// //Copyright (C) 2016 Google, Inc. //Copyright (C) 2016 LunarG, Inc. // //All rights reserved. // //Redistribution and use in source and binary forms, with or without //modification, are permitted provided that the following conditions //are met: // // Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // // Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // // Neither the name of 3Dlabs Inc. Ltd. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // //THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS //"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT //LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS //FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE //COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, //INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, //BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; //LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER //CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT //LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN //ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE //POSSIBILITY OF SUCH DAMAGE. // #include "hlslParseHelper.h" #include "hlslScanContext.h" #include "hlslGrammar.h" #include "../glslang/MachineIndependent/Scan.h" #include "../glslang/MachineIndependent/preprocessor/PpContext.h" #include "../glslang/OSDependent/osinclude.h" #include #include namespace glslang { HlslParseContext::HlslParseContext(TSymbolTable& symbolTable, TIntermediate& interm, bool /*parsingBuiltins*/, int version, EProfile profile, const SpvVersion& spvVersion, EShLanguage language, TInfoSink& infoSink, bool forwardCompatible, EShMessages messages) : TParseContextBase(symbolTable, interm, version, profile, spvVersion, language, infoSink, forwardCompatible, messages), contextPragma(true, false), loopNestingLevel(0), structNestingLevel(0), controlFlowNestingLevel(0), postMainReturn(false), limits(resources.limits), afterEOF(false) { // ensure we always have a linkage node, even if empty, to simplify tree topology algorithms linkage = new TIntermAggregate; globalUniformDefaults.clear(); globalUniformDefaults.layoutMatrix = ElmColumnMajor; globalUniformDefaults.layoutPacking = ElpStd140; globalBufferDefaults.clear(); globalBufferDefaults.layoutMatrix = ElmColumnMajor; globalBufferDefaults.layoutPacking = ElpStd430; globalInputDefaults.clear(); globalOutputDefaults.clear(); // "Shaders in the transform // feedback capturing mode have an initial global default of // layout(xfb_buffer = 0) out;" if (language == EShLangVertex || language == EShLangTessControl || language == EShLangTessEvaluation || language == EShLangGeometry) globalOutputDefaults.layoutXfbBuffer = 0; if (language == EShLangGeometry) globalOutputDefaults.layoutStream = 0; } HlslParseContext::~HlslParseContext() { } void HlslParseContext::setLimits(const TBuiltInResource& r) { resources = r; intermediate.setLimits(resources); } // // Parse an array of strings using the parser in HlslRules. // // Returns true for successful acceptance of the shader, false if any errors. // bool HlslParseContext::parseShaderStrings(TPpContext& ppContext, TInputScanner& input, bool versionWillBeError) { currentScanner = &input; ppContext.setInput(input, versionWillBeError); HlslScanContext::fillInKeywordMap(); // TODO: right place, and include the delete too HlslScanContext scanContext(*this, ppContext); HlslGrammar grammar(scanContext, *this); if (! grammar.parse()) printf("HLSL translation failed.\n"); return numErrors == 0; } void HlslParseContext::handlePragma(const TSourceLoc& loc, const TVector& tokens) { if (pragmaCallback) pragmaCallback(loc.line, tokens); if (tokens.size() == 0) return; } // // Look at a '.' field selector string and change it into offsets // for a vector or scalar // // Returns true if there is no error. // bool HlslParseContext::parseVectorFields(const TSourceLoc& loc, const TString& compString, int vecSize, TVectorFields& fields) { fields.num = (int)compString.size(); if (fields.num > 4) { error(loc, "illegal vector field selection", compString.c_str(), ""); return false; } enum { exyzw, ergba, estpq, } fieldSet[4]; for (int i = 0; i < fields.num; ++i) { switch (compString[i]) { case 'x': fields.offsets[i] = 0; fieldSet[i] = exyzw; break; case 'r': fields.offsets[i] = 0; fieldSet[i] = ergba; break; case 's': fields.offsets[i] = 0; fieldSet[i] = estpq; break; case 'y': fields.offsets[i] = 1; fieldSet[i] = exyzw; break; case 'g': fields.offsets[i] = 1; fieldSet[i] = ergba; break; case 't': fields.offsets[i] = 1; fieldSet[i] = estpq; break; case 'z': fields.offsets[i] = 2; fieldSet[i] = exyzw; break; case 'b': fields.offsets[i] = 2; fieldSet[i] = ergba; break; case 'p': fields.offsets[i] = 2; fieldSet[i] = estpq; break; case 'w': fields.offsets[i] = 3; fieldSet[i] = exyzw; break; case 'a': fields.offsets[i] = 3; fieldSet[i] = ergba; break; case 'q': fields.offsets[i] = 3; fieldSet[i] = estpq; break; default: error(loc, "illegal vector field selection", compString.c_str(), ""); return false; } } for (int i = 0; i < fields.num; ++i) { if (fields.offsets[i] >= vecSize) { error(loc, "vector field selection out of range", compString.c_str(), ""); return false; } if (i > 0) { if (fieldSet[i] != fieldSet[i - 1]) { error(loc, "illegal - vector component fields not from the same set", compString.c_str(), ""); return false; } } } return true; } // // Used to output syntax, parsing, and semantic errors. // void HlslParseContext::outputMessage(const TSourceLoc& loc, const char* szReason, const char* szToken, const char* szExtraInfoFormat, TPrefixType prefix, va_list args) { const int maxSize = MaxTokenLength + 200; char szExtraInfo[maxSize]; safe_vsprintf(szExtraInfo, maxSize, szExtraInfoFormat, args); infoSink.info.prefix(prefix); infoSink.info.location(loc); infoSink.info << "'" << szToken << "' : " << szReason << " " << szExtraInfo << "\n"; if (prefix == EPrefixError) { ++numErrors; } } void C_DECL HlslParseContext::error(const TSourceLoc& loc, const char* szReason, const char* szToken, const char* szExtraInfoFormat, ...) { if (messages & EShMsgOnlyPreprocessor) return; va_list args; va_start(args, szExtraInfoFormat); outputMessage(loc, szReason, szToken, szExtraInfoFormat, EPrefixError, args); va_end(args); } void C_DECL HlslParseContext::warn(const TSourceLoc& loc, const char* szReason, const char* szToken, const char* szExtraInfoFormat, ...) { if (suppressWarnings()) return; va_list args; va_start(args, szExtraInfoFormat); outputMessage(loc, szReason, szToken, szExtraInfoFormat, EPrefixWarning, args); va_end(args); } void C_DECL HlslParseContext::ppError(const TSourceLoc& loc, const char* szReason, const char* szToken, const char* szExtraInfoFormat, ...) { va_list args; va_start(args, szExtraInfoFormat); outputMessage(loc, szReason, szToken, szExtraInfoFormat, EPrefixError, args); va_end(args); } void C_DECL HlslParseContext::ppWarn(const TSourceLoc& loc, const char* szReason, const char* szToken, const char* szExtraInfoFormat, ...) { va_list args; va_start(args, szExtraInfoFormat); outputMessage(loc, szReason, szToken, szExtraInfoFormat, EPrefixWarning, args); va_end(args); } // // Handle seeing a variable identifier in the grammar. // TIntermTyped* HlslParseContext::handleVariable(const TSourceLoc& loc, TSymbol* symbol, const TString* string) { if (symbol == nullptr) symbol = symbolTable.find(*string); if (symbol && symbol->getAsVariable() && symbol->getAsVariable()->isUserType()) { error(loc, "expected symbol, not user-defined type", string->c_str(), ""); return nullptr; } // Error check for requiring specific extensions present. if (symbol && symbol->getNumExtensions()) requireExtensions(loc, symbol->getNumExtensions(), symbol->getExtensions(), symbol->getName().c_str()); if (symbol && symbol->isReadOnly()) { // All shared things containing an implicitly sized array must be copied up // on first use, so that all future references will share its array structure, // so that editing the implicit size will effect all nodes consuming it, // and so that editing the implicit size won't change the shared one. // // If this is a variable or a block, check it and all it contains, but if this // is a member of an anonymous block, check the whole block, as the whole block // will need to be copied up if it contains an implicitly-sized array. if (symbol->getType().containsImplicitlySizedArray() || (symbol->getAsAnonMember() && symbol->getAsAnonMember()->getAnonContainer().getType().containsImplicitlySizedArray())) makeEditable(symbol); } const TVariable* variable; const TAnonMember* anon = symbol ? symbol->getAsAnonMember() : nullptr; TIntermTyped* node = nullptr; if (anon) { // It was a member of an anonymous container. // Create a subtree for its dereference. variable = anon->getAnonContainer().getAsVariable(); TIntermTyped* container = intermediate.addSymbol(*variable, loc); TIntermTyped* constNode = intermediate.addConstantUnion(anon->getMemberNumber(), loc); node = intermediate.addIndex(EOpIndexDirectStruct, container, constNode, loc); node->setType(*(*variable->getType().getStruct())[anon->getMemberNumber()].type); if (node->getType().hiddenMember()) error(loc, "member of nameless block was not redeclared", string->c_str(), ""); } else { // Not a member of an anonymous container. // The symbol table search was done in the lexical phase. // See if it was a variable. variable = symbol ? symbol->getAsVariable() : nullptr; if (variable) { if ((variable->getType().getBasicType() == EbtBlock || variable->getType().getBasicType() == EbtStruct) && variable->getType().getStruct() == nullptr) { error(loc, "cannot be used (maybe an instance name is needed)", string->c_str(), ""); variable = nullptr; } } else { if (symbol) error(loc, "variable name expected", string->c_str(), ""); } // Recovery, if it wasn't found or was not a variable. if (! variable) variable = new TVariable(string, TType(EbtVoid)); if (variable->getType().getQualifier().isFrontEndConstant()) node = intermediate.addConstantUnion(variable->getConstArray(), variable->getType(), loc); else node = intermediate.addSymbol(*variable, loc); } if (variable->getType().getQualifier().isIo()) intermediate.addIoAccessed(*string); return node; } // // Handle seeing a base[index] dereference in the grammar. // TIntermTyped* HlslParseContext::handleBracketDereference(const TSourceLoc& loc, TIntermTyped* base, TIntermTyped* index) { TIntermTyped* result = nullptr; int indexValue = 0; if (index->getQualifier().storage == EvqConst) { indexValue = index->getAsConstantUnion()->getConstArray()[0].getIConst(); checkIndex(loc, base->getType(), indexValue); } variableCheck(base); if (! base->isArray() && ! base->isMatrix() && ! base->isVector()) { if (base->getAsSymbolNode()) error(loc, " left of '[' is not of type array, matrix, or vector ", base->getAsSymbolNode()->getName().c_str(), ""); else error(loc, " left of '[' is not of type array, matrix, or vector ", "expression", ""); } else if (base->getType().getQualifier().storage == EvqConst && index->getQualifier().storage == EvqConst) return intermediate.foldDereference(base, indexValue, loc); else { // at least one of base and index is variable... if (base->getAsSymbolNode() && isIoResizeArray(base->getType())) handleIoResizeArrayAccess(loc, base); if (index->getQualifier().storage == EvqConst) { if (base->getType().isImplicitlySizedArray()) updateImplicitArraySize(loc, base, indexValue); result = intermediate.addIndex(EOpIndexDirect, base, index, loc); } else { result = intermediate.addIndex(EOpIndexIndirect, base, index, loc); } } if (result == nullptr) { // Insert dummy error-recovery result result = intermediate.addConstantUnion(0.0, EbtFloat, loc); } else { // Insert valid dereferenced result TType newType(base->getType(), 0); // dereferenced type if (base->getType().getQualifier().storage == EvqConst && index->getQualifier().storage == EvqConst) newType.getQualifier().storage = EvqConst; else newType.getQualifier().storage = EvqTemporary; result->setType(newType); } return result; } void HlslParseContext::checkIndex(const TSourceLoc& loc, const TType& type, int& index) { // HLSL todo: any rules for index fixups? } // Make a shared symbol have a non-shared version that can be edited by the current // compile, such that editing its type will not change the shared version and will // effect all nodes sharing it. void HlslParseContext::makeEditable(TSymbol*& symbol) { // copyUp() does a deep copy of the type. symbol = symbolTable.copyUp(symbol); // Also, see if it's tied to IO resizing if (isIoResizeArray(symbol->getType())) ioArraySymbolResizeList.push_back(symbol); // Also, save it in the AST for linker use. intermediate.addSymbolLinkageNode(linkage, *symbol); } TVariable* HlslParseContext::getEditableVariable(const char* name) { bool builtIn; TSymbol* symbol = symbolTable.find(name, &builtIn); if (builtIn) makeEditable(symbol); return symbol->getAsVariable(); } // Return true if this is a geometry shader input array or tessellation control output array. bool HlslParseContext::isIoResizeArray(const TType& type) const { return type.isArray() && ((language == EShLangGeometry && type.getQualifier().storage == EvqVaryingIn) || (language == EShLangTessControl && type.getQualifier().storage == EvqVaryingOut && ! type.getQualifier().patch)); } // If an array is not isIoResizeArray() but is an io array, make sure it has the right size void HlslParseContext::fixIoArraySize(const TSourceLoc& loc, TType& type) { if (! type.isArray() || type.getQualifier().patch || symbolTable.atBuiltInLevel()) return; assert(! isIoResizeArray(type)); if (type.getQualifier().storage != EvqVaryingIn || type.getQualifier().patch) return; if (language == EShLangTessControl || language == EShLangTessEvaluation) { if (type.getOuterArraySize() != resources.maxPatchVertices) { if (type.isExplicitlySizedArray()) error(loc, "tessellation input array size must be gl_MaxPatchVertices or implicitly sized", "[]", ""); type.changeOuterArraySize(resources.maxPatchVertices); } } } // Handle a dereference of a geometry shader input array or tessellation control output array. // See ioArraySymbolResizeList comment in ParseHelper.h. // void HlslParseContext::handleIoResizeArrayAccess(const TSourceLoc& /*loc*/, TIntermTyped* base) { TIntermSymbol* symbolNode = base->getAsSymbolNode(); assert(symbolNode); if (! symbolNode) return; // fix array size, if it can be fixed and needs to be fixed (will allow variable indexing) if (symbolNode->getType().isImplicitlySizedArray()) { int newSize = getIoArrayImplicitSize(); if (newSize > 0) symbolNode->getWritableType().changeOuterArraySize(newSize); } } // If there has been an input primitive declaration (geometry shader) or an output // number of vertices declaration(tessellation shader), make sure all input array types // match it in size. Types come either from nodes in the AST or symbols in the // symbol table. // // Types without an array size will be given one. // Types already having a size that is wrong will get an error. // void HlslParseContext::checkIoArraysConsistency(const TSourceLoc& loc, bool tailOnly) { int requiredSize = getIoArrayImplicitSize(); if (requiredSize == 0) return; const char* feature; if (language == EShLangGeometry) feature = TQualifier::getGeometryString(intermediate.getInputPrimitive()); else if (language == EShLangTessControl) feature = "vertices"; else feature = "unknown"; if (tailOnly) { checkIoArrayConsistency(loc, requiredSize, feature, ioArraySymbolResizeList.back()->getWritableType(), ioArraySymbolResizeList.back()->getName()); return; } for (size_t i = 0; i < ioArraySymbolResizeList.size(); ++i) checkIoArrayConsistency(loc, requiredSize, feature, ioArraySymbolResizeList[i]->getWritableType(), ioArraySymbolResizeList[i]->getName()); } int HlslParseContext::getIoArrayImplicitSize() const { if (language == EShLangGeometry) return TQualifier::mapGeometryToSize(intermediate.getInputPrimitive()); else if (language == EShLangTessControl) return intermediate.getVertices() != TQualifier::layoutNotSet ? intermediate.getVertices() : 0; else return 0; } void HlslParseContext::checkIoArrayConsistency(const TSourceLoc& loc, int requiredSize, const char* feature, TType& type, const TString& name) { if (type.isImplicitlySizedArray()) type.changeOuterArraySize(requiredSize); } // Handle seeing a binary node with a math operation. TIntermTyped* HlslParseContext::handleBinaryMath(const TSourceLoc& loc, const char* str, TOperator op, TIntermTyped* left, TIntermTyped* right) { TIntermTyped* result = intermediate.addBinaryMath(op, left, right, loc); if (! result) binaryOpError(loc, str, left->getCompleteString(), right->getCompleteString()); return result; } // Handle seeing a unary node with a math operation. TIntermTyped* HlslParseContext::handleUnaryMath(const TSourceLoc& loc, const char* str, TOperator op, TIntermTyped* childNode) { TIntermTyped* result = intermediate.addUnaryMath(op, childNode, loc); if (result) return result; else unaryOpError(loc, str, childNode->getCompleteString()); return childNode; } // // Handle seeing a base.field dereference in the grammar. // TIntermTyped* HlslParseContext::handleDotDereference(const TSourceLoc& loc, TIntermTyped* base, const TString& field) { variableCheck(base); // // .length() can't be resolved until we later see the function-calling syntax. // Save away the name in the AST for now. Processing is completed in // handleLengthMethod(). // if (field == "length") { return intermediate.addMethod(base, TType(EbtInt), &field, loc); } // It's not .length() if we get to here. if (base->isArray()) { error(loc, "cannot apply to an array:", ".", field.c_str()); return base; } // It's neither an array nor .length() if we get here, // leaving swizzles and struct/block dereferences. TIntermTyped* result = base; if (base->isVector() || base->isScalar()) { TVectorFields fields; if (! parseVectorFields(loc, field, base->getVectorSize(), fields)) { fields.num = 1; fields.offsets[0] = 0; } if (base->isScalar()) { if (fields.num == 1) return result; else { TType type(base->getBasicType(), EvqTemporary, fields.num); return addConstructor(loc, base, type, mapTypeToConstructorOp(type)); } } if (base->getType().getQualifier().isFrontEndConstant()) result = intermediate.foldSwizzle(base, fields, loc); else { if (fields.num == 1) { TIntermTyped* index = intermediate.addConstantUnion(fields.offsets[0], loc); result = intermediate.addIndex(EOpIndexDirect, base, index, loc); result->setType(TType(base->getBasicType(), EvqTemporary, base->getType().getQualifier().precision)); } else { TString vectorString = field; TIntermTyped* index = intermediate.addSwizzle(fields, loc); result = intermediate.addIndex(EOpVectorSwizzle, base, index, loc); result->setType(TType(base->getBasicType(), EvqTemporary, base->getType().getQualifier().precision, (int)vectorString.size())); } } } else if (base->getBasicType() == EbtStruct || base->getBasicType() == EbtBlock) { const TTypeList* fields = base->getType().getStruct(); bool fieldFound = false; int member; for (member = 0; member < (int)fields->size(); ++member) { if ((*fields)[member].type->getFieldName() == field) { fieldFound = true; break; } } if (fieldFound) { if (base->getType().getQualifier().storage == EvqConst) result = intermediate.foldDereference(base, member, loc); else { TIntermTyped* index = intermediate.addConstantUnion(member, loc); result = intermediate.addIndex(EOpIndexDirectStruct, base, index, loc); result->setType(*(*fields)[member].type); } } else error(loc, "no such field in structure", field.c_str(), ""); } else error(loc, "does not apply to this type:", field.c_str(), base->getType().getCompleteString().c_str()); return result; } // // Handle seeing a function declarator in the grammar. This is the precursor // to recognizing a function prototype or function definition. // TFunction* HlslParseContext::handleFunctionDeclarator(const TSourceLoc& loc, TFunction& function, bool prototype) { // // Multiple declarations of the same function name are allowed. // // If this is a definition, the definition production code will check for redefinitions // (we don't know at this point if it's a definition or not). // // Redeclarations (full signature match) are allowed. But, return types and parameter qualifiers must also match. // - except ES 100, which only allows a single prototype // // ES 100 does not allow redefining, but does allow overloading of built-in functions. // ES 300 does not allow redefining or overloading of built-in functions. // bool builtIn; TSymbol* symbol = symbolTable.find(function.getMangledName(), &builtIn); const TFunction* prevDec = symbol ? symbol->getAsFunction() : 0; if (prototype) { // All built-in functions are defined, even though they don't have a body. // Count their prototype as a definition instead. if (symbolTable.atBuiltInLevel()) function.setDefined(); else { if (prevDec && ! builtIn) symbol->getAsFunction()->setPrototyped(); // need a writable one, but like having prevDec as a const function.setPrototyped(); } } // This insert won't actually insert it if it's a duplicate signature, but it will still check for // other forms of name collisions. if (! symbolTable.insert(function)) error(loc, "function name is redeclaration of existing name", function.getName().c_str(), ""); // // If this is a redeclaration, it could also be a definition, // in which case, we need to use the parameter names from this one, and not the one that's // being redeclared. So, pass back this declaration, not the one in the symbol table. // return &function; } // // Handle seeing the function prototype in front of a function definition in the grammar. // The body is handled after this function returns. // TIntermAggregate* HlslParseContext::handleFunctionDefinition(const TSourceLoc& loc, TFunction& function) { currentCaller = function.getMangledName(); TSymbol* symbol = symbolTable.find(function.getMangledName()); TFunction* prevDec = symbol ? symbol->getAsFunction() : nullptr; if (! prevDec) error(loc, "can't find function", function.getName().c_str(), ""); // Note: 'prevDec' could be 'function' if this is the first time we've seen function // as it would have just been put in the symbol table. Otherwise, we're looking up // an earlier occurrence. if (prevDec && prevDec->isDefined()) { // Then this function already has a body. error(loc, "function already has a body", function.getName().c_str(), ""); } if (prevDec && ! prevDec->isDefined()) { prevDec->setDefined(); // Remember the return type for later checking for RETURN statements. currentFunctionType = &(prevDec->getType()); } else currentFunctionType = new TType(EbtVoid); functionReturnsValue = false; inEntrypoint = (function.getName() == intermediate.getEntryPoint().c_str()); if (inEntrypoint) { // parameters are actually shader-level inputs for (int i = 0; i < function.getParamCount(); i++) function[i].type->getQualifier().storage = EvqVaryingIn; } // // New symbol table scope for body of function plus its arguments // pushScope(); // // Insert parameters into the symbol table. // If the parameter has no name, it's not an error, just don't insert it // (could be used for unused args). // // Also, accumulate the list of parameters into the HIL, so lower level code // knows where to find parameters. // TIntermAggregate* paramNodes = new TIntermAggregate; for (int i = 0; i < function.getParamCount(); i++) { TParameter& param = function[i]; if (param.name != nullptr) { TVariable *variable = new TVariable(param.name, *param.type); // Insert the parameters with name in the symbol table. if (! symbolTable.insert(*variable)) error(loc, "redefinition", variable->getName().c_str(), ""); else { // Transfer ownership of name pointer to symbol table. param.name = nullptr; // Add the parameter to the HIL paramNodes = intermediate.growAggregate(paramNodes, intermediate.addSymbol(*variable, loc), loc); } } else paramNodes = intermediate.growAggregate(paramNodes, intermediate.addSymbol(*param.type, loc), loc); } intermediate.setAggregateOperator(paramNodes, EOpParameters, TType(EbtVoid), loc); loopNestingLevel = 0; controlFlowNestingLevel = 0; postMainReturn = false; return paramNodes; } void HlslParseContext::handleFunctionArgument(TFunction* function, TIntermTyped*& arguments, TIntermTyped* newArg) { TParameter param = { 0, new TType }; param.type->shallowCopy(newArg->getType()); function->addParameter(param); if (arguments) arguments = intermediate.growAggregate(arguments, newArg); else arguments = newArg; } // // HLSL atomic operations have slightly different arguments than // GLSL/AST/SPIRV. The semantics are converted below in decomposeIntrinsic. // This provides the post-decomposition equivalent opcode. // TOperator HlslParseContext::mapAtomicOp(const TSourceLoc& loc, TOperator op, bool isImage) { switch (op) { case EOpInterlockedAdd: return isImage ? EOpImageAtomicAdd : EOpAtomicAdd; case EOpInterlockedAnd: return isImage ? EOpImageAtomicAnd : EOpAtomicAnd; case EOpInterlockedCompareExchange: return isImage ? EOpImageAtomicCompSwap : EOpAtomicCompSwap; case EOpInterlockedMax: return isImage ? EOpImageAtomicMax : EOpAtomicMax; case EOpInterlockedMin: return isImage ? EOpImageAtomicMin : EOpAtomicMin; case EOpInterlockedOr: return isImage ? EOpImageAtomicOr : EOpAtomicOr; case EOpInterlockedXor: return isImage ? EOpImageAtomicXor : EOpAtomicXor; case EOpInterlockedExchange: return isImage ? EOpImageAtomicExchange : EOpAtomicExchange; case EOpInterlockedCompareStore: // TODO: ... default: error(loc, "unknown atomic operation", "unknown op", ""); return EOpNull; } } // // Change texture parameters to match AST & SPIR-V semantics // void HlslParseContext::textureParameters(const TSourceLoc& loc, TIntermTyped*& node, TIntermNode* arguments) { if (!node || !node->getAsOperator()) return; const TOperator op = node->getAsOperator()->getOp(); const TIntermAggregate* argAggregate = arguments ? arguments->getAsAggregate() : nullptr; switch (op) { case EOpTexture: { // Texture with ddx & ddy is really gradient form if (argAggregate->getSequence().size() == 4) { node->getAsAggregate()->setOperator(EOpTextureGrad); break; } break; } case EOpTextureBias: { TIntermTyped* arg0 = argAggregate->getSequence()[0]->getAsTyped(); // sampler TIntermTyped* arg1 = argAggregate->getSequence()[1]->getAsTyped(); // coord // HLSL puts bias in W component of coordinate. We extract it and add it to // the argument list, instead TIntermTyped* w = intermediate.addConstantUnion(3, loc, true); TIntermTyped* bias = intermediate.addIndex(EOpIndexDirect, arg1, w, loc); TOperator constructOp = EOpNull; switch (arg0->getType().getSampler().dim) { case Esd1D: constructOp = EOpConstructFloat; break; // 1D case Esd2D: constructOp = EOpConstructVec2; break; // 2D case Esd3D: constructOp = EOpConstructVec3; break; // 3D case EsdCube: constructOp = EOpConstructVec3; break; // also 3D default: break; } TIntermAggregate* constructCoord = new TIntermAggregate(constructOp); constructCoord->getSequence().push_back(arg1); constructCoord->setLoc(loc); TIntermAggregate* tex = new TIntermAggregate(EOpTexture); tex->getSequence().push_back(arg0); // sampler tex->getSequence().push_back(constructCoord); // coordinate tex->getSequence().push_back(bias); // bias tex->setLoc(loc); node = tex; break; } default: break; // most pass through unchanged } } // // Optionally decompose intrinsics to AST opcodes. // void HlslParseContext::decomposeIntrinsic(const TSourceLoc& loc, TIntermTyped*& node, TIntermNode* arguments) { // HLSL intrinsics can be pass through to native AST opcodes, or decomposed here to existing AST // opcodes for compatibility with existing software stacks. static const bool decomposeHlslIntrinsics = true; if (!decomposeHlslIntrinsics || !node || !node->getAsOperator()) return; const TIntermAggregate* argAggregate = arguments ? arguments->getAsAggregate() : nullptr; TIntermUnary* fnUnary = node->getAsUnaryNode(); const TOperator op = node->getAsOperator()->getOp(); switch (op) { case EOpGenMul: { // mul(a,b) -> MatrixTimesMatrix, MatrixTimesVector, MatrixTimesScalar, VectorTimesScalar, Dot, Mul TIntermTyped* arg0 = argAggregate->getSequence()[0]->getAsTyped(); TIntermTyped* arg1 = argAggregate->getSequence()[1]->getAsTyped(); if (arg0->isVector() && arg1->isVector()) { // vec * vec node->getAsAggregate()->setOperator(EOpDot); } else { node = handleBinaryMath(loc, "mul", EOpMul, arg0, arg1); } break; } case EOpRcp: { // rcp(a) -> 1 / a TIntermTyped* arg0 = fnUnary->getOperand(); TBasicType type0 = arg0->getBasicType(); TIntermTyped* one = intermediate.addConstantUnion(1, type0, loc, true); node = handleBinaryMath(loc, "rcp", EOpDiv, one, arg0); break; } case EOpSaturate: { // saturate(a) -> clamp(a,0,1) TIntermTyped* arg0 = fnUnary->getOperand(); TBasicType type0 = arg0->getBasicType(); TIntermAggregate* clamp = new TIntermAggregate(EOpClamp); clamp->getSequence().push_back(arg0); clamp->getSequence().push_back(intermediate.addConstantUnion(0, type0, loc, true)); clamp->getSequence().push_back(intermediate.addConstantUnion(1, type0, loc, true)); clamp->setLoc(loc); clamp->setType(node->getType()); clamp->getWritableType().getQualifier().makeTemporary(); node = clamp; break; } case EOpSinCos: { // sincos(a,b,c) -> b = sin(a), c = cos(a) TIntermTyped* arg0 = argAggregate->getSequence()[0]->getAsTyped(); TIntermTyped* arg1 = argAggregate->getSequence()[1]->getAsTyped(); TIntermTyped* arg2 = argAggregate->getSequence()[2]->getAsTyped(); TIntermTyped* sinStatement = handleUnaryMath(loc, "sin", EOpSin, arg0); TIntermTyped* cosStatement = handleUnaryMath(loc, "cos", EOpCos, arg0); TIntermTyped* sinAssign = intermediate.addAssign(EOpAssign, arg1, sinStatement, loc); TIntermTyped* cosAssign = intermediate.addAssign(EOpAssign, arg2, cosStatement, loc); TIntermAggregate* compoundStatement = intermediate.makeAggregate(sinAssign, loc); compoundStatement = intermediate.growAggregate(compoundStatement, cosAssign); compoundStatement->setOperator(EOpSequence); compoundStatement->setLoc(loc); compoundStatement->setType(TType(EbtVoid)); node = compoundStatement; break; } case EOpClip: { // clip(a) -> if (any(a<0)) discard; TIntermTyped* arg0 = fnUnary->getOperand(); TBasicType type0 = arg0->getBasicType(); TIntermTyped* compareNode = nullptr; // For non-scalars: per experiment with FXC compiler, discard if any component < 0. if (!arg0->isScalar()) { // component-wise compare: a < 0 TIntermAggregate* less = new TIntermAggregate(EOpLessThan); less->getSequence().push_back(arg0); less->setLoc(loc); // make vec or mat of bool matching dimensions of input less->setType(TType(EbtBool, EvqTemporary, arg0->getType().getVectorSize(), arg0->getType().getMatrixCols(), arg0->getType().getMatrixRows(), arg0->getType().isVector())); // calculate # of components for comparison const const int constComponentCount = std::max(arg0->getType().getVectorSize(), 1) * std::max(arg0->getType().getMatrixCols(), 1) * std::max(arg0->getType().getMatrixRows(), 1); TConstUnion zero; zero.setDConst(0.0); TConstUnionArray zeros(constComponentCount, zero); less->getSequence().push_back(intermediate.addConstantUnion(zeros, arg0->getType(), loc, true)); compareNode = intermediate.addBuiltInFunctionCall(loc, EOpAny, true, less, TType(EbtBool)); } else { TIntermTyped* zero = intermediate.addConstantUnion(0, type0, loc, true); compareNode = handleBinaryMath(loc, "clip", EOpLessThan, arg0, zero); } TIntermBranch* killNode = intermediate.addBranch(EOpKill, loc); node = new TIntermSelection(compareNode, killNode, nullptr); node->setLoc(loc); break; } case EOpLog10: { // log10(a) -> log2(a) * 0.301029995663981 (== 1/log2(10)) TIntermTyped* arg0 = fnUnary->getOperand(); TIntermTyped* log2 = handleUnaryMath(loc, "log2", EOpLog2, arg0); TIntermTyped* base = intermediate.addConstantUnion(0.301029995663981f, EbtFloat, loc, true); node = handleBinaryMath(loc, "mul", EOpMul, log2, base); break; } case EOpDst: { // dest.x = 1; // dest.y = src0.y * src1.y; // dest.z = src0.z; // dest.w = src1.w; TIntermTyped* arg0 = argAggregate->getSequence()[0]->getAsTyped(); TIntermTyped* arg1 = argAggregate->getSequence()[1]->getAsTyped(); TBasicType type0 = arg0->getBasicType(); TIntermTyped* x = intermediate.addConstantUnion(0, loc, true); TIntermTyped* y = intermediate.addConstantUnion(1, loc, true); TIntermTyped* z = intermediate.addConstantUnion(2, loc, true); TIntermTyped* w = intermediate.addConstantUnion(3, loc, true); TIntermTyped* src0y = intermediate.addIndex(EOpIndexDirect, arg0, y, loc); TIntermTyped* src1y = intermediate.addIndex(EOpIndexDirect, arg1, y, loc); TIntermTyped* src0z = intermediate.addIndex(EOpIndexDirect, arg0, z, loc); TIntermTyped* src1w = intermediate.addIndex(EOpIndexDirect, arg1, w, loc); TIntermAggregate* dst = new TIntermAggregate(EOpConstructVec4); dst->getSequence().push_back(intermediate.addConstantUnion(1.0, EbtFloat, loc, true)); dst->getSequence().push_back(handleBinaryMath(loc, "mul", EOpMul, src0y, src1y)); dst->getSequence().push_back(src0z); dst->getSequence().push_back(src1w); dst->setType(TType(EbtFloat, EvqTemporary, 4)); dst->setLoc(loc); node = dst; break; } case EOpInterlockedAdd: // optional last argument (if present) is assigned from return value case EOpInterlockedMin: // ... case EOpInterlockedMax: // ... case EOpInterlockedAnd: // ... case EOpInterlockedOr: // ... case EOpInterlockedXor: // ... case EOpInterlockedExchange: // always has output arg { TIntermTyped* arg0 = argAggregate->getSequence()[0]->getAsTyped(); TIntermTyped* arg1 = argAggregate->getSequence()[1]->getAsTyped(); const bool isImage = arg0->getType().isImage(); const TOperator atomicOp = mapAtomicOp(loc, op, isImage); if (argAggregate->getSequence().size() > 2) { // optional output param is present. return value goes to arg2. TIntermTyped* arg2 = argAggregate->getSequence()[2]->getAsTyped(); TIntermAggregate* atomic = new TIntermAggregate(atomicOp); atomic->getSequence().push_back(arg0); atomic->getSequence().push_back(arg1); atomic->setLoc(loc); atomic->setType(arg0->getType()); atomic->getWritableType().getQualifier().makeTemporary(); node = intermediate.addAssign(EOpAssign, arg2, atomic, loc); } else { // Set the matching operator. Since output is absent, this is all we need to do. node->getAsAggregate()->setOperator(atomicOp); } break; } case EOpInterlockedCompareExchange: { TIntermTyped* arg0 = argAggregate->getSequence()[0]->getAsTyped(); // dest TIntermTyped* arg1 = argAggregate->getSequence()[1]->getAsTyped(); // cmp TIntermTyped* arg2 = argAggregate->getSequence()[2]->getAsTyped(); // value TIntermTyped* arg3 = argAggregate->getSequence()[3]->getAsTyped(); // orig const bool isImage = arg0->getType().isImage(); TIntermAggregate* atomic = new TIntermAggregate(mapAtomicOp(loc, op, isImage)); atomic->getSequence().push_back(arg0); atomic->getSequence().push_back(arg1); atomic->getSequence().push_back(arg2); atomic->setLoc(loc); atomic->setType(arg2->getType()); atomic->getWritableType().getQualifier().makeTemporary(); node = intermediate.addAssign(EOpAssign, arg3, atomic, loc); break; } case EOpEvaluateAttributeSnapped: { // SPIR-V InterpolateAtOffset uses float vec2 offset in pixels // HLSL uses int2 offset on a 16x16 grid in [-8..7] on x & y: // iU = (iU<<28)>>28 // fU = ((float)iU)/16 // Targets might handle this natively, in which case they can disable // decompositions. TIntermTyped* arg0 = argAggregate->getSequence()[0]->getAsTyped(); // value TIntermTyped* arg1 = argAggregate->getSequence()[1]->getAsTyped(); // offset TIntermTyped* i28 = intermediate.addConstantUnion(28, loc, true); TIntermTyped* iU = handleBinaryMath(loc, ">>", EOpRightShift, handleBinaryMath(loc, "<<", EOpLeftShift, arg1, i28), i28); TIntermTyped* recip16 = intermediate.addConstantUnion((1.0/16.0), EbtFloat, loc, true); TIntermTyped* floatOffset = handleBinaryMath(loc, "mul", EOpMul, intermediate.addConversion(EOpConstructFloat, TType(EbtFloat, EvqTemporary, 2), iU), recip16); TIntermAggregate* interp = new TIntermAggregate(EOpInterpolateAtOffset); interp->getSequence().push_back(arg0); interp->getSequence().push_back(floatOffset); interp->setLoc(loc); interp->setType(arg0->getType()); interp->getWritableType().getQualifier().makeTemporary(); node = interp; break; } case EOpLit: { TIntermTyped* n_dot_l = argAggregate->getSequence()[0]->getAsTyped(); TIntermTyped* n_dot_h = argAggregate->getSequence()[1]->getAsTyped(); TIntermTyped* m = argAggregate->getSequence()[2]->getAsTyped(); TIntermAggregate* dst = new TIntermAggregate(EOpConstructVec4); // Ambient dst->getSequence().push_back(intermediate.addConstantUnion(1.0, EbtFloat, loc, true)); // Diffuse: TIntermTyped* zero = intermediate.addConstantUnion(0.0, EbtFloat, loc, true); TIntermAggregate* diffuse = new TIntermAggregate(EOpMax); diffuse->getSequence().push_back(n_dot_l); diffuse->getSequence().push_back(zero); diffuse->setLoc(loc); diffuse->setType(TType(EbtFloat)); dst->getSequence().push_back(diffuse); // Specular: TIntermAggregate* min_ndot = new TIntermAggregate(EOpMin); min_ndot->getSequence().push_back(n_dot_l); min_ndot->getSequence().push_back(n_dot_h); min_ndot->setLoc(loc); min_ndot->setType(TType(EbtFloat)); TIntermTyped* compare = handleBinaryMath(loc, "<", EOpLessThan, min_ndot, zero); TIntermTyped* n_dot_h_m = handleBinaryMath(loc, "mul", EOpMul, n_dot_h, m); // n_dot_h * m dst->getSequence().push_back(intermediate.addSelection(compare, zero, n_dot_h_m, loc)); // One: dst->getSequence().push_back(intermediate.addConstantUnion(1.0, EbtFloat, loc, true)); dst->setLoc(loc); dst->setType(TType(EbtFloat, EvqTemporary, 4)); node = dst; break; } case EOpAsDouble: { // asdouble accepts two 32 bit ints. we can use EOpUint64BitsToDouble, but must // first construct a uint64. TIntermTyped* arg0 = argAggregate->getSequence()[0]->getAsTyped(); TIntermTyped* arg1 = argAggregate->getSequence()[1]->getAsTyped(); if (arg0->getType().isVector()) { // TODO: ... error(loc, "double2 conversion not implemented", "asdouble", ""); break; } TIntermAggregate* uint64 = new TIntermAggregate(EOpConstructUVec2); uint64->getSequence().push_back(arg0); uint64->getSequence().push_back(arg1); uint64->setType(TType(EbtUint, EvqTemporary, 2)); // convert 2 uints to a uint2 uint64->setLoc(loc); // bitcast uint2 to a double TIntermTyped* convert = new TIntermUnary(EOpUint64BitsToDouble); convert->getAsUnaryNode()->setOperand(uint64); convert->setLoc(loc); convert->setType(TType(EbtDouble, EvqTemporary)); node = convert; break; } case EOpF16tof32: case EOpF32tof16: { // Temporary until decomposition is available. error(loc, "unimplemented intrinsic: handle natively", "f32tof16", ""); break; } default: break; // most pass through unchanged } } // // Handle seeing function call syntax in the grammar, which could be any of // - .length() method // - constructor // - a call to a built-in function mapped to an operator // - a call to a built-in function that will remain a function call (e.g., texturing) // - user function // - subroutine call (not implemented yet) // TIntermTyped* HlslParseContext::handleFunctionCall(const TSourceLoc& loc, TFunction* function, TIntermNode* arguments) { TIntermTyped* result = nullptr; TOperator op = function->getBuiltInOp(); if (op == EOpArrayLength) result = handleLengthMethod(loc, function, arguments); else if (op != EOpNull) { // // Then this should be a constructor. // Don't go through the symbol table for constructors. // Their parameters will be verified algorithmically. // TType type(EbtVoid); // use this to get the type back if (! constructorError(loc, arguments, *function, op, type)) { // // It's a constructor, of type 'type'. // result = addConstructor(loc, arguments, type, op); if (result == nullptr) error(loc, "cannot construct with these arguments", type.getCompleteString().c_str(), ""); } } else { // // Find it in the symbol table. // const TFunction* fnCandidate; bool builtIn; fnCandidate = findFunction(loc, *function, builtIn); if (fnCandidate) { // This is a declared function that might map to // - a built-in operator, // - a built-in function not mapped to an operator, or // - a user function. // Error check for a function requiring specific extensions present. if (builtIn && fnCandidate->getNumExtensions()) requireExtensions(loc, fnCandidate->getNumExtensions(), fnCandidate->getExtensions(), fnCandidate->getName().c_str()); if (arguments) { // Make sure qualifications work for these arguments. TIntermAggregate* aggregate = arguments->getAsAggregate(); for (int i = 0; i < fnCandidate->getParamCount(); ++i) { // At this early point there is a slight ambiguity between whether an aggregate 'arguments' // is the single argument itself or its children are the arguments. Only one argument // means take 'arguments' itself as the one argument. TIntermNode* arg = fnCandidate->getParamCount() == 1 ? arguments : (aggregate ? aggregate->getSequence()[i] : arguments); TQualifier& formalQualifier = (*fnCandidate)[i].type->getQualifier(); TQualifier& argQualifier = arg->getAsTyped()->getQualifier(); } // Convert 'in' arguments addInputArgumentConversions(*fnCandidate, arguments); // arguments may be modified if it's just a single argument node } op = fnCandidate->getBuiltInOp(); if (builtIn && op != EOpNull) { // A function call mapped to a built-in operation. result = intermediate.addBuiltInFunctionCall(loc, op, fnCandidate->getParamCount() == 1, arguments, fnCandidate->getType()); if (result == nullptr) { error(arguments->getLoc(), " wrong operand type", "Internal Error", "built in unary operator function. Type: %s", static_cast(arguments)->getCompleteString().c_str()); } else if (result->getAsOperator()) { builtInOpCheck(loc, *fnCandidate, *result->getAsOperator()); } } else { // This is a function call not mapped to built-in operator. // It could still be a built-in function, but only if PureOperatorBuiltins == false. result = intermediate.setAggregateOperator(arguments, EOpFunctionCall, fnCandidate->getType(), loc); TIntermAggregate* call = result->getAsAggregate(); call->setName(fnCandidate->getMangledName()); // this is how we know whether the given function is a built-in function or a user-defined function // if builtIn == false, it's a userDefined -> could be an overloaded built-in function also // if builtIn == true, it's definitely a built-in function with EOpNull if (! builtIn) { call->setUserDefined(); intermediate.addToCallGraph(infoSink, currentCaller, fnCandidate->getMangledName()); } } // Convert 'out' arguments. If it was a constant folded built-in, it won't be an aggregate anymore. // Built-ins with a single argument aren't called with an aggregate, but they also don't have an output. // Also, build the qualifier list for user function calls, which are always called with an aggregate. if (result->getAsAggregate()) { TQualifierList& qualifierList = result->getAsAggregate()->getQualifierList(); for (int i = 0; i < fnCandidate->getParamCount(); ++i) { TStorageQualifier qual = (*fnCandidate)[i].type->getQualifier().storage; qualifierList.push_back(qual); } result = addOutputArgumentConversions(*fnCandidate, *result->getAsAggregate()); } decomposeIntrinsic(loc, result, arguments); textureParameters(loc, result, arguments); } } // generic error recovery // TODO: simplification: localize all the error recoveries that look like this, and taking type into account to reduce cascades if (result == nullptr) result = intermediate.addConstantUnion(0.0, EbtFloat, loc); return result; } // Finish processing object.length(). This started earlier in handleDotDereference(), where // the ".length" part was recognized and semantically checked, and finished here where the // function syntax "()" is recognized. // // Return resulting tree node. TIntermTyped* HlslParseContext::handleLengthMethod(const TSourceLoc& loc, TFunction* function, TIntermNode* intermNode) { int length = 0; if (function->getParamCount() > 0) error(loc, "method does not accept any arguments", function->getName().c_str(), ""); else { const TType& type = intermNode->getAsTyped()->getType(); if (type.isArray()) { if (type.isRuntimeSizedArray()) { // Create a unary op and let the back end handle it return intermediate.addBuiltInFunctionCall(loc, EOpArrayLength, true, intermNode, TType(EbtInt)); } else if (type.isImplicitlySizedArray()) { if (intermNode->getAsSymbolNode() && isIoResizeArray(type)) { // We could be between a layout declaration that gives a built-in io array implicit size and // a user redeclaration of that array, meaning we have to substitute its implicit size here // without actually redeclaring the array. (It is an error to use a member before the // redeclaration, but not an error to use the array name itself.) const TString& name = intermNode->getAsSymbolNode()->getName(); if (name == "gl_in" || name == "gl_out") length = getIoArrayImplicitSize(); } if (length == 0) { if (intermNode->getAsSymbolNode() && isIoResizeArray(type)) error(loc, "", function->getName().c_str(), "array must first be sized by a redeclaration or layout qualifier"); else error(loc, "", function->getName().c_str(), "array must be declared with a size before using this method"); } } else length = type.getOuterArraySize(); } else if (type.isMatrix()) length = type.getMatrixCols(); else if (type.isVector()) length = type.getVectorSize(); else { // we should not get here, because earlier semantic checking should have prevented this path error(loc, ".length()", "unexpected use of .length()", ""); } } if (length == 0) length = 1; return