glslang/Test/hlsl.intrinsics.vert

415 lines
10 KiB
GLSL
Raw Normal View History

float VertexShaderFunctionS(float inF0, float inF1, float inF2, uint inU0, uint inU1)
{
all(inF0);
abs(inF0);
acos(inF0);
any(inF0);
asin(inF0);
asint(inF0);
asuint(inF0);
asfloat(inU0);
// asdouble(inU0, inU1); // TODO: enable when HLSL parser used for intrinsics
atan(inF0);
atan2(inF0, inF1);
ceil(inF0);
clamp(inF0, inF1, inF2);
cos(inF0);
cosh(inF0);
countbits(7);
degrees(inF0);
// EvaluateAttributeAtCentroid(inF0);
// EvaluateAttributeAtSample(inF0, 0);
// TODO: EvaluateAttributeSnapped(inF0, int2(1,2));
exp(inF0);
exp2(inF0);
firstbithigh(7);
firstbitlow(7);
floor(inF0);
// TODO: fma(inD0, inD1, inD2);
fmod(inF0, inF1);
frac(inF0);
isinf(inF0);
isnan(inF0);
ldexp(inF0, inF1);
lerp(inF0, inF1, inF2);
log(inF0);
log10(inF0);
log2(inF0);
max(inF0, inF1);
min(inF0, inF1);
// TODO: mul(inF0, inF1);
pow(inF0, inF1);
radians(inF0);
reversebits(2);
round(inF0);
rsqrt(inF0);
saturate(inF0);
sign(inF0);
sin(inF0);
sincos(inF0, inF1, inF2);
sinh(inF0);
smoothstep(inF0, inF1, inF2);
sqrt(inF0);
step(inF0, inF1);
tan(inF0);
tanh(inF0);
// TODO: sampler intrinsics, when we can declare the types.
trunc(inF0);
return 0.0;
}
float1 VertexShaderFunction1(float1 inF0, float1 inF1, float1 inF2)
{
// TODO: ... add when float1 prototypes are generated
return 0.0;
}
float2 VertexShaderFunction2(float2 inF0, float2 inF1, float2 inF2, uint2 inU0, uint2 inU1)
{
all(inF0);
abs(inF0);
acos(inF0);
any(inF0);
asin(inF0);
asint(inF0);
asuint(inF0);
asfloat(inU0);
// asdouble(inU0, inU1); // TODO: enable when HLSL parser used for intrinsics
atan(inF0);
atan2(inF0, inF1);
ceil(inF0);
clamp(inF0, inF1, inF2);
cos(inF0);
cosh(inF0);
countbits(int2(7,3));
degrees(inF0);
distance(inF0, inF1);
dot(inF0, inF1);
// EvaluateAttributeAtCentroid(inF0);
// EvaluateAttributeAtSample(inF0, 0);
// TODO: EvaluateAttributeSnapped(inF0, int2(1,2));
exp(inF0);
exp2(inF0);
faceforward(inF0, inF1, inF2);
firstbithigh(7);
firstbitlow(7);
floor(inF0);
// TODO: fma(inD0, inD1, inD2);
fmod(inF0, inF1);
frac(inF0);
isinf(inF0);
isnan(inF0);
ldexp(inF0, inF1);
lerp(inF0, inF1, inF2);
length(inF0);
log(inF0);
log10(inF0);
log2(inF0);
max(inF0, inF1);
min(inF0, inF1);
// TODO: mul(inF0, inF1);
normalize(inF0);
pow(inF0, inF1);
radians(inF0);
reflect(inF0, inF1);
refract(inF0, inF1, 2.0);
reversebits(int2(1,2));
round(inF0);
rsqrt(inF0);
saturate(inF0);
sign(inF0);
sin(inF0);
sincos(inF0, inF1, inF2);
sinh(inF0);
smoothstep(inF0, inF1, inF2);
sqrt(inF0);
step(inF0, inF1);
tan(inF0);
tanh(inF0);
// TODO: sampler intrinsics, when we can declare the types.
