_opengl_wrapper()
//{
// glVertex(glm::vec3(1.0f));
//}
void fast_inverse()
{
float one = fastInverseSqrt(1.0f);
float two = fastInverseSqrt(2.0f);
float result = 1.0f;
}
//void test_desk()
//{
// typedef glm::detail::desc<glm::vec4>::value_type vec4_type;
// vec4_type Test(1.0f);
//
// glm::detail::desc<glm::vec4>::size_type Size = glm::detail::desc<glm::vec4>::value_size();
//
// int end = 0;
//}
//template <typename genType>
//genType TemplateFuncMin(const genType& Type1, const genType& Type2)
//{
// genType Result;
// for
// (
// glm::detail::desc<glm::vec4>::size_type i = glm::detail::desc<glm::vec4>::size_type(0);
// i < glm::detail::desc<glm::vec4>::value_size;
// ++i
// )
// {
// Result[i] = Type1[i] < Type2[i] ? Type1[i] : Type2[i];
// }
//
// return Result;
//}
//
//void test_genType()
//{
// glm::vec1 Result1 = TemplateFuncMin(glm::vec1(1), glm::vec1(2));
//// float ResultF = TemplateFuncMin(1.f, 2.f);
// vec4 Result4 = TemplateFuncMin(glm::vec4(1), glm::vec4(2));
//
// bool end = true;
//}
namespace test_ac
{
struct C1
{
C1() :
data(76)
{}
int data;
};
struct C2
{
C2(){}
C2(const C1& c1) :
data(c1.data)
{}
int data;
};
C2 operator+ (const C2& a, const C2& b)
{
C2 result;
result.data = a.data + b.data;
return result;
}
}
void test_auto_cast()
{
test_ac::C1 c1;
test_ac::C2 c2 = c1;
test_ac::C2 c3 = c2 + c1;
//
// glm::vec3 Data = glm::vec2(1.f)._yxy();
}
template <typename genType>
genType abs(const genType& v)
{
genType Result;
for(typename genType::size_type i = 0; i < genType::size_value; ++i)
Result[i] = Result[i] < typename genType::value_type(0) ? -Result[i] : Result[i];
return Result;
}
void test_quaternion()
{
glm::vec3 tan(1.0f);
glm::quat q;
tan = glm::cross(q, tan);
}
void test_swizzle()
{
glm::vec2 a(1, 2);
glm::vec4 b = a.swizzle(X, Y, X, Y);
glm::vec4 c(0);
c.swizzle(X, Y, Z, W) = b.swizzle(X, Y, Z, W);
//a.xyz = b.xyz;
bool end = true;
}
void test_angle()
{
//float angle1 = glm::angle(0.1f, 0.2f);
float angle2 = glm::angle(glm::vec2(0.1f), glm::vec2(0.2f));
return;
}
void test_half()
{
hmat2 hmatrix1(half(1.f));
hmat2 hmatrix2(half(2.f));
hmat2 hmatrix3 = hmatrix1 + hmatrix2;
half hscalar = hmatrix3[0].x;
double fscalar = hscalar;
hvec2::size_type Size = hvec2::value_size();
return;
}
template <typename valType, profile proType>
valType func_profile(glm::detail::tvec3<valType> const & x, valType y)
{
return glm::dot(x, glm::detail::tvec3<valType>(y));
}
template <>
float func_profile<float, fast>(glm::vec3 const & x, float y)
{
return glm::dot(x, glm::vec3(y));
}
void test_profile()
{
}
//template <typename valType, int C, int R>
//class TestType
//{
//public:
// TestType(valType const & x);
//};
//
//template <typename valType, int C, int R>
//TestType<valType, C, R>::TestType(valType const & x)
//{}
//
//template <typename valType>
//class TestType<valType, 4, 1>
//{
//public:
// TestType(valType const & x);
//};
//
//template <typename valType>
//TestType<valType, 4, 1>::TestType(valType const & x)
//{}
//
//typedef TestType<float, 4, 1> _vec4;
//
//void test_type()
//{
// _vec4 v(1.0);
//}
void test_fast_inverse()
{
printf("fastInvSqrt(1.0f) : %f\n", fastInverseSqrt(1.0f));
printf("fastInvSqrt(1.0f) : %f\n", inversesqrt(1.0f));
printf("fastInvSqrt(76.0f) : %f\n", fastInverseSqrt(76.f));
printf("fastInvSqrt(76.0f) : %f\n", inversesqrt(76.f));
printf("fastInvSqrt(0.01f) : %f\n", fastInverseSqrt(0.01f));
printf("fastInvSqrt(0.01f) : %f\n", inversesqrt(0.01f));
}
namespace ns_hint
{
struct hint
{};
struct see : public hint
{};
struct see2 : public see
{};
template <typename vecType>
vecType func(vecType const & v, hint)
{
return v * v;
}
template <typename vecType>
vecType func(vecType const & v, see2)
{
return v * v;
}
template <typename valType, typename Hint = hint>
struct vec4
{
vec4()
{
int i = 0;
}
valType data;
};
template <typename valType>
struct vec4<valType, see2>
{
vec4()
{
int i = 0;
}
valType data;
};
//enum hint
//{
// fast,
// nice,
// see,
// see2,
// see3,
// see4
//};
//template <typename vecType, hint Hint = see2>
//vecType func(vecType const & v);
//template <hint Hint = see2>
//struct functor
//{
// template <typename vecType>
// vecType operator() (vecType const & v) const
// {
// return v * v;
// }
//};
}
void test_hint()
{
glm::vec3 v1 = glm::vec3(2.0f);
glm::vec3 v2 = ns_hint::func(v1, ns_hint::see());
// ns_hint::vec4 v3;
// ns_hint::vec4<see2> v4;
//glm::vec3 v2 = ns_hint::functor<ns_hint::see2>()(v1);
//glm::vec3 v2 = hint::func<glm::vec3>(v1);
}
void test_const_call
(
glm::mat4 const & m,
glm::vec4 const & v
)
{
float const & Value = m[0][0];
glm::vec4 const & Vector = m[0];
float const & VecRef = v[0];
float const * const ValuePtr = &m[0][0];
glm::vec4 const * const VectorPtr = &m[0];
float const * VecPtr = &v[0];
}
void test_const()
{
test_const_call(
glm::mat4(1.0),
glm::vec4(1.0));
}
void test_transform()
{
glm::vec2 QMin(-1024,+1024);
//glm::vec2 QMax(+1024,-1024);
glm::vec2 QMax(-1024 + 640, 1024);
std::size_t const ValueSize = 6;
glm::vec3 ValueOut[ValueSize];
glm::vec3 ValueData[ValueSize];
ValueData[0] = glm::vec3(QMin.x, QMin.y, 1);//(0, 0)
ValueData[1] = glm::vec3(QMax.x, QMin.y, 1);//(1, 0)
ValueData[2] = glm::vec3(QMax.x, QMax.y, 1);//(1, 1)
ValueData[3] = glm::vec3(QMin.x, QMax.y, 1);//(0, 1)
ValueData[4] = glm::vec3(QMin.x, QMax.y / 4.f, 1);//(0, 0.25f)