intermediate.addConstantUnion(length, loc); } // // Add any needed implicit conversions for function-call arguments to input parameters. // void HlslParseContext::addInputArgumentConversions(const TFunction& function, TIntermNode*& arguments) const { TIntermAggregate* aggregate = arguments->getAsAggregate(); // Process each argument's conversion for (int i = 0; i < function.getParamCount(); ++i) { // At this early point there is a slight ambiguity between whether an aggregate 'arguments' // is the single argument itself or its children are the arguments. Only one argument // means take 'arguments' itself as the one argument. TIntermTyped* arg = function.getParamCount() == 1 ? arguments->getAsTyped() : (aggregate ? aggregate->getSequence()[i]->getAsTyped() : arguments->getAsTyped()); if (*function[i].type != arg->getType()) { if (function[i].type->getQualifier().isParamInput()) { // In-qualified arguments just need an extra node added above the argument to // convert to the correct type. arg = intermediate.addConversion(EOpFunctionCall, *function[i].type, arg); if (arg) { if (function.getParamCount() == 1) arguments = arg; else { if (aggregate) aggregate->getSequence()[i] = arg; else arguments = arg; } } } } } } // // Add any needed implicit output conversions for function-call arguments. This // can require a new tree topology, complicated further by whether the function // has a return value. // // Returns a node of a subtree that evaluates to the return value of the function. // TIntermTyped* HlslParseContext::addOutputArgumentConversions(const TFunction& function, TIntermAggregate& intermNode) const { TIntermSequence& arguments = intermNode.getSequence(); // Will there be any output conversions? bool outputConversions = false; for (int i = 0; i < function.getParamCount(); ++i) { if (*function[i].type != arguments[i]->getAsTyped()->getType() && function[i].type->getQualifier().storage == EvqOut) { outputConversions = true; break; } } if (! outputConversions) return &intermNode; // Setup for the new tree, if needed: // // Output conversions need a different tree topology. // Out-qualified arguments need a temporary of the correct type, with the call // followed by an assignment of the temporary to the original argument: // void: function(arg, ...) -> ( function(tempArg, ...), arg = tempArg, ...) // ret = function(arg, ...) -> ret = (tempRet = function(tempArg, ...), arg = tempArg, ..., tempRet) // Where the "tempArg" type needs no conversion as an argument, but will convert on assignment. TIntermTyped* conversionTree = nullptr; TVariable* tempRet = nullptr; if (intermNode.getBasicType() != EbtVoid) { // do the "tempRet = function(...), " bit from above tempRet = makeInternalVariable("tempReturn", intermNode.getType()); TIntermSymbol* tempRetNode = intermediate.addSymbol(*tempRet, intermNode.getLoc()); conversionTree = intermediate.addAssign(EOpAssign, tempRetNode, &intermNode, intermNode.getLoc()); } else conversionTree = &intermNode; conversionTree = intermediate.makeAggregate(conversionTree); // Process each argument's conversion for (int i = 0; i < function.getParamCount(); ++i) { if (*function[i].type != arguments[i]->getAsTyped()->getType()) { if (function[i].type->getQualifier().isParamOutput()) { // Out-qualified arguments need to use the topology set up above. // do the " ...(tempArg, ...), arg = tempArg" bit from above TVariable* tempArg = makeInternalVariable("tempArg", *function[i].type); tempArg->getWritableType().getQualifier().makeTemporary(); TIntermSymbol* tempArgNode = intermediate.addSymbol(*tempArg, intermNode.getLoc()); TIntermTyped* tempAssign = intermediate.addAssign(EOpAssign, arguments[i]->getAsTyped(), tempArgNode, arguments[i]->getLoc()); conversionTree = intermediate.growAggregate(conversionTree, tempAssign, arguments[i]->getLoc()); // replace the argument with another node for the same tempArg variable arguments[i] = intermediate.addSymbol(*tempArg, intermNode.getLoc()); } } } // Finalize the tree topology (see bigger comment above). if (tempRet) { // do the "..., tempRet" bit from above TIntermSymbol* tempRetNode = intermediate.addSymbol(*tempRet, intermNode.getLoc()); conversionTree = intermediate.growAggregate(conversionTree, tempRetNode, intermNode.getLoc()); } conversionTree = intermediate.setAggregateOperator(conversionTree, EOpComma, intermNode.getType(), intermNode.getLoc()); return conversionTree; } // // Do additional checking of built-in function calls that is not caught // by normal semantic checks on argument type, extension tagging, etc. // // Assumes there has been a semantically correct match to a built-in function prototype. // void HlslParseContext::builtInOpCheck(const TSourceLoc& loc, const TFunction& fnCandidate, TIntermOperator& callNode) { // Set up convenience accessors to the argument(s). There is almost always // multiple arguments for the cases below, but when there might be one, // check the unaryArg first. const TIntermSequence* argp = nullptr; // confusing to use [] syntax on a pointer, so this is to help get a reference const TIntermTyped* unaryArg = nullptr; const TIntermTyped* arg0 = nullptr; if (callNode.getAsAggregate()) { argp = &callNode.getAsAggregate()->getSequence(); if (argp->size() > 0) arg0 = (*argp)[0]->getAsTyped(); } else { assert(callNode.getAsUnaryNode()); unaryArg = callNode.getAsUnaryNode()->getOperand(); arg0 = unaryArg; } const TIntermSequence& aggArgs = *argp; // only valid when unaryArg is nullptr // built-in texturing functions get their return value precision from the precision of the sampler if (fnCandidate.getType().getQualifier().precision == EpqNone && fnCandidate.getParamCount() > 0 && fnCandidate[0].type->getBasicType() == EbtSampler) callNode.getQualifier().precision = arg0->getQualifier().precision; switch (callNode.getOp()) { case EOpTextureGather: case EOpTextureGatherOffset: case EOpTextureGatherOffsets: { // Figure out which variants are allowed by what extensions, // and what arguments must be constant for which situations. TString featureString = fnCandidate.getName() + "(...)"; const char* feature = featureString.c_str(); int compArg = -1; // track which argument, if any, is the constant component argument switch (callNode.getOp()) { case EOpTextureGather: // More than two arguments needs gpu_shader5, and rectangular or shadow needs gpu_shader5, // otherwise, need GL_ARB_texture_gather. if (fnCandidate.getParamCount() > 2 || fnCandidate[0].type->getSampler().dim == EsdRect || fnCandidate[0].type->getSampler().shadow) { if (! fnCandidate[0].type->getSampler().shadow) compArg = 2; } break; case EOpTextureGatherOffset: // GL_ARB_texture_gather is good enough for 2D non-shadow textures with no component argument if (! fnCandidate[0].type->getSampler().shadow) compArg = 3; break; case EOpTextureGatherOffsets: if (! fnCandidate[0].type->getSampler().shadow) compArg = 3; break; default: break; } if (compArg > 0 && compArg < fnCandidate.getParamCount()) { if (aggArgs[compArg]->getAsConstantUnion()) { int value = aggArgs[compArg]->getAsConstantUnion()->getConstArray()[0].getIConst(); if (value < 0 || value > 3) error(loc, "must be 0, 1, 2, or 3:", feature, "component argument"); } else error(loc, "must be a compile-time constant:", feature, "component argument"); } break; } case EOpTextureOffset: case EOpTextureFetchOffset: case EOpTextureProjOffset: case EOpTextureLodOffset: case EOpTextureProjLodOffset: case EOpTextureGradOffset: case EOpTextureProjGradOffset: { // Handle texture-offset limits checking // Pick which argument has to hold constant offsets int arg = -1; switch (callNode.getOp()) { case EOpTextureOffset: arg = 2; break; case EOpTextureFetchOffset: arg = (arg0->getType().getSampler().dim != EsdRect) ? 3 : 2; break; case EOpTextureProjOffset: arg = 2; break; case EOpTextureLodOffset: arg = 3; break; case EOpTextureProjLodOffset: arg = 3; break; case EOpTextureGradOffset: arg = 4; break; case EOpTextureProjGradOffset: arg = 4; break; default: assert(0); break; } if (arg > 0) { if (! aggArgs[arg]->getAsConstantUnion()) error(loc, "argument must be compile-time constant", "texel offset", ""); else { const TType& type = aggArgs[arg]->getAsTyped()->getType(); for (int c = 0; c < type.getVectorSize(); ++c) { int offset = aggArgs[arg]->getAsConstantUnion()->getConstArray()[c].getIConst(); if (offset > resources.maxProgramTexelOffset || offset < resources.minProgramTexelOffset) error(loc, "value is out of range:", "texel offset", "[gl_MinProgramTexelOffset, gl_MaxProgramTexelOffset]"); } } } break; } case EOpTextureQuerySamples: case EOpImageQuerySamples: break; case EOpImageAtomicAdd: case EOpImageAtomicMin: case EOpImageAtomicMax: case EOpImageAtomicAnd: case EOpImageAtomicOr: case EOpImageAtomicXor: case EOpImageAtomicExchange: case EOpImageAtomicCompSwap: break; case EOpInterpolateAtCentroid: case EOpInterpolateAtSample: case EOpInterpolateAtOffset: // "For the interpolateAt* functions, the call will return a precision // qualification matching the precision of the 'interpolant' argument to // the function call." callNode.getQualifier().precision = arg0->getQualifier().precision; // Make sure the first argument is an interpolant, or an array element of an interpolant if (arg0->getType().getQualifier().storage != EvqVaryingIn) { // It might still be an array element. // // We could check more, but the semantics of the first argument are already met; the // only way to turn an array into a float/vec* is array dereference and swizzle. // // ES and desktop 4.3 and earlier: swizzles may not be used // desktop 4.4 and later: swizzles may be used const TIntermTyped* base = TIntermediate::findLValueBase(arg0, true); if (base == nullptr || base->getType().getQualifier().storage != EvqVaryingIn) error(loc, "first argument must be an interpolant, or interpolant-array element", fnCandidate.getName().c_str(), ""); } break; default: break; } } // // Handle seeing a built-in constructor in a grammar production. // TFunction* HlslParseContext::handleConstructorCall(const TSourceLoc& loc, const TType& type) { TOperator op = mapTypeToConstructorOp(type); if (op == EOpNull) { error(loc, "cannot construct this type", type.getBasicString(), ""); return nullptr; } TString empty(""); return new TFunction(&empty, type, op); } // // Handle seeing a "COLON semantic" at the end of a type declaration, // by updating the type according to the semantic. // void HlslParseContext::handleSemantic(TType& type, const TString& semantic) { // TODO: need to know if it's an input or an output // The following sketches what needs to be done, but can't be right // without taking into account stage and input/output. if (semantic == "PSIZE") type.getQualifier().builtIn = EbvPointSize; else if (semantic == "POSITION") type.getQualifier().builtIn = EbvPosition; else if (semantic == "FOG") type.getQualifier().builtIn = EbvFogFragCoord; else if (semantic == "DEPTH" || semantic == "SV_Depth") type.getQualifier().builtIn = EbvFragDepth; else if (semantic == "VFACE" || semantic == "SV_IsFrontFace") type.getQualifier().builtIn = EbvFace; else if (semantic == "VPOS" || semantic == "SV_Position") type.getQualifier().builtIn = EbvFragCoord; else if (semantic == "SV_ClipDistance") type.getQualifier().builtIn = EbvClipDistance; else if (semantic == "SV_CullDistance") type.getQualifier().builtIn = EbvCullDistance; else if (semantic == "SV_VertexID") type.getQualifier().builtIn = EbvVertexId; else if (semantic == "SV_ViewportArrayIndex") type.getQualifier().builtIn = EbvViewportIndex; } // // Given a type, find what operation would fully construct it. // TOperator HlslParseContext::mapTypeToConstructorOp(const TType& type) const { TOperator op = EOpNull; switch (type.getBasicType()) { case EbtStruct: op = EOpConstructStruct; break; case EbtSampler: if (type.getSampler().combined) op = EOpConstructTextureSampler; break; case EbtFloat: if (type.isMatrix()) { switch (type.getMatrixCols()) { case 2: switch (type.getMatrixRows()) { case 2: op = EOpConstructMat2x2; break; case 3: op = EOpConstructMat2x3; break; case 4: op = EOpConstructMat2x4; break; default: break; // some compilers want this } break; case 3: switch (type.getMatrixRows()) { case 2: op = EOpConstructMat3x2; break; case 3: op = EOpConstructMat3x3; break; case 4: op = EOpConstructMat3x4; break; default: break; // some compilers want this } break; case 4: switch (type.getMatrixRows()) { case 2: op = EOpConstructMat4x2; break; case 3: op = EOpConstructMat4x3; break; case 4: op = EOpConstructMat4x4; break; default: break; // some compilers want this } break; default: break; // some compilers want this } } else { switch (type.getVectorSize()) { case 1: op = EOpConstructFloat; break; case 2: op = EOpConstructVec2; break; case 3: op = EOpConstructVec3; break; case 4: op = EOpConstructVec4; break; default: break; // some compilers want this } } break; case EbtDouble: if (type.getMatrixCols()) { switch (type.getMatrixCols()) { case 2: switch (type.getMatrixRows()) { case 2: op = EOpConstructDMat2x2; break; case 3: op = EOpConstructDMat2x3; break; case 4: op = EOpConstructDMat2x4; break; default: break; // some compilers want this } break; case 3: switch (type.getMatrixRows()) { case 2: op = EOpConstructDMat3x2; break; case 3: op = EOpConstructDMat3x3; break; case 4: op = EOpConstructDMat3x4; break; default: break; // some compilers want this } break; case 4: switch (type.getMatrixRows()) { case 2: op = EOpConstructDMat4x2; break; case 3: op = EOpConstructDMat4x3; break; case 4: op = EOpConstructDMat4x4; break; default: break; // some compilers want this } break; } } else { switch (type.getVectorSize()) { case 1: op = EOpConstructDouble; break; case 2: op = EOpConstructDVec2; break; case 3: op = EOpConstructDVec3; break; case 4: op = EOpConstructDVec4; break; default: break; // some compilers want this } } break; case EbtInt: switch (type.getVectorSize()) { case 1: op = EOpConstructInt; break; case 2: op = EOpConstructIVec2; break; case 3: op = EOpConstructIVec3; break; case 4: op = EOpConstructIVec4; break; default: break; // some compilers want this } break; case EbtUint: switch (type.getVectorSize()) { case 1: op = EOpConstructUint; break; case 2: op = EOpConstructUVec2; break; case 3: op = EOpConstructUVec3; break; case 4: op = EOpConstructUVec4; break; default: break; // some compilers want this } break; case EbtBool: switch (type.getVectorSize()) { case 1: op = EOpConstructBool; break; case 2: op = EOpConstructBVec2; break; case 3: op = EOpConstructBVec3; break; case 4: op = EOpConstructBVec4; break; default: break; // some compilers want this } break; default: break; } return op; } // // Same error message for all places assignments don't work. // void HlslParseContext::assignError(const TSourceLoc& loc, const char* op, TString left, TString right) { error(loc, "", op, "cannot convert from '%s' to '%s'", right.c_str(), left.c_str()); } // // Same error message for all places unary operations don't work. // void HlslParseContext::unaryOpError(const TSourceLoc& loc, const char* op, TString operand) { error(loc, " wrong operand type", op, "no operation '%s' exists that takes an operand of type %s (or there is no acceptable conversion)", op, operand.c_str()); } // // Same error message for all binary operations don't work. // void HlslParseContext::binaryOpError(const TSourceLoc& loc, const char* op, TString left, TString right) { error(loc, " wrong operand types:", op, "no operation '%s' exists that takes a left-hand operand of type '%s' and " "a right operand of type '%s' (or there is no acceptable conversion)", op, left.c_str(), right.c_str()); } // // A basic type of EbtVoid is a key that the name string was seen in the source, but // it was not found as a variable in the symbol table. If so, give the error // message and insert a dummy variable in the symbol table to prevent future errors. // void HlslParseContext::variableCheck(TIntermTyped*& nodePtr) { TIntermSymbol* symbol = nodePtr->getAsSymbolNode(); if (! symbol) return; if (symbol->getType().getBasicType() == EbtVoid) { error(symbol->getLoc(), "undeclared identifier", symbol->getName().c_str(), ""); // Add to symbol table to prevent future error messages on the same name if (symbol->getName().size() > 0) { TVariable* fakeVariable = new TVariable(&symbol->getName(), TType(EbtFloat)); symbolTable.insert(*fakeVariable); // substitute a symbol node for this new variable nodePtr = intermediate.addSymbol(*fakeVariable, symbol->getLoc()); } } } // // Both test, and if necessary spit out an error, to see if the node is really // a constant. // void HlslParseContext::constantValueCheck(TIntermTyped* node, const char* token) { if (node->getQualifier().storage != EvqConst) error(node->getLoc(), "constant expression required", token, ""); } // // Both test, and if necessary spit out an error, to see if the node is really // an integer. // void HlslParseContext::integerCheck(const TIntermTyped* node, const char* token) { if ((node->getBasicType() == EbtInt || node->getBasicType() == EbtUint) && node->isScalar()) return; error(node->getLoc(), "scalar integer expression required", token, ""); } // // Both test, and if necessary spit out an error, to see if we are currently // globally scoped. // void HlslParseContext::globalCheck(const TSourceLoc& loc, const char* token) { if (! symbolTable.atGlobalLevel()) error(loc, "not allowed in nested scope", token, ""); } bool HlslParseContext::builtInName(const TString& identifier) { return false; } // // Make sure there is enough data and not too many arguments provided to the // constructor to build something of the type of the constructor. Also returns // the type of the constructor. // // Returns true if there was an error in construction. // bool HlslParseContext::constructorError(const TSourceLoc& loc, TIntermNode* node, TFunction& function, TOperator op, TType& type) { type.shallowCopy(function.getType()); bool constructingMatrix = false; switch (op) { case EOpConstructTextureSampler: return constructorTextureSamplerError(loc, function); case EOpConstructMat2x2: case EOpConstructMat2x3: case EOpConstructMat2x4: case EOpConstructMat3x2: case EOpConstructMat3x3: case EOpConstructMat3x4: case