trunc(inF0);
// TODO: ... add when float1 prototypes are generated
return float2(1,2);
}
float3 VertexShaderFunction3(float3 inF0, float3 inF1, float3 inF2, uint3 inU0, uint3 inU1)
{
all(inF0);
abs(inF0);
acos(inF0);
any(inF0);
asin(inF0);
asint(inF0);
asuint(inF0);
asfloat(inU0);
// asdouble(inU0, inU1); // TODO: enable when HLSL parser used for intrinsics
atan(inF0);
atan2(inF0, inF1);
ceil(inF0);
clamp(inF0, inF1, inF2);
cos(inF0);
cosh(inF0);
countbits(int3(7,3,5));
cross(inF0, inF1);
degrees(inF0);
distance(inF0, inF1);
dot(inF0, inF1);
// EvaluateAttributeAtCentroid(inF0);
// EvaluateAttributeAtSample(inF0, 0);
// TODO: EvaluateAttributeSnapped(inF0, int2(1,2));
exp(inF0);
exp2(inF0);
faceforward(inF0, inF1, inF2);
firstbithigh(7);
firstbitlow(7);
floor(inF0);
// TODO: fma(inD0, inD1, inD2);
fmod(inF0, inF1);
frac(inF0);
isinf(inF0);
isnan(inF0);
ldexp(inF0, inF1);
lerp(inF0, inF1, inF2);
length(inF0);
log(inF0);
log10(inF0);
log2(inF0);
max(inF0, inF1);
min(inF0, inF1);
// TODO: mul(inF0, inF1);
normalize(inF0);
pow(inF0, inF1);
radians(inF0);
reflect(inF0, inF1);
refract(inF0, inF1, 2.0);
reversebits(int3(1,2,3));
round(inF0);
rsqrt(inF0);
saturate(inF0);
sign(inF0);
sin(inF0);
sincos(inF0, inF1, inF2);
sinh(inF0);
smoothstep(inF0, inF1, inF2);
sqrt(inF0);
step(inF0, inF1);
tan(inF0);
tanh(inF0);
// TODO: sampler intrinsics, when we can declare the types.
trunc(inF0);
// TODO: ... add when float1 prototypes are generated
return float3(1,2,3);
}
float4 VertexShaderFunction4(float4 inF0, float4 inF1, float4 inF2, uint4 inU0, uint4 inU1)
{
all(inF0);
abs(inF0);
acos(inF0);
any(inF0);
asin(inF0);
asint(inF0);
asuint(inF0);
asfloat(inU0);
// asdouble(inU0, inU1); // TODO: enable when HLSL parser used for intrinsics
atan(inF0);
atan2(inF0, inF1);
ceil(inF0);
clamp(inF0, inF1, inF2);
cos(inF0);
cosh(inF0);
countbits(int4(7,3,5,2));
degrees(inF0);
distance(inF0, inF1);
dot(inF0, inF1);
dst(inF0, inF1);
// EvaluateAttributeAtCentroid(inF0);
// EvaluateAttributeAtSample(inF0, 0);
// TODO: EvaluateAttributeSnapped(inF0, int2(1,2));
exp(inF0);
exp2(inF0);
faceforward(inF0, inF1, inF2);
firstbithigh(7);
firstbitlow(7);
floor(inF0);
// TODO: fma(inD0, inD1, inD2);
fmod(inF0, inF1);
frac(inF0);
isinf(inF0);
isnan(inF0);
ldexp(inF0, inF1);
lerp(inF0, inF1, inF2);
length(inF0);
log(inF0);
log10(inF0);
log2(inF0);
max(inF0, inF1);
min(inF0, inF1);
// TODO: mul(inF0, inF1);
normalize(inF0);
pow(inF0, inF1);
radians(inF0);
reflect(inF0, inF1);
refract(inF0, inF1, 2.0);
reversebits(int4(1,2,3,4));
round(inF0);
rsqrt(inF0);
saturate(inF0);
sign(inF0);
sin(inF0);
sincos(inF0, inF1, inF2);
sinh(inF0);
smoothstep(inF0, inF1, inF2);
sqrt(inF0);
step(inF0, inF1);
tan(inF0);
tanh(inF0);
// TODO: sampler intrinsics, when we can declare the types.
trunc(inF0);
// TODO: ... add when float1 prototypes are generated
return float4(1,2,3,4);
}
// TODO: for mats:
// asfloat(inU0); \
// asint(inF0); \
// asuint(inF0); \
// TODO: FXC doesn't accept this with (), but glslang doesn't accept it without.
