This allows removal of isPerVertexBuiltIn(). It also leads to
removal of addInterstageIoToLinkage(), which is no longer needed.
Includes related name improvements.
Makes some white-space differences in most output, plus a few cases
where more could have been put out but was cut short by the previous
fix-sized buffer.
This removes pervertex output blocks, in favor of using only
loose variables. The pervertex blocks are not required and were
only partly implemented, and were adding some complication.
This change goes with wrap-entry-point.
This introduces parallel types for IO-type containing aggregates used as
non-entry point function parameters or return types, or declared as variables.
Further uses of the same original type will share the same sanitized deep
structure.
This is intended to be used with the wrap-entry-point branch.
This needs some render testing, but is destined to be part of master.
This also leads to a variety of other simplifications.
- IO are global symbols, so only need one list of linkage nodes (deferred)
- no longer need parse-context-wide 'inEntryPoint' state, entry-point is localized
- several parts of splitting/flattening are now localized
(Still adding tests: do not commit)
This fixes PR #632 so that:
(a) The 4 PerVertex builtins are added to an interface block for all stages except fragment.
(b) Other builtin qualified variables are added as "loose" linkage members.
(c) Arrayness from the PerVertex builtins is moved to the PerVertex block.
(d) Sometimes, two PerVertex blocks are created, one for in, one for out (e.g, for some GS that
both reads and writes a Position)
This adds structure splitting, which among other things will enable GS support where input structs
are passed, and thus become input arrays of structs in the GS inputs. That is a common GS case.
The salient points of this PR are:
* Structure splitting has been changed from "always between stages" to "only into the VS and out of
the PS". It had previously happened between stages because it's not legal to pass a struct
containing a builtin IO variable.
* Structs passed between stages are now split into a struct containing ONLY user types, and a
collection of loose builtin IO variables, if any. The user-part is passed as a normal struct
between stages, which is valid SPIR-V now that the builtin IO is removed.
* Internal to the shader, a sanitized struct (with IO qualifiers removed) is used, so that e.g,
functions can work unmodified.
* If a builtin IO such as Position occurs in an arrayed struct, for example as an input to a GS,
the array reference is moved to the split-off loose variable, which is given the array dimension
itself.
When passing things around inside the shader, such as over a function call, the the original type
is used in a sanitized form that removes the builtIn qualifications and makes them temporaries.
This means internal function calls do not have to change. However, the type when returned from
the shader will be member-wise copied from the internal sanitized one to the external type.
The sanitized type is used in variable declarations.
When copying split types and unsplit, if a sub-struct contains only user variables, it is copied
as a single entity to avoid more AST verbosity.
Above strategy arrived at with talks with @johnkslang.
This is a big complex change. I'm inclined to leave it as a WIP until it can get some exposure to
real world cases.