ValueData[5] = glm::vec3(QMin.x / 4.f, QMax.y, 1);//(0.25f, 0.25f)
glm::mat3 Q2Norm(1.0f);
Q2Norm[0] = glm::vec3(
1.0f / (QMax.x - QMin.x),
0.0f,
0.0f);
Q2Norm[1] = glm::vec3(
0.0f,
1.0f / (QMax.y - QMin.y),
0.0f);
Q2Norm[2] = glm::vec3(
- QMin.x / (QMax.x - QMin.x),
- QMin.y / (QMax.y - QMin.y),
1.0f);
glm::vec2 FBMin(0, 0);
glm::vec2 FBMax(640, 480);
glm::mat3 Norm2FB(1.0f);
Norm2FB[0] = glm::vec3(FBMax.x - FBMin.x, 0, 0);
Norm2FB[1] = glm::vec3(0, FBMax.y - FBMin.y, 0);
Norm2FB[2] = glm::vec3(0, 0, 1);
for(std::size_t i = 0; i < ValueSize; ++i)
ValueOut[i] = Norm2FB * Q2Norm * ValueData[i];
bool End = true;
}
//namespace
//{
// template <typename valType>
// valType radialGradient(
// glm::detail::tvec2<valType> const & Center,
// valType const & Radius,
// glm::detail::tvec2<valType> const & Focal,
// glm::detail::tvec2<valType> const & Position)
// {
// glm::detail::tvec2<valType> F = Focal - Center;
// glm::detail::tvec2<valType> D = Position - Focal;
//
// valType Numerator = (D.x * F.x + D.y * F.y) + glm::sqrt((Radius * Radius) * (D.x * D.x + D.y * D.y) - (D.x * F.y - D.y * F.x) * (D.x * F.y - D.y * F.x));
// valType Denominator = (Radius * Radius) - (F.x * F.x + F.y * F.y);
// return Numerator / Denominator;
// }
//}
void test_radial()
{
glm::vec2 Center(0);
float Radius = 1.0f;
glm::vec2 Focal(0);
glm::vec2 PositionA(0);
glm::vec2 PositionB(0, 1);
glm::vec2 PositionC(1, 0);
glm::vec2 PositionD(0.5f, 0.0f);
float GradA = glm::radialGradient(Center, Radius, Focal, PositionA);
float GradB = glm::radialGradient(Center, Radius, Focal, PositionB);
float GradC = glm::radialGradient(Center, Radius, Focal, PositionC);
float GradD = glm::radialGradient(Center, Radius, Focal, PositionD);
bool End = true;
}
void test_quat()
{
glm::quat q1(1.0f, glm::vec3(0));
float Roll = glm::roll(q1);
}
//
//void _mm_add_ps(__m128 in1[4], __m128 in2[4], __m128 out[4])
//{
// {
// out[0] = _mm_add_ps(in1[0], in2[0]);
// out[1] = _mm_add_ps(in1[1], in2[1]);
// out[2] = _mm_add_ps(in1[2], in2[2]);
// out[3] = _mm_add_ps(in1[3], in2[3]);
// }
//}
//
//void _mm_sub_ps(__m128 in1[4], __m128 in2[4], __m128 out[4])
//{
// {
// out[0] = _mm_sub_ps(in1[0], in2[0]);
// out[1] = _mm_sub_ps(in1[1], in2[1]);
// out[2] = _mm_sub_ps(in1[2], in2[2]);
// out[3] = _mm_sub_ps(in1[3], in2[3]);
// }
//}
//
//inline __m128 _mm_mul_ps(__m128 m[4], __m128 v)
//{
// __m128 v0 = _mm_shuffle_ps(v, v, _MM_SHUFFLE(0, 0, 0, 0));
// __m128 v1 = _mm_shuffle_ps(v, v, _MM_SHUFFLE(1, 1, 1, 1));
// __m128 v2 = _mm_shuffle_ps(v, v, _MM_SHUFFLE(2, 2, 2, 2));
// __m128 v3 = _mm_shuffle_ps(v, v, _MM_SHUFFLE(3, 3, 3, 3));
//
// __m128 m0 = _mm_mul_ps(m[0], v0);
// __m128 m1 = _mm_mul_ps(m[1], v1);
// __m128 m2 = _mm_mul_ps(m[2], v2);
// __m128 m3 = _mm_mul_ps(m[3], v3);
//
// __m128 a0 = _mm_add_ps(m0, m1);
// __m128 a1 = _mm_add_ps(m2, m3);
// __m128 a2 = _mm_add_ps(a0, a1);
//
// return a2;
//}
//
//inline __m128 _mm_mul_ps(__m128 v, __m128 m[4])
//{
// __m128 i0 = m[0];
// __m128 i1 = m[1];
// __m128 i2 = m[2];
// __m128 i3 = m[3];
//
// __m128 m0 = _mm_mul_ps(v, i0);
// __m128 m1 = _mm_mul_ps(v, i1);
// __m128 m2 = _mm_mul_ps(v, i2);
// __m128 m3 = _mm_mul_ps(v, i3);
//
// __m128 u0 = _mm_unpacklo_ps(m0, m1);
// __m128 u1 = _mm_unpackhi_ps(m0, m1);
// __m128 a0 = _mm_add_ps(u0, u1);
//
// __m128 u2 = _mm_unpacklo_ps(m2, m3);
// __m128 u3 = _mm_unpackhi_ps(m2, m3);
// __m128 a1 = _mm_add_ps(u2, u3);
//
// __m128 f0 = _mm_movelh_ps(a0, a1);
// __m128 f1 = _mm_movehl_ps(a1, a0);
// __m128 f2 = _mm_add_ps(f0, f1);
//
// return f2;
//}
//
//inline void _mm_mul_ps(__m128 in1[4], __m128 in2[4], __m128 out[4])
//{
// glm::uint64 TimeStart = GetCpuCycle();
//
// {
// __m128 e0 = _mm_shuffle_ps(in2[0], in2[0], _MM_SHUFFLE(0, 0, 0, 0));
// __m128 e1 = _mm_shuffle_ps(in2[0], in2[0], _MM_SHUFFLE(1, 1, 1, 1));
// __m128 e2 = _mm_shuffle_ps(in2[0], in2[0], _MM_SHUFFLE(2, 2, 2, 2));
// __m128 e3 = _mm_shuffle_ps(in2[0], in2[0], _MM_SHUFFLE(3, 3, 3, 3));
//
// __m128 m0 = _mm_mul_ps(in1[0], e0);
// __m128 m1 = _mm_mul_ps(in1[1], e1);
// __m128 m2 = _mm_mul_ps(in1[2], e2);
// __m128 m3 = _mm_mul_ps(in1[3], e3);
//
// __m128 a0 = _mm_add_ps(m0, m1);
// __m128 a1 = _mm_add_ps(m2, m3);
// __m128 a2 = _mm_add_ps(a0, a1);
//
// out[0] = a2;
// }
//
// {
// __m128 e0 = _mm_shuffle_ps(in2[1], in2[1], _MM_SHUFFLE(0, 0, 0, 0));
// __m128 e1 = _mm_shuffle_ps(in2[1], in2[1], _MM_SHUFFLE(1, 1, 1, 1));
// __m128 e2 = _mm_shuffle_ps(in2[1], in2[1], _MM_SHUFFLE(2, 2, 2, 2));
// __m128 e3 = _mm_shuffle_ps(in2[1], in2[1], _MM_SHUFFLE(3, 3, 3, 3));
//
// __m128 m0 = _mm_mul_ps(in1[0], e0);
// __m128 m1 = _mm_mul_ps(in1[1], e1);
// __m128 m2 = _mm_mul_ps(in1[2], e2);
// __m128 m3 = _mm_mul_ps(in1[3], e3);
//
// __m128 a0 = _mm_add_ps(m0, m1);
// __m128 a1 = _mm_add_ps(m2, m3);
// __m128 a2 = _mm_add_ps(a0, a1);
//
// out[1] = a2;
// }
//
// {
// __m128 e0 = _mm_shuffle_ps(in2[2], in2[2], _MM_SHUFFLE(0, 0, 0, 0));
// __m128 e1 = _mm_shuffle_ps(in2[2], in2[2], _MM_SHUFFLE(1, 1, 1, 1));
// __m128 e2 = _mm_shuffle_ps(in2[2], in2[2], _MM_SHUFFLE(2, 2, 2, 2));
// __m128 e3 = _mm_shuffle_ps(in2[2], in2[2], _MM_SHUFFLE(3, 3, 3, 3));
//
// __m128 m0 = _mm_mul_ps(in1[0], e0);
// __m128 m1 = _mm_mul_ps(in1[1], e1);
// __m128 m2 = _mm_mul_ps(in1[2], e2);
// __m128 m3 = _mm_mul_ps(in1[3], e3);
//