#define MATFNS() \
all(inF0); \
abs(inF0); \
acos(inF0); \
any(inF0); \
asin(inF0); \
atan(inF0); \
atan2(inF0, inF1); \
ceil(inF0); \
clamp(inF0, inF1, inF2); \
cos(inF0); \
cosh(inF0); \
degrees(inF0); \
determinant(inF0); \
exp(inF0); \
exp2(inF0); \
firstbithigh(7); \
firstbitlow(7); \
floor(inF0); \
fmod(inF0, inF1); \
frac(inF0); \
ldexp(inF0, inF1); \
lerp(inF0, inF1, inF2); \
log(inF0); \
log10(inF0); \
log2(inF0); \
max(inF0, inF1); \
min(inF0, inF1); \
pow(inF0, inF1); \
radians(inF0); \
round(inF0); \
rsqrt(inF0); \
saturate(inF0); \
sign(inF0); \
sin(inF0); \
sincos(inF0, inF1, inF2); \
sinh(inF0); \
smoothstep(inF0, inF1, inF2); \
sqrt(inF0); \
step(inF0, inF1); \
tan(inF0); \
tanh(inF0); \
transpose(inF0); \
trunc(inF0);
// TODO: turn on non-square matrix tests when protos are available.
float2x2 VertexShaderFunction2x2(float2x2 inF0, float2x2 inF1, float2x2 inF2)
{
// TODO: FXC doesn't accept this with (), but glslang doesn't accept it without.
2016-06-03 15:17:51 +00:00
MATFNS();
// TODO: ... add when float1 prototypes are generated
return float2x2(2,2,2,2);
}
float3x3 VertexShaderFunction3x3(float3x3 inF0, float3x3 inF1, float3x3 inF2)
{
// TODO: FXC doesn't accept this with (), but glslang doesn't accept it without.
2016-06-03 15:17:51 +00:00
MATFNS();
// TODO: ... add when float1 prototypes are generated
return float3x3(3,3,3,3,3,3,3,3,3);
}
float4x4 VertexShaderFunction4x4(float4x4 inF0, float4x4 inF1, float4x4 inF2)
{
// TODO: FXC doesn't accept this with (), but glslang doesn't accept it without.
2016-06-03 15:17:51 +00:00
MATFNS();
// TODO: ... add when float1 prototypes are generated
return float4x4(4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4);
}
#define TESTGENMUL(ST, VT, MT) \
ST r0 = mul(inF0, inF1); \
VT r1 = mul(inFV0, inF0); \
VT r2 = mul(inF0, inFV0); \
ST r3 = mul(inFV0, inFV1); \
VT r4 = mul(inFM0, inFV0); \
VT r5 = mul(inFV0, inFM0); \
MT r6 = mul(inFM0, inF0); \
MT r7 = mul(inF0, inFM0); \
MT r8 = mul(inFM0, inFM1);
void TestGenMul2(float inF0, float inF1,
float2 inFV0, float2 inFV1,
float2x2 inFM0, float2x2 inFM1)
{
TESTGENMUL(float, float2, float2x2);
}
void TestGenMul3(float inF0, float inF1,
float3 inFV0, float3 inFV1,
float3x3 inFM0, float3x3 inFM1)
{
TESTGENMUL(float, float3, float3x3);
}
void TestGenMul4(float inF0, float inF1,
float4 inFV0, float4 inFV1,
float4x4 inFM0, float4x4 inFM1)
{
TESTGENMUL(float, float4, float4x4);
}
// Test some non-square mats
void TestGenMulNxM(float inF0, float inF1,
float2 inFV2, float3 inFV3,
float2x3 inFM2x3, float3x2 inFM3x2,
float3x3 inFM3x3, float3x4 inFM3x4,
float2x4 inFM2x4)
{
float r00 = mul(inF0, inF1); // S=S*S
float2 r01 = mul(inFV2, inF0); // V=V*S
float3 r02 = mul(inFV3, inF0); // V=V*S
float2 r03 = mul(inF0, inFV2); // V=S*V
float3 r04 = mul(inF0, inFV3); // V=S*V
float r05 = mul(inFV2, inFV2); // S=V*V
float r06 = mul(inFV3, inFV3); // S=V*V
float3 r07 = mul(inFV2, inFM2x3); // V=V*M (return V dim is Mcols)
float2 r08 = mul(inFV3, inFM3x2); // V=V*M (return V dim is Mcols)
float2 r09 = mul(inFM2x3, inFV3); // V=M*V (return V dim is Mrows)
float3 r10 = mul(inFM3x2, inFV2); // V=M*V (return V dim is Mrows)
float2x3 r11 = mul(inFM2x3, inF0);
float3x2 r12 = mul(inFM3x2, inF0);
float2x2 r13 = mul(inFM2x3, inFM3x2);
float2x3 r14 = mul(inFM2x3, inFM3x3);
float2x4 r15 = mul(inFM2x3, inFM3x4);
float3x4 r16 = mul(inFM3x2, inFM2x4);
}