// __m128 a0 = _mm_add_ps(m0, m1);
// __m128 a1 = _mm_add_ps(m2, m3);
// __m128 a2 = _mm_add_ps(a0, a1);
//
// out[2] = a2;
// }
//
// {
// //(__m128&)_mm_shuffle_epi32(__m128i&)in2[0], _MM_SHUFFLE(3, 3, 3, 3))
// __m128 e0 = _mm_shuffle_ps(in2[3], in2[3], _MM_SHUFFLE(0, 0, 0, 0));
// __m128 e1 = _mm_shuffle_ps(in2[3], in2[3], _MM_SHUFFLE(1, 1, 1, 1));
// __m128 e2 = _mm_shuffle_ps(in2[3], in2[3], _MM_SHUFFLE(2, 2, 2, 2));
// __m128 e3 = _mm_shuffle_ps(in2[3], in2[3], _MM_SHUFFLE(3, 3, 3, 3));
//
// __m128 m0 = _mm_mul_ps(in1[0], e0);
// __m128 m1 = _mm_mul_ps(in1[1], e1);
// __m128 m2 = _mm_mul_ps(in1[2], e2);
// __m128 m3 = _mm_mul_ps(in1[3], e3);
//
// __m128 a0 = _mm_add_ps(m0, m1);
// __m128 a1 = _mm_add_ps(m2, m3);
// __m128 a2 = _mm_add_ps(a0, a1);
//
// out[3] = a2;
// }
//
// glm::uint64 TimeEnd = GetCpuCycle();
//
// printf("Ticks mul: %d\n", TimeEnd - TimeStart);
//}
//
//inline void _mm_transpose_ps(__m128 const in[4], __m128 out[4])
//{
// __m128 tmp0 = _mm_shuffle_ps(in[0], in[1], 0x44);
// __m128 tmp2 = _mm_shuffle_ps(in[0], in[1], 0xEE);
// __m128 tmp1 = _mm_shuffle_ps(in[2], in[3], 0x44);
// __m128 tmp3 = _mm_shuffle_ps(in[2], in[3], 0xEE);
//
// out[0] = _mm_shuffle_ps(tmp0, tmp1, 0x88);
// out[1] = _mm_shuffle_ps(tmp0, tmp1, 0xDD);
// out[2] = _mm_shuffle_ps(tmp2, tmp3, 0x88);
// out[3] = _mm_shuffle_ps(tmp2, tmp3, 0xDD);
//}
//void _mm_inverse_ps(__m128 const in[4], __m128 out[4])
//{
// // Swp00 = _mm_shuffle_ps(in[1], in[2], _MM_SHUFFLE(2, 2, 2, 2));
// // SubFactor00 = m[2][2] * m[3][3] - m[3][2] * m[2][3];
// // SubFactor00 = m[2][2] * m[3][3] - m[3][2] * m[2][3];
// // SubFactor06 = m[1][2] * m[3][3] - m[3][2] * m[1][3];
// // SubFactor13 = m[1][2] * m[2][3] - m[2][2] * m[1][3];
// // + (m[1][1] * SubFactor00 - m[1][2] * SubFactor01 + m[1][3] * SubFactor02),
// // - (m[0][1] * SubFactor00 - m[0][2] * SubFactor01 + m[0][3] * SubFactor02),
// // + (m[0][1] * SubFactor06 - m[0][2] * SubFactor07 + m[0][3] * SubFactor08),
// // - (m[0][1] * SubFactor13 - m[0][2] * SubFactor14 + m[0][3] * SubFactor15),
//
// __m128 Sfc00 = _mm_shuffle_ps(in[2], in[1], _MM_SHUFFLE(1, 1, 1, 1));
// __m128 Sfc0a = _mm_shuffle_ps(in[3], in[2], _MM_SHUFFLE(3, 2, 3, 2));
// __m128 Sfc01 = _mm_shuffle_ps(Sfc0a, Sfc0a, _MM_SHUFFLE(2, 3, 1, 1));
// __m128 Sfc02 = _mm_shuffle_ps(Sfc0a, Sfc0a, _MM_SHUFFLE(3, 2, 0, 0));
// __m128 Sfc03 = _mm_shuffle_ps(in[2], in[1], _MM_SHUFFLE(3, 3, 3, 3));
//
// __m128 SfcM0 = _mm_mul_ps(Sfc00, Sfc01);
// __m128 SfcM1 = _mm_mul_ps(Sfc02, Sfc03);
// __m128 SfcM2 = _mm_sub_ps(SfcM0, SfcM1);
// // SubFactor00 = m[2][2] * m[3][3] - m[3][2] * m[2][3];
// // SubFactor00 = m[2][2] * m[3][3] - m[3][2] * m[2][3];
// // SubFactor06 = m[1][2] * m[3][3] - m[3][2] * m[1][3];
// // SubFactor13 = m[1][2] * m[2][3] - m[2][2] * m[1][3];
// // + (m[1][1] * SubFactor00 - m[1][2] * SubFactor01 + m[1][3] * SubFactor02),
// // - (m[0][1] * SubFactor00 - m[0][2] * SubFactor01 + m[0][3] * SubFactor02),
// // + (m[0][1] * SubFactor06 - m[0][2] * SubFactor07 + m[0][3] * SubFactor08),
// // - (m[0][1] * SubFactor13 - m[0][2] * SubFactor14 + m[0][3] * SubFactor15),
//
// __m128 Swp00 = _mm_shuffle_ps(in[2], in[2], _MM_SHUFFLE(3, 0, 1, 2));
// __m128 Swp01 = _mm_shuffle_ps(in[3], in[3], _MM_SHUFFLE(3, 3, 3, 3));
// __m128 Swp02 = _mm_shuffle_ps(in[3], in[3], _MM_SHUFFLE(3, 0, 1, 2));
// __m128 Swp03 = _mm_shuffle_ps(in[2], in[2], _MM_SHUFFLE(3, 3, 3, 3));
//
// __m128 Swp04 = _mm_shuffle_ps(in[2], in[2], _MM_SHUFFLE(3, 0, 0, 1));
// __m128 Swp05 = _mm_shuffle_ps(in[3], in[3], _MM_SHUFFLE(3, 1, 2, 2));
// __m128 Swp06 = _mm_shuffle_ps(in[3], in[3], _MM_SHUFFLE(3, 0, 0, 1));
// __m128 Swp07 = _mm_shuffle_ps(in[2], in[2], _MM_SHUFFLE(3, 1, 2, 2));
//
// __m128 Swp08 = _mm_shuffle_ps(in[1], in[1], _MM_SHUFFLE(3, 0, 1, 2));
// __m128 Swp09 = _mm_shuffle_ps(in[1], in[1], _MM_SHUFFLE(3, 3, 3, 3));
// __m128 Swp10 = _mm_shuffle_ps(in[1], in[1], _MM_SHUFFLE(3, 0, 0, 1));
// __m128 Swp11 = _mm_shuffle_ps(in[1], in[1], _MM_SHUFFLE(3, 1, 2, 2));
//
// __m128 Mul00 = _mm_mul_ps(Swp00, Swp01);
// __m128 Mul01 = _mm_mul_ps(Swp02, Swp03);
// __m128 Fac00 = _mm_sub_ps(Mul00, Mul01);
//
// //valType SubFactor00 = m[2][2] * m[3][3] - m[3][2] * m[2][3];
// //valType SubFactor01 = m[2][1] * m[3][3] - m[3][1] * m[2][3];
// //valType SubFactor03 = m[2][0] * m[3][3] - m[3][0] * m[2][3];
//
// __m128 Mul02 = _mm_mul_ps(Swp04, Swp05);
// __m128 Mul03 = _mm_mul_ps(Swp06, Swp07);
// __m128 Fac01 = _mm_sub_ps(Mul02, Mul03);
//
// //valType SubFactor02 = m[2][1] * m[3][2] - m[3][1] * m[2][2];
// //valType SubFactor04 = m[2][0] * m[3][2] - m[3][0] * m[2][2];
// //valType SubFactor05 = m[2][0] * m[3][1] - m[3][0] * m[2][1];
//
// __m128 Mul04 = _mm_mul_ps(Swp08, Swp01);
// __m128 Mul05 = _mm_mul_ps(Swp02, Swp09);
// __m128 Fac02 = _mm_sub_ps(Mul04, Mul05);
//
// //valType SubFactor06 = m[1][2] * m[3][3] - m[3][2] * m[1][3];
// //valType SubFactor07 = m[1][1] * m[3][3] - m[3][1] * m[1][3];
// //valType SubFactor09 = m[1][0] * m[3][3] - m[3][0] * m[1][3];
//
// __m128 Mul06 = _mm_mul_ps(Swp10, Swp05);
// __m128 Mul07 = _mm_mul_ps(Swp06, Swp11);
// __m128 Fac03 = _mm_sub_ps(Mul06, Mul07);
//
// //valType SubFactor08 = m[1][1] * m[3][2] - m[3][1] * m[1][2];
// //valType SubFactor10 = m[1][0] * m[3][2] - m[3][0] * m[1][2];
// //valType SubFactor12 = m[1][0] * m[3][1] - m[3][0] * m[1][1];
//
// __m128 Mul08 = _mm_mul_ps(Swp08, Swp03);
// __m128 Mul09 = _mm_mul_ps(Swp00, Swp09);
// __m128 Fac04 = _mm_sub_ps(Mul08, Mul09);
//
// //valType SubFactor13 = m[1][2] * m[2][3] - m[2][2] * m[1][3];
// //valType SubFactor14 = m[1][1] * m[2][3] - m[2][1] * m[1][3];
// //valType SubFactor16 = m[1][0] * m[2][3] - m[2][0] * m[1][3];
//
// __m128 Mul10 = _mm_mul_ps(Swp10, Swp07);
// __m128 Mul11 = _mm_mul_ps(Swp04, Swp11);
// __m128 Fac05 = _mm_sub_ps(Mul10, Mul11);
//
// //valType SubFactor15 = m[1][1] * m[2][2] - m[2][1] * m[1][2];
// //valType SubFactor17 = m[1][0] * m[2][2] - m[2][0] * m[1][2];
// //valType SubFactor18 = m[1][0] * m[2][1] - m[2][0] * m[1][1];
//
// bool end = true;
//}
//template <typename valType>
//inline detail::tmat4x4<valType> inverse
//(
// detail::tmat4x4<valType> const & m
//)
//{
//inline __m128 _mm_dot_ps(__m128 v1, __m128 v2)
//{
// __m128 mul0 = _mm_mul_ps(v1, v2);
// __m128 swp0 = _mm_shuffle_ps(mul0, mul0, _MM_SHUFFLE(2, 3, 0, 1));
// __m128 add0 = _mm_add_ps(mul0, swp0);
// __m128 swp1 = _mm_shuffle_ps(add0, add0, _MM_SHUFFLE(0, 1, 2, 3));
// __m128 add1 = _mm_add_ps(add0, swp1);
// return add1;
//}
//
//inline void _mm_inverse_ps(__m128 const in[4], __m128 out[4])
//{
// glm::uint64 TimeStart = GetCpuCycle();
//
// __m128 Fac0;
// {
// // valType SubFactor00 = m[2][2] * m[3][3] - m[3][2] * m[2][3];
// // valType SubFactor00 = m[2][2] * m[3][3] - m[3][2] * m[2][3];
// // valType SubFactor06 = m[1][2] * m[3][3] - m[3][2] * m[1][3];
// // valType SubFactor13 = m[1][2] * m[2][3] - m[2][2] * m[1][3];
//
// __m128 Swp0a = _mm_shuffle_ps(in[3], in[2], _MM_SHUFFLE(3, 3, 3, 3));
// __m128 Swp0b = _mm_shuffle_ps(in[3], in[2], _MM_SHUFFLE(2, 2, 2, 2));
//
// __m128 Swp00 = _mm_shuffle_ps(in[2], in[1], _MM_SHUFFLE(2, 2, 2, 2));
// __m128 Swp01 = _mm_shuffle_ps(Swp0a, Swp0a, _MM_SHUFFLE(2, 0, 0, 0));
// __m128 Swp02 = _mm_shuffle_ps(Swp0b, Swp0b, _MM_SHUFFLE(2, 0, 0, 0));
// __m128 Swp03 = _mm_shuffle_ps(in[2], in[1], _MM_SHUFFLE(3, 3, 3, 3));
//
// __m128 Mul00 = _mm_mul_ps(Swp00, Swp01);
// __m128 Mul01 = _mm_mul_ps(Swp02, Swp03);
// Fac0 = _mm_sub_ps(Mul00, Mul01);
//
// bool stop = true;
// }
//
// __m128 Fac1;
// {
// // valType SubFactor01 = m[2][1] * m[3][3] - m[3][1] * m[2][3];
// // valType SubFactor01 = m[2][1] * m[3][3] - m[3][1] * m[2][3];
// // valType SubFactor07 = m[1][1] * m[3][3] - m[3][1] * m[1][3];
// // valType SubFactor14 = m[1][1] * m[2][3] - m[2][1] * m[1][3];
//
// __m128 Swp0a = _mm_shuffle_ps(in[3], in[2], _MM_SHUFFLE(3, 3, 3, 3));
// __m128 Swp0b = _mm_shuffle_ps(in[3], in[2], _MM_SHUFFLE(1, 1, 1, 1));
//
// __m128 Swp00 = _mm_shuffle_ps(in[2], in[1], _MM_SHUFFLE(1, 1, 1, 1));
// __m128 Swp01 = _mm_shuffle_ps(Swp0a, Swp0a, _MM_SHUFFLE(2, 0, 0, 0));
// __m128 Swp02 = _mm_shuffle_ps(Swp0b, Swp0b, _MM_SHUFFLE(2, 0, 0, 0));
// __m128 Swp03 = _mm_shuffle_ps(in[2], in[1], _MM_SHUFFLE(3, 3, 3, 3));
//
// __m128 Mul00 = _mm_mul_ps(Swp00, Swp01);
// __m128 Mul01 = _mm_mul_ps(Swp02, Swp03);
// Fac1 = _mm_sub_ps(Mul00, Mul01);
//
// bool stop = true;
// }
//
//
// __m128 Fac2;
// {
// // valType SubFactor02 = m[2][1] * m[3][2] - m[3][1] * m[2][2];
// // valType SubFactor02 = m[2][1] * m[3][2] - m[3][1] * m[2][2];
// // valType SubFactor08 = m[1][1] * m[3][2] - m[3][1] * m[1][2];
// // valType SubFactor15 = m[1][1] * m[2][2] - m[2][1] * m[1][2];
//
// __m128 Swp0a = _mm_shuffle_ps(in[3], in[2], _MM_SHUFFLE(2, 2, 2, 2));
// __m128 Swp0b = _mm_shuffle_ps(in[3], in[2], _MM_SHUFFLE(1, 1, 1, 1));
//
// __m128 Swp00 = _mm_shuffle_ps(in[2], in[1], _MM_SHUFFLE(1, 1, 1, 1));
// __m128 Swp01 = _mm_shuffle_ps(Swp0a, Swp0a, _MM_SHUFFLE(2, 0, 0, 0));
// __m128 Swp02 = _mm_shuffle_ps(Swp0b, Swp0b, _MM_SHUFFLE(2, 0, 0, 0));
// __m128 Swp03 = _mm_shuffle_ps(in[2], in[1], _MM_SHUFFLE(2, 2, 2, 2));
//
// __m128 Mul00 = _mm_mul_ps(Swp00, Swp01);
// __m128 Mul01 = _mm_mul_ps(Swp02, Swp03);
// Fac2 = _mm_sub_ps(Mul00, Mul01);
//
// bool stop = true;
// }
//
// __m128 Fac3;
// {
// // valType SubFactor03 = m[2][0] * m[3][3] - m[3][0] * m[2][3];
// // valType SubFactor03 = m[2][0] * m[3][3] - m[3][0] * m[2][3];
// // valType SubFactor09 = m[1][0] * m[3][3] - m[3][0] * m[1][3];
// // valType SubFactor16 = m[1][0] * m[2][3] - m[2][0] * m[1][3];
//
// __m128 Swp0a = _mm_shuffle_ps(in[3], in[2], _MM_SHUFFLE(3, 3, 3, 3));
// __m128 Swp0b = _mm_shuffle_ps(in[3], in[2], _MM_SHUFFLE(0, 0, 0, 0));
//
// __m128 Swp00 = _mm_shuffle_ps(in[2], in[1], _MM_SHUFFLE(0, 0, 0, 0));
// __m128 Swp01 = _mm_shuffle_ps(Swp0a, Swp0a, _MM_SHUFFLE(2, 0, 0, 0));
// __m128 Swp02 = _mm_shuffle_ps(Swp0b, Swp0b, _MM_SHUFFLE(2, 0, 0, 0));
// __m128 Swp03 = _mm_shuffle_ps(in[2], in[1], _MM_SHUFFLE(3, 3, 3, 3));
//
// __m128 Mul00 = _mm_mul_ps(Swp00, Swp01);
// __m128 Mul01 = _mm_mul_ps(Swp02, Swp03);
// Fac3 = _mm_sub_ps(Mul00, Mul01);
//
// bool stop = true;
// }
//
// __m128 Fac4;
// {
// // valType SubFactor04 = m[2][0] * m[3][2] - m[3][0] * m[2][2];
// // valType SubFactor04 = m[2][0] * m[3][2] - m[3][0] * m[2][2];
// // valType SubFactor10 = m[1][0] * m[3][2] - m[3][0] * m[1][2];
// // valType SubFactor17 = m[1][0] * m[2][2] - m[2][0] * m[1][2];
//
// __m128 Swp0a = _mm_shuffle_ps(in[3], in[2], _MM_SHUFFLE(2, 2, 2, 2));
// __m128 Swp0b = _mm_shuffle_ps(in[3], in[2], _MM_SHUFFLE(0, 0, 0, 0));
//
// __m128 Swp00 = _mm_shuffle_ps(in[2], in[1], _MM_SHUFFLE(0, 0, 0, 0));
// __m128 Swp01 = _mm_shuffle_ps(Swp0a, Swp0a, _MM_SHUFFLE(2, 0, 0, 0));
// __m128 Swp02 = _mm_shuffle_ps(Swp0b, Swp0b, _MM_SHUFFLE(2, 0, 0, 0));
// __m128 Swp03 = _mm_shuffle_ps(in[2], in[1], _MM_SHUFFLE(2, 2, 2, 2));
//
// __m128 Mul00 = _mm_mul_ps(Swp00, Swp01);
// __m128 Mul01 = _mm_mul_ps(Swp02, Swp03);
// Fac4 = _mm_sub_ps(Mul00, Mul01);
//
// bool stop = true;
// }
//
// __m128 Fac5;
// {
// // valType SubFactor05 = m[2][0] * m[3][1] - m[3][0] * m[2][1];
// // valType SubFactor05 = m[2][0] * m[3][1] - m[3][0] * m[2][1];
// // valType SubFactor12 = m[1][0] * m[3][1] - m[3][0] * m[1][1];
// // valType SubFactor18 = m[1][0] * m[2][1] - m[2][0] * m[1][1];
//
// __m128 Swp0a = _mm_shuffle_ps(in[3], in[2], _MM_SHUFFLE(1, 1, 1, 1));
// __m128 Swp0b = _mm_shuffle_ps(in[3], in[2], _MM_SHUFFLE(0, 0, 0, 0));
//
// __m128 Swp00 = _mm_shuffle_ps(in[2], in[1], _MM_SHUFFLE(0, 0, 0, 0));
// __m128 Swp01 = _mm_shuffle_ps(Swp0a, Swp0a, _MM_SHUFFLE(2, 0, 0, 0));
// __m128 Swp02 = _mm_shuffle_ps(Swp0b, Swp0b, _MM_SHUFFLE(2, 0, 0, 0));
// __m128 Swp03 = _mm_shuffle_ps(in[2], in[1], _MM_SHUFFLE(1, 1, 1, 1));
//
// __m128 Mul00 = _mm_mul_ps(Swp00, Swp01);
// __m128 Mul01 = _mm_mul_ps(Swp02, Swp03);
// Fac5 = _mm_sub_ps(Mul00, Mul01);
//
// bool stop = true;
// }
//
// __m128 SignA = _mm_set_ps( 1.0f,-1.0f, 1.0f,-1.0f);
// __m128 SignB = _mm_set_ps(-1.0f, 1.0f,-1.0f, 1.0f);
//
// // m[1][0]
// // m[0][0]
// // m[0][0]
// // m[0][0]
// __m128 Temp0 = _mm_shuffle_ps(in[1], in[0], _MM_SHUFFLE(0, 0, 0, 0));
// __m128 Vec0 = _mm_shuffle_ps(Temp0, Temp0, _MM_SHUFFLE(2, 2, 2, 0));
//
// // m[1][1]
// // m[0][1]
// // m[0][1]
// // m[0][1]
// __m128 Temp1 = _mm_shuffle_ps(in[1], in[0], _MM_SHUFFLE(1, 1, 1, 1));
// __m128 Vec1 = _mm_shuffle_ps(Temp1, Temp1, _MM_SHUFFLE(2, 2, 2, 0));
//
// // m[1][2]
// // m[0][2]
// // m[0][2]
// // m[0][2]
// __m128 Temp2 = _mm_shuffle_ps(in[1], in[0], _MM_SHUFFLE(2, 2, 2, 2));
// __m128 Vec2 = _mm_shuffle_ps(Temp2, Temp2, _MM_SHUFFLE(2, 2, 2, 0));
//
// // m[1][3]
// // m[0][3]
// // m[0][3]
// // m[0][3]
// __m128 Temp3 = _mm_shuffle_ps(in[1], in[0], _MM_SHUFFLE(3, 3, 3, 3));
// __m128 Vec3 = _mm_shuffle_ps(Temp3, Temp3, _MM_SHUFFLE(2, 2, 2, 0));
//
// // col0
// // + (Vec1[0] * Fac0[0] - Vec2[0] * Fac1[0] + Vec3[0] * Fac2[0]),
// // - (Vec1[1] * Fac0[1] - Vec2[1] * Fac1[1] + Vec3[1] * Fac2[1]),
// // + (Vec1[2] * Fac0[2] - Vec2[2] * Fac1[2] + Vec3[2] * Fac2[2]),
// // - (Vec1[3] * Fac0[3] - Vec2[3] * Fac1[3] + Vec3[3] * Fac2[3]),
// __m128 Mul00 = _mm_mul_ps(Vec1, Fac0);
// __m128 Mul01 = _mm_mul_ps(Vec2, Fac1);
// __m128 Mul02 = _mm_mul_ps(Vec3, Fac2);
// __m128 Sub00 = _mm_sub_ps(Mul00, Mul01);
// __m128 Add00 = _mm_add_ps(Sub00, Mul02);
// __m128 Inv0 = _mm_mul_ps(SignB, Add00);
//
// // col1
// // - (Vec0[0] * Fac0[0] - Vec2[0] * Fac3[0] + Vec3[0] * Fac4[0]),
// // + (Vec0[0] * Fac0[1] - Vec2[1] * Fac3[1] + Vec3[1] * Fac4[1]),
// // - (Vec0[0] * Fac0[2] - Vec2[2] * Fac3[2] + Vec3[2] * Fac4[2]),
// // + (Vec0[0] * Fac0[3] - Vec2[3] * Fac3[3] + Vec3[3] * Fac4[3]),
// __m128 Mul03 = _mm_mul_ps(Vec0, Fac0);
// __m128 Mul04 = _mm_mul_ps(Vec2, Fac3);
// __m128 Mul05 = _mm_mul_ps(Vec3, Fac4);
// __m128 Sub01 = _mm_sub_ps(Mul03, Mul04);
// __m128 Add01 = _mm_add_ps(Sub01, Mul05);
// __m128 Inv1 = _mm_mul_ps(SignA, Add01);
//
// // col2
// // + (Vec0[0] * Fac1[0] - Vec1[0] * Fac3[0] + Vec3[0] * Fac5[0]),
// // - (Vec0[0] * Fac1[1] - Vec1[1] * Fac3[1] + Vec3[1] * Fac5[1]),
// // + (Vec0[0] * Fac1[2] - Vec1[2] * Fac3[2] + Vec3[2] * Fac5[2]),
// // - (Vec0[0] * Fac1[3] - Vec1[3] * Fac3[3] + Vec3[3] * Fac5[3]),
// __m128 Mul06 = _mm_mul_ps(Vec0, Fac1);
// __m128 Mul07 = _mm_mul_ps(Vec1, Fac3);
// __m128 Mul08 = _mm_mul_ps(Vec3, Fac5);
// __m128 Sub02 = _mm_sub_ps(Mul06, Mul07);
// __m128 Add02 = _mm_add_ps(Sub02, Mul08);
// __m128 Inv2 = _mm_mul_ps(SignB, Add02);
//
// // col3
// // - (Vec1[0] * Fac2[0] - Vec1[0] * Fac4[0] + Vec2[0] * Fac5[0]),
// // + (Vec1[0] * Fac2[1] - Vec1[1] * Fac4[1] + Vec2[1] * Fac5[1]),
// // - (Vec1[0] * Fac2[2] - Vec1[2] * Fac4[2] + Vec2[2] * Fac5[2]),
// // + (Vec1[0] * Fac2[3] - Vec1[3] * Fac4[3] + Vec2[3] * Fac5[3]));
// __m128 Mul09 = _mm_mul_ps(Vec0, Fac2);
// __m128 Mul10 = _mm_mul_ps(Vec1, Fac4);
// __m128 Mul11 = _mm_mul_ps(Vec2, Fac5);
// __m128 Sub03 = _mm_sub_ps(Mul09, Mul10);
// __m128 Add03 = _mm_add_ps(Sub03, Mul11);
// __m128 Inv3 = _mm_mul_ps(SignA, Add03);
//
// __m128 Row0 = _mm_shuffle_ps(Inv0, Inv1, _MM_SHUFFLE(0, 0, 0, 0));
// __m128 Row1 = _mm_shuffle_ps(Inv2, Inv3, _MM_SHUFFLE(0, 0, 0, 0));
// __m128 Row2 = _mm_shuffle_ps(Row0, Row1, _MM_SHUFFLE(2, 0, 2, 0));
//
// // valType Determinant = m[0][0] * Inverse[0][0]
// // + m[0][1] * Inverse[1][0]
// // + m[0][2] * Inverse[2][0]
// // + m[0][3] * Inverse[3][0];
// __m128 Det0 = _mm_dot_ps(in[0], Row2);
//
// // Inverse /= Determinant;
// out[0] = _mm_div_ps(Inv0, Det0);
// out[1] = _mm_div_ps(Inv1, Det0);
// out[2] = _mm_div_ps(Inv2, Det0);
// out[3] = _mm_div_ps(Inv3, Det0);
//
// glm::uint64 TimeEnd = GetCpuCycle();
//
// printf("Ticks inv: %d\n", TimeEnd - TimeStart);
//
// bool stop = true;
//}
//#include <intrin.h>
void test_mat4_mul()
{
/*
{
__m128 v1 = _mm_set_ps(3.0f, 2.0f, 1.0f, 0.0f);
__m128 m0[4];
m0[0] = _mm_set_ps(3.0f, 2.0f, 1.0f, 0.0f);
m0[1] = _mm_set_ps(4.0f, 5.0f, 6.0f, 7.0f);
m0[2] = _mm_set_ps(0.3f, 0.2f, 0.1f, 0.0f);
m0[3] = _mm_set_ps(0.4f, 0.5f, 0.6f, 0.7f);
__m128 v2 = _mm_mul_ps(v1, m0);
bool stop = true;
}
{
glm::vec4 v1(0.0f, 1.0f, 2.0f, 3.0f);
glm::mat4 m0;
m0[0] = glm::vec4(0.0f, 1.0f, 2.0f, 3.0f);
m0[1] = glm::vec4(7.0f, 6.0f, 5.0f, 4.0f);
m0[2] = glm::vec4(0.0f, 0.1f, 0.2f, 0.3f);
m0[3] = glm::vec4(0.7f, 0.6f, 0.5f, 0.4f);
glm::vec4 v2 = v1 * m0;
bool stop = true;
}
*/
{
__m128 a = _mm_setr_ps(0.0f, 1.0f, 2.0f, 3.0f);
__m128 b = _mm_shuffle_ps(a, a, _MM_SHUFFLE(3, 2, 1, 0));
bool stop = true;
}
{
__m128 v1 = _mm_setr_ps(0.3f, 0.2f, 0.1f, 1.0f);
__m128 m0[4];
m0[0] = _mm_setr_ps(2.0f, 0.2f, 0.1f,-1.4f);
m0[1] = _mm_setr_ps(0.5f, 2.0f, 0.3f,-1.2f);
m0[2] = _mm_setr_ps(0.6f, 0.4f, 2.0f,-1.1f);
m0[3] = _mm_setr_ps(1.4f, 1.2f, 1.1f, 1.0f);
__m128 v2 = _mm_mul_ps(v1, m0);
bool stop = true;
}
{
glm::vec4 v1(0.3f, 0.2f, 0.1f, 1.0f);
glm::mat4 m0;
m0[0] = glm::vec4(2.0f, 0.2f, 0.1f,-1.4f);
m0[1] = glm::vec4(0.5f, 2.0f, 0.3f,-1.2f);
m0[2] = glm::vec4(0.6f, 0.4f, 2.0f,-1.1f);
m0[3] = glm::vec4(1.4f, 1.2f, 1.1f, 1.0f);
glm::vec4 v2 = v1 * m0;
bool stop = true;
}
{
glm::vec4 v1(1.0f, 0.5f,-0.5f,-1.0f);
glm::mat4 m0;
m0[0] = glm::vec4(2.0f,-1.0f,-1.0f, 4.0f);
m0[1] = glm::vec4(2.0f, 1.0f, 4.0f, 1.0f);
m0[2] = glm::vec4(2.0f, 4.0f, 1.0f, 1.0f);
m0[3] = glm::vec4(4.0f, 1.0f, 1.0f, 1.0f);
m0 = glm::transpose(m0);
glm::vec4 v2 = m0 * v1;
bool stop = true;
}
{
glm::mat4 MatA;
MatA[0] = glm::vec4(0.2f, 0.1f, 0.3f, 0.4f);
MatA[1] = glm::vec4(1.0f, 0.3f, 0.2f, 0.3f);
MatA[2] = glm::vec4(3.0f, 2.0f, 0.4f, 0.2f);
MatA[3] = glm::vec4(4.0f, 3.0f, 2.0f, 1.0f);
glm::mat4 InvA = glm::inverse(MatA);
glm::mat4 IndA = MatA * InvA;
// glm::mat4 InvB = glm::inverseOgre(MatA);
// glm::mat4 IndB = MatA * InvB;
// glm::mat4 InvD = glm::inverseSIMD(MatA);
// glm::mat4 IndD = MatA * InvD;
// glm::mat4 InvE = glm::inverseDev(MatA);
// glm::mat4 IndE = MatA * InvE;
__m128 MatC[4];
MatC[0] = _mm_setr_ps(0.2f, 0.1f, 0.3f, 0.4f);
MatC[1] = _mm_setr_ps(1.0f, 0.3f, 0.2f, 0.3f);
MatC[2] = _mm_setr_ps(3.0f, 2.0f, 0.4f, 0.2f);
MatC[3] = _mm_setr_ps(4.0f, 3.0f, 2.0f, 1.0f);
__m128 InvC[4];
_mm_inverse_ps(MatC, InvC);
__m128 IndC[4];
_mm_mul_ps(MatC, InvC, IndC);
__m128 Mul2[4];
_mm_mul_ps(MatC, MatC, Mul2);
bool stop = true;
}
{
glm::dmat4 Mat;
Mat[0] = glm::dvec4(0.0f, 1.0f, 2.0f, 3.0f);
Mat[1] = glm::dvec4(0.1f, 1.1f, 2.1f, 3.1f);
Mat[2] = glm::dvec4(0.2f, 1.2f, 2.2f, 3.2f);
Mat[3] = glm::dvec4(0.3f, 1.3f, 2.3f, 3.3f);
glm::dmat4 Inv = glm::inverse(Mat);
glm::dmat4 Ind = Mat * Inv;
glm::dmat4 MatB;
MatB[0] = glm::dvec4(0.0f, 1.0f, 2.0f, 3.0f);
MatB[1] = glm::dvec4(0.1f, 1.1f, 2.1f, 3.1f);
MatB[2] = glm::dvec4(0.2f, 1.2f, 2.2f, 3.2f);
MatB[3] = glm::dvec4(0.3f, 1.3f, 2.3f, 3.3f);
// glm::dmat4 InvB = glm::inverseOgre(MatB);
// glm::dmat4 IndB = MatB * InvB;
bool stop = true;
}
{
glm::mat3 Mat;
Mat[0] = glm::vec3(0.0f, 1.0f, 2.0f);
Mat[1] = glm::vec3(0.1f, 1.1f, 2.1f);
Mat[2] = glm::vec3(0.2f, 1.2f, 2.2f);
glm::mat3 Inv = glm::inverse(Mat);
glm::mat3 Ind = Mat * Inv;
bool stop = true;
}
bool stop = true;
}
void test_vec4_mul()
{
glm::vec4 v1(1.0f, 2.0f, 3.0f, 4.0f);
glm::mat4 m1;
m1[0] = glm::vec4(1.0f, 2.0f, 3.0f, 4.0f) * 0.1f;
m1[1] = glm::vec4(1.0f, 2.0f, 3.0f, 4.0f) * 0.2f;
m1[2] = glm::vec4(1.0f, 2.0f, 3.0f, 4.0f) * 0.3f;
m1[3] = glm::vec4(1.0f, 2.0f, 3.0f, 4.0f) * 0.4f;
glm::vec4 vA = m1 * v1;
glm::vec4 vC = v1 * m1;
__m128 v2 = _mm_setr_ps(1.0f, 2.0f, 3.0f, 4.0f);
__m128 m2[4];
m2[0] = _mm_mul_ps(_mm_setr_ps(1.0f, 2.0f, 3.0f, 4.0f), _mm_set_ps1(0.1f));
m2[1] = _mm_mul_ps(_mm_setr_ps(1.0f, 2.0f, 3.0f, 4.0f), _mm_set_ps1(0.2f));
m2[2] = _mm_mul_ps(_mm_setr_ps(1.0f, 2.0f, 3.0f, 4.0f), _mm_set_ps1(0.3f));
m2[3] = _mm_mul_ps(_mm_setr_ps(1.0f, 2.0f, 3.0f, 4.0f), _mm_set_ps1(0.4f));
__m128 vB = _mm_mul_ps(m2, v2);
__m128 vD = _mm_mul_ps(v2, m2);
bool stop = true;
}
void test_mat4_tick()
{
__m128 MatC[4];
MatC[0] = _mm_setr_ps(0.2f, 0.1f, 0.3f, 0.4f);
MatC[1] = _mm_setr_ps(1.0f, 0.3f, 0.2f, 0.3f);
MatC[2] = _mm_setr_ps(3.0f, 2.0f, 0.4f, 0.2f);
MatC[3] = _mm_setr_ps(4.0f, 3.0f, 2.0f, 1.0f);
int CPUInfo[4];
int InfoType;
for(std::size_t i = 0; i < 10; ++i)
{
__m128 InvC[4];
__m128 IndC[4];
{
// __cpuid(CPUInfo, InfoType);
// __rdtsc();
// __cpuid(CPUInfo, InfoType);
// __rdtsc();
// __cpuid(CPUInfo, InfoType);
//glm::uint64 ClockStart = GetCpuCycle();
_mm_inverse_ps(MatC, InvC);
//glm::uint64 ClockEnd = GetCpuCycle();
//printf("inv: %d\n", ClockEnd - ClockStart);
}
{
// __cpuid(CPUInfo, InfoType);
// __rdtsc();
// __cpuid(CPUInfo, InfoType);
// __rdtsc();
// __cpuid(CPUInfo, InfoType);
//glm::uint64 ClockStart = GetCpuCycle();
_mm_mul_ps(MatC, InvC, IndC);
//glm::uint64 ClockEnd = GetCpuCycle();
//printf("mul: %d\n", ClockEnd - ClockStart);
}
}
}
int firstBit(int Binary)
{
for(std::size_t i = 0; i < 32; ++i)
if(Binary & (1 << i))
return i;
assert(0);
return 0;
}
void test_exp_golomb()
{
//0 => 1 => 1
//1 => 10 => 010
//2 => 11 => 011
//3 => 100 => 00100
//4 => 101 => 00101
//5 => 110 => 00110
//6 => 111 => 00111
//7 => 1000 => 0001000
//8 => 1001 => 0001001
// - Take the number in binary except for the last k digits
// and add 1 to it (arithmetically). Write this down.
// - Count the bits written, subtract one,
// - Write that number of starting zero bits preceding the previous bit string.
// - Write the last k bits in binary.
std::size_t Bit00 = glm::highestBit(0);
std::size_t Bit01 = glm::highestBit(1);
std::size_t Bit02 = glm::highestBit(2);
std::size_t Bit04 = glm::highestBit(4);
std::size_t Bit08 = glm::highestBit(8);
std::size_t Bit16 = glm::highestBit(16);
std::size_t Bit32 = glm::highestBit(32);
std::vector<glm::uint32> Size(256);
std::vector<glm::uint32> Data(256);
std::vector<glm::uint32> Conv(256);
for(std::size_t i = 0; i < 256; ++i)
{
glm::uint32 Binary = i + 1;
glm::uint32 HighestBit = glm::highestBit(Binary);
glm::uint32 CodeSize = (HighestBit << 1) + 1;
glm::uint32 Swift = 32 - CodeSize;
glm::uint32 Temp = glm::bitRevert(Binary << Swift);
//glm::uint32 Temp = Binary << Swift;
Data[i] = Temp;
Size[i] = HighestBit * 2 + 1;
printf("Binary(%d, %d): ", Swift, CodeSize);
for(std::size_t k = 0; k < 32; ++k)
printf("%d", glm::uint32((Binary & (1 << k)) != 0));
printf(" (%d)\n", Binary);
printf("Temp(%d, %d) : ", Swift, CodeSize);
for(std::size_t k = 0; k < 32; ++k)
printf("%d", glm::uint32((Temp & (1 << k)) != 0));
printf(" (%d)\n", Temp);
printf("Value(%d): ", i);
for(std::size_t k = 0; k < 8; ++k)
printf("%d", glm::uint32((i & (1 << k)) != 0));
printf("; ");
printf("Code: ");
for(std::size_t k = 0; k < Size[i]; ++k)
printf("%d", glm::uint32((Data[i] & (1 << k)) != 0));
printf("\n");
{
glm::uint32 Temp = Data[i];
glm::uint32 CodeSize2 = (firstBit(Temp) << 1) + 1;
glm::uint32 Swift2 = 32 - CodeSize2;
glm::uint32 Binary = glm::bitRevert(Temp) >> Swift2;
Conv[i] = Binary - 1;
}
printf("Conv (%d, %d): ", Swift, CodeSize);
for(std::size_t k = 0; k < 32; ++k)
printf("%d", glm::uint32((Conv[i] & (1 << k)) != 0));
printf(" (%d)\n\n", Conv[i]);
bool stop = true;
}
bool stop = true;
}
/*
int main(int argc, char* argv[])
{
test_mat4_mul();
test_exp_golomb();
//test_mat4_tick();
test_quat();
test_simd();
test_transform();
test_const();
test_radial();
test_vec4_mul();
glm::uint LowestBit = glm::lowestBit(8);
glm::test::main_core_func_common();
glm::test::main_core_func_exponential();
glm::test::main_core_func_geometric();
glm::test::main_core_func_matrix();
glm::test::main_core_func_noise();
glm::test::main_core_func_trigonometric();
glm::test::main_core_func_vector_relational();
glm::test::main_gtx_intesect();
{
glm::vec3 Normal(1, 0, 0);
glm::vec3 x = glm::rotate<glm::vec3::value_type>(glm::vec3(1,0,0),180.f,Normal);
glm::vec3 y = glm::rotate<glm::vec3::value_type>(glm::vec3(1,1,0),180.f,Normal);
bool Stop = true;
}
glm::mat4 m1 = glm::inverseTranspose(
glm::gtc::matrix_transform::translate(
glm::gtc::matrix_transform::rotate(
glm::mat4(1.0f),
90.f,
glm::normalize(glm::vec3(1.0f, 0.5f, 0.2f))),
glm::vec3(1.f, 2.f, 3.f)));
glm::mat4 m2 = glm::transpose(
glm::inverse(
glm::gtc::matrix_transform::translate(
glm::gtc::matrix_transform::rotate(
glm::mat4(1.0f),
90.f,
glm::normalize(glm::vec3(1.0f, 0.5f, 0.2f))),
glm::vec3(1.f, 2.f, 3.f))));
test_hint();
test_fast_inverse();
//test_type();
test_profile();
// glm::greaterThan();
test_angle();
test_half();
test_swizzle();
test::main_vec2();
test_quaternion();
test_auto_cast();
//detail::test_half_type();
glm::vec2 Result = glm::perp(glm::vec2(1.0, 0.0), glm::vec2(0.0, 1.0));
// test_genType();
// test_desk();
//radians(1);
glm::mat4 LookAt = glm::lookAt(glm::vec3(1), glm::vec3(1), glm::vec3(1));
fast_inverse();
test_string_cast();
test_isPowerOfTwo();
{
float fast0 = glm::fastLength(glm::vec3(1.0f));
float fast1 = 0.0f;
}
vec4 v76 = 1.f * vec4(1.0f);
test_matrix();
//test_random();
//test_sse_vec4();
//test_sse_mat4();
{
float f1 = glm::mix(100.f, 1000.f, 0.5f);
vec3 f2 = glm::mix(vec3(100.f), vec3(1000.f), 0.5f);
ivec3 f3 = glm::mix(ivec3(100), ivec3(1000), 0.5f);
ivec3 f4 = glm::mix(ivec3(100), ivec3(1000), vec3(0.5f));
}
{
mat4 Projection = glm::frustum(-1.0f, 1.0f, -1.0f, 1.0f, 0.1f, 1.0f);
//glm_traits<glm::vec3>::value_type vec(1.0f);
}
{
glm::vec2 v1(1.0f);
glm::vec2 v2(2.0f);
glm::vec2 v3(3.0f);
// v1.xy += v2 + v3.xy;
}
{
bool b = true;
glm::vec4 v4(b);
}
{
glm::quat q1;
q1 = glm::inverse(q1);
}
//test_cast();
//test_half_full();
//test_sse();
//__hvec2GTX Pouet;
//pouet Pouet(1, 2, 3);
glm::dmat4 dm = glm::dmat4(1.0);
glm::mat4 fm1 = glm::mat4(dm);
glm::mat4 fm2(dm);
//glm::hmat4 hm = glm::hmat4(1.0);
//glm::mat4 fm3(hm);
//glm::dmat4 dm2(hm);
{
glm::quat q1;
glm::vec4 v1;
glm::vec4 r1;
r1 = q1 * v1;
r1++;
//q1 = glm::absGTX(q1);
}
{
glm::vec3 v1(1.0f);
++v1;
v1++;
}
{
glm::vec4 v1(1.0f);
--v1;
v1--;
}
{
glm::vec4 v1(1.0f);
++v1;
v1++;
}
{
ivec3 testVec = ivec3(3,35,4);
const ivec3 testVec2 = ivec3(13,15,14);
//testVec = testVec2.zyx;
//testVec = testVec2.xyy;
//testVec = testVec2.rrr;
//ivec4 textVec4 = testVec2.zzxx;
//ivec2 textVec2 = testVec2.gr;
//half h1 = half(1.0f);
//hvec2 hv2 = hvec2(h1);
//hvec3 hv3 = hvec3(h1);
//hvec4 hv4 = hvec4(h1);
}
vec2 Stuff = glm::mix(vec2(1), vec2(0), 0.5f);
test_gtx_bit();
vec2 Max = glm::max(vec2(0.f), vec2(1.f));
vec2 Truc = radians(vec2(1));
// ivec3 v(1);
// v = operator &=((1 << 0));
ivec3 v(1);
v &= (1 << 0);
vec4 Color = glm::f32_rgba_cast<glm::uint32>(glm::uint32(0));
vec3 Normal = glm::normalizedRand3<float>();
//__hvec3GTX hCos = cos(__hvec3GTX(1.0f));
//__hvec3GTX hNormal = normalizedRand3<detail::thalf>();
//quat Quat;
//Quat = sqrt(Quat);
#if(defined(GLM_SWIZZLE) && GLM_SWIZZLE & GLM_SWIZZLE_FUNC)
vec4 ColorRGBA = vec4(1.0, 0.5, 0.0, 1.0)._xyzw();
#endif//GLM_SWIZZLE
hvec2 v1(1.0f, 2.0f);
hvec2 v2(3.0f, 4.0f);
v2 = v1;
v2 += half(1.0f);
v2 += detail::thalf(1.0f);
v2 = v1 - v2;
half hcos1 = glm::cos(half(1.0));
hvec2 hcos2 = glm::cos(hvec2(1.0));
//test_associated_min_max();
system("pause");
return 0;
}
*/
#define CPUID __asm __emit 0fh __asm __emit 0a2h
#define RDTSC __asm __emit 0fh __asm __emit 031h
unsigned test_sse()
{
glm::mat4 MatA;
MatA[0] = glm::vec4(0.2f, 0.1f, 0.3f, 0.4f);
MatA[1] = glm::vec4(1.0f, 0.3f, 0.2f, 0.3f);
MatA[2] = glm::vec4(3.0f, 2.0f, 0.4f, 0.2f);
MatA[3] = glm::vec4(4.0f, 3.0f, 2.0f, 1.0f);
glm::mat4 MulA;
glm::mat4 InvA;
unsigned cycles;
__m128 MatC[4];
MatC[0] = _mm_setr_ps(0.2f, 0.1f, 0.3f, 0.4f);
MatC[1] = _mm_setr_ps(1.0f, 0.3f, 0.2f, 0.3f);
MatC[2] = _mm_setr_ps(3.0f, 2.0f, 0.4f, 0.2f);
MatC[3] = _mm_setr_ps(4.0f, 3.0f, 2.0f, 1.0f);
__m128 MatR[4];
/*
__asm
{
pushad
CPUID
RDTSC
mov cycles, eax
popad
}
*/
//MulA = MatA * MatA;
//_mm_mul_ps(MatC, MatC, MatR);
//InvA = glm::inverse(MatA);
//_mm_inverse_ps(MatC, MatR);
_mm_inverse_fast_ps(MatC, MatR);
//glm::mat4 IndA = MatA * InvA;
//glm::mat4 InvB = glm::inverseOgre(MatA);
//glm::mat4 IndB = MatA * InvB;
// glm::mat4 InvD = glm::inverseSIMD(MatA);
// glm::mat4 IndD = MatA * InvD;
// glm::mat4 InvE = glm::inverseDev(MatA);
// glm::mat4 IndE = MatA * InvE;
//__m128 MatC[4];
//MatC[0] = _mm_setr_ps(0.2f, 0.1f, 0.3f, 0.4f);
//MatC[1] = _mm_setr_ps(1.0f, 0.3f, 0.2f, 0.3f);
//MatC[2] = _mm_setr_ps(3.0f, 2.0f, 0.4f, 0.2f);
//MatC[3] = _mm_setr_ps(4.0f, 3.0f, 2.0f, 1.0f);
//__m128 InvC[4];
//_mm_inverse_ps(MatC, InvC);
//__m128 IndC[4];
//_mm_mul_ps(MatC, InvC, IndC);
//__m128 Mul2[4];
//_mm_mul_ps(MatC, MatC, Mul2);
/*
__asm
{
pushad
CPUID
RDTSC
sub eax, cycles
mov cycles, eax
popad
}
*/
return cycles;
}
unsigned test_mat4_translate()
{
glm::mat4 MatA;
MatA[0] = glm::vec4(0.2f, 0.1f, 0.3f, 0.4f);
MatA[1] = glm::vec4(1.0f, 0.3f, 0.2f, 0.3f);
MatA[2] = glm::vec4(3.0f, 2.0f, 0.4f, 0.2f);
MatA[3] = glm::vec4(4.0f, 3.0f, 2.0f, 1.0f);
glm::mat4 Transform;
__m128 MatC[4];
MatC[0] = _mm_setr_ps(0.2f, 0.1f, 0.3f, 0.4f);
MatC[1] = _mm_setr_ps(1.0f, 0.3f, 0.2f, 0.3f);
MatC[2] = _mm_setr_ps(3.0f, 2.0f, 0.4f, 0.2f);
MatC[3] = _mm_setr_ps(4.0f, 3.0f, 2.0f, 1.0f);
__m128 MatR[4];
float v[] = {1, 2, 3};
unsigned cycles;
/*
__asm
{
pushad
CPUID
RDTSC
mov cycles, eax
popad
}
*/
_mm_rotate_ps(MatC, 45.f, v, MatR);
//Transform = glm::rotate(MatA, 45.f, glm::vec3(1, 2, 3));
/*
__asm
{
pushad
CPUID
RDTSC
sub eax, cycles
mov cycles, eax
popad
}
*/
return cycles;
}
void test_vec4_simd()
{
glm::vec4SIMD v1(1.0f, 2.0f, 3.0f, 4.0f);
glm::vec4SIMD v2(5.0f, 6.0f, 7.0f, 8.0f);
glm::vec4SIMD v3 = v1 + v2;
bool end = true;
}
bool main_test()
{
bool Result = true;
Result = Result && glm::test::main_bug();
assert(Result);
Result = Result && glm::test::main_type_half();
assert(Result);
Result = Result && glm::test::main_img();
assert(Result);
return true;
}
/*
template<template <typename valType> genType>
valType templateTemplateParameter(genType const & v)
{
valType Result = valType(0);
for(typename gentype::size_type i = 0; i < genType::value_size(); ++i)
{
Result += v[i];
}
return Result;
}
*/
template<class T>
class A1
{
int x;
};
template<template<class T> class U>
class B1
{
};
//#include <glm/glm.hpp>
//void computeFaceNormals(mesh & Mesh)
//{
// for(mesh::iteractor it = Mesh.Faces.begin(); it != Mesh.Faces.end(); ++it)
// {
// glm::vec3 const & a = Mesh.Points[it->Vertices[0].Index].Position;
// glm::vec3 const & b = Mesh.Points[it->Vertices[1].Index].Position;
// glm::vec3 const & c = Mesh.Points[it->Vertices[2].Index].Position;
// it->Normal = glm::normalize(glm::cross(c - a, b - a));
// }
//}
template <std::size_t N, typename T>
struct vecBase
{
typedef T value_type;
typedef std::size_t size_type;
static size_type const value_size;
};
template <std::size_t N, typename T>
typename vecBase<N, T>::size_type const vecBase<N, T>::value_size = N;
template <std::size_t N, typename T>
struct vecDEV : public vecBase<N, T>
{
typedef T value_type;
};
template <typename T>
struct vecDEV<4, T> : public vecBase<4, T>
{
value_type Data[value_size];
};
void main_core_func_integer()
{
std::size_t ValueA = 1;
std::size_t ValueB = glm::bitfieldReverse(ValueA);
assert(ValueA != ValueB);
std::size_t ValueC = glm::bitfieldReverse(ValueB);
assert(ValueA == ValueC);
bool stop = 76;
}
int main()
{
float MuxesA = glm::log2(136.f) * 136.f * 2.f;
float MuxesB = glm::log2(120.f) * 120.f * 2.f;
float Ratio = MuxesB * 100 / MuxesA;
B1<A1> c;
//templateTemplateParameter<glm::detail::tvec3>();
main_core_func_integer();
assert(main_test());
glm::test::main_core_func_common();
glm::test::main_core_func_exponential();
glm::test::main_core_func_geometric();
glm::test::main_core_func_matrix();
glm::test::main_core_func_noise();
glm::test::main_core_func_trigonometric();
glm::test::main_core_func_vector_relational();
glm::test::main_gtx_intesect();
//test_sse_vec4();
//test_sse_mat4();
test_vec4_simd();
glm::quat q;
glm::vec3 v;
glm::vec3 w = glm::cross(q, v);
glm::vec3 u = glm::cross(v, q);
unsigned int base, base1, base2, base3, base4, base5;
unsigned int clock;
// Warm up cpuid & rdtsc
/*
*/
/*
__asm
{
pushad;
cpuid;
rdtsc;
mov clock, eax;
cpuid;
rdtsc;
sub eax, clock;
mov base1, eax;
cpuid;
rdtsc;
mov clock, eax;
cpuid;
rdtsc;
sub eax, clock;
mov base2, eax;
cpuid;
rdtsc;
mov clock, eax;
cpuid;
rdtsc;
sub eax, clock;
mov base3, eax;
cpuid;
rdtsc;
mov clock, eax;
cpuid;
rdtsc;
sub eax, clock;
mov base4, eax;
cpuid;
rdtsc;
mov clock, eax;
cpuid;
rdtsc;
sub eax, clock;
mov base5, eax;
popad;
}
*/
base = base1;
if (base > base2)
base = base2;
if (base > base3)
base = base3;
if (base > base4)
base = base4;
if (base > base5)
base = base5;
{
const unsigned size = 16;
unsigned cycles[size];
for(unsigned i = 0; i < size; ++i)
cycles[i] = test_mat4_translate();//test_sse();
// By the second or third run, both data and instruction
// cache effects should have been eliminated, and results
// will be consistent.
printf("SSE\nBase : %d\n", base);
printf("Cycle counts:\n");
for(unsigned i = 0; i < size; ++i)
printf("%d\n", cycles[i] - base);
}
glm::mat4 m(1.0);
glm::mat4 m1 = m + 2.0f;
system("pause");
}
//#include <glm/glm.hpp> // vec3, vec4, ivec4, mat4
//#include <glm/gtc/matrix_projection.hpp> // glm::perspective
//#include <glm/gtc/matrix_transform.hpp> // glm::translate, glm::rotate, glm::scale
//#include <glm/gtx/type_ptr.hpp> // glm::value_ptr
//
//glm::vec4 const ClearColor(glm::vec3(0.0f), 1.0f);
//glm::ivec4 const Viewport(0, 0, 640, 480);
//
//void render()
//{
// glClearColor(ClearColor.r, ClearColor.g, ClearColor.b, ClearColor.a);
// glClear(GL_COLOR_BUFFER_BIT);
//
// glViewport(Viewport.x, Viewport.y, Viewport.z, Viewport.w);
//
// glm::mat4 Projection = glm::perspective(45.0f, 4.0f / 3.0f, 0.1f, 100.0f);
// glm::mat4 ViewTranslate = glm::translate(glm::vec3(0.0f, 0.0f, -4.0f));
// glm::mat4 ViewRotateX = glm::rotate(ViewTranslate, 45.0f, glm::vec3(-1.0f, 0.0f, 0.0f));
// glm::mat4 View = glm::rotate(ViewRotateX, 45.0f, glm::vec3(0.0f, 1.0f, 0.0f));
// glm::mat4 Model = glm::scale(glm::mat4(1.0f), glm::vec3(0.5f));
//
// glMatrixMode(GL_PROJECTION);
// glLoadMatrixf(glm::value_ptr(Projection));
//
// glMatrixMode(GL_MODELVIEW);
// glLoadMatrixf(glm::value_ptr(View * Model));
//}