EOpConstructMat4x2: case EOpConstructMat4x3: case EOpConstructMat4x4: case EOpConstructDMat2x2: case EOpConstructDMat2x3: case EOpConstructDMat2x4: case EOpConstructDMat3x2: case EOpConstructDMat3x3: case EOpConstructDMat3x4: case EOpConstructDMat4x2: case EOpConstructDMat4x3: case EOpConstructDMat4x4: constructingMatrix = true; break; default: break; } // // Walk the arguments for first-pass checks and collection of information. // int size = 0; bool constType = true; bool full = false; bool overFull = false; bool matrixInMatrix = false; bool arrayArg = false; for (int arg = 0; arg < function.getParamCount(); ++arg) { if (function[arg].type->isArray()) { if (! function[arg].type->isExplicitlySizedArray()) { // Can't construct from an unsized array. error(loc, "array argument must be sized", "constructor", ""); return true; } arrayArg = true; } if (constructingMatrix && function[arg].type->isMatrix()) matrixInMatrix = true; // 'full' will go to true when enough args have been seen. If we loop // again, there is an extra argument. if (full) { // For vectors and matrices, it's okay to have too many components // available, but not okay to have unused arguments. overFull = true; } size += function[arg].type->computeNumComponents(); if (op != EOpConstructStruct && ! type.isArray() && size >= type.computeNumComponents()) full = true; if (function[arg].type->getQualifier().storage != EvqConst) constType = false; } if (constType) type.getQualifier().storage = EvqConst; if (type.isArray()) { if (function.getParamCount() == 0) { error(loc, "array constructor must have at least one argument", "constructor", ""); return true; } if (type.isImplicitlySizedArray()) { // auto adapt the constructor type to the number of arguments type.changeOuterArraySize(function.getParamCount()); } else if (type.getOuterArraySize() != function.getParamCount()) { error(loc, "array constructor needs one argument per array element", "constructor", ""); return true; } if (type.isArrayOfArrays()) { // Types have to match, but we're still making the type. // Finish making the type, and the comparison is done later // when checking for conversion. TArraySizes& arraySizes = type.getArraySizes(); // At least the dimensionalities have to match. if (! function[0].type->isArray() || arraySizes.getNumDims() != function[0].type->getArraySizes().getNumDims() + 1) { error(loc, "array constructor argument not correct type to construct array element", "constructior", ""); return true; } if (arraySizes.isInnerImplicit()) { // "Arrays of arrays ..., and the size for any dimension is optional" // That means we need to adopt (from the first argument) the other array sizes into the type. for (int d = 1; d < arraySizes.getNumDims(); ++d) { if (arraySizes.getDimSize(d) == UnsizedArraySize) { arraySizes.setDimSize(d, function[0].type->getArraySizes().getDimSize(d - 1)); } } } } } if (arrayArg && op != EOpConstructStruct && ! type.isArrayOfArrays()) { error(loc, "constructing non-array constituent from array argument", "constructor", ""); return true; } if (matrixInMatrix && ! type.isArray()) { return false; } if (overFull) { error(loc, "too many arguments", "constructor", ""); return true; } if (op == EOpConstructStruct && ! type.isArray() && (int)type.getStruct()->size() != function.getParamCount()) { error(loc, "Number of constructor parameters does not match the number of structure fields", "constructor", ""); return true; } if ((op != EOpConstructStruct && size != 1 && size < type.computeNumComponents()) || (op == EOpConstructStruct && size < type.computeNumComponents())) { error(loc, "not enough data provided for construction", "constructor", ""); return true; } TIntermTyped* typed = node->getAsTyped(); return false; } // Verify all the correct semantics for constructing a combined texture/sampler. // Return true if the semantics are incorrect. bool HlslParseContext::constructorTextureSamplerError(const TSourceLoc& loc, const TFunction& function) { TString constructorName = function.getType().getBasicTypeString(); // TODO: performance: should not be making copy; interface needs to change const char* token = constructorName.c_str(); // exactly two arguments needed if (function.getParamCount() != 2) { error(loc, "sampler-constructor requires two arguments", token, ""); return true; } // For now, not allowing arrayed constructors, the rest of this function // is set up to allow them, if this test is removed: if (function.getType().isArray()) { error(loc, "sampler-constructor cannot make an array of samplers", token, ""); return true; } // first argument // * the constructor's first argument must be a texture type // * the dimensionality (1D, 2D, 3D, Cube, Rect, Buffer, MS, and Array) // of the texture type must match that of the constructed sampler type // (that is, the suffixes of the type of the first argument and the // type of the constructor will be spelled the same way) if (function[0].type->getBasicType() != EbtSampler || ! function[0].type->getSampler().isTexture() || function[0].type->isArray()) { error(loc, "sampler-constructor first argument must be a scalar textureXXX type", token, ""); return true; } // simulate the first argument's impact on the result type, so it can be compared with the encapsulated operator!=() TSampler texture = function.getType().getSampler(); texture.combined = false; texture.shadow = false; if (texture != function[0].type->getSampler()) { error(loc, "sampler-constructor first argument must match type and dimensionality of constructor type", token, ""); return true; } // second argument // * the constructor's second argument must be a scalar of type // *sampler* or *samplerShadow* // * the presence or absence of depth comparison (Shadow) must match // between the constructed sampler type and the type of the second argument if (function[1].type->getBasicType() != EbtSampler || ! function[1].type->getSampler().isPureSampler() || function[1].type->isArray()) { error(loc, "sampler-constructor second argument must be a scalar type 'sampler'", token, ""); return true; } if (function.getType().getSampler().shadow != function[1].type->getSampler().shadow) { error(loc, "sampler-constructor second argument presence of shadow must match constructor presence of shadow", token, ""); return true; } return false; } // Checks to see if a void variable has been declared and raise an error message for such a case // // returns true in case of an error // bool HlslParseContext::voidErrorCheck(const TSourceLoc& loc, const TString& identifier, const TBasicType basicType) { if (basicType == EbtVoid) { error(loc, "illegal use of type 'void'", identifier.c_str(), ""); return true; } return false; } // Checks to see if the node (for the expression) contains a scalar boolean expression or not void HlslParseContext::boolCheck(const TSourceLoc& loc, const TIntermTyped* type) { if (type->getBasicType() != EbtBool || type->isArray() || type->isMatrix() || type->isVector()) error(loc, "boolean expression expected", "", ""); } // // Fix just a full qualifier (no variables or types yet, but qualifier is complete) at global level. // void HlslParseContext::globalQualifierFix(const TSourceLoc& loc, TQualifier& qualifier) { // move from parameter/unknown qualifiers to pipeline in/out qualifiers switch (qualifier.storage) { case EvqIn: qualifier.storage = EvqVaryingIn; break; case EvqOut: qualifier.storage = EvqVaryingOut; break; default: break; } } // // Merge characteristics of the 'src' qualifier into the 'dst'. // If there is duplication, issue error messages, unless 'force' // is specified, which means to just override default settings. // // Also, when force is false, it will be assumed that 'src' follows // 'dst', for the purpose of error checking order for versions // that require specific orderings of qualifiers. // void HlslParseContext::mergeQualifiers(const TSourceLoc& loc, TQualifier& dst, const TQualifier& src, bool force) { // Storage qualification if (dst.storage == EvqTemporary || dst.storage == EvqGlobal) dst.storage = src.storage; else if ((dst.storage == EvqIn && src.storage == EvqOut) || (dst.storage == EvqOut && src.storage == EvqIn)) dst.storage = EvqInOut; else if ((dst.storage == EvqIn && src.storage == EvqConst) || (dst.storage == EvqConst && src.storage == EvqIn)) dst.storage = EvqConstReadOnly; else if (src.storage != EvqTemporary && src.storage != EvqGlobal) error(loc, "too many storage qualifiers", GetStorageQualifierString(src.storage), ""); // Precision qualifiers if (dst.precision == EpqNone || (force && src.precision != EpqNone)) dst.precision = src.precision; // Layout qualifiers mergeObjectLayoutQualifiers(dst, src, false); // individual qualifiers bool repeated = false; #define MERGE_SINGLETON(field) repeated |= dst.field && src.field; dst.field |= src.field; MERGE_SINGLETON(invariant); MERGE_SINGLETON(noContraction); MERGE_SINGLETON(centroid); MERGE_SINGLETON(smooth); MERGE_SINGLETON(flat); MERGE_SINGLETON(nopersp); MERGE_SINGLETON(patch); MERGE_SINGLETON(sample); MERGE_SINGLETON(coherent); MERGE_SINGLETON(volatil); MERGE_SINGLETON(restrict); MERGE_SINGLETON(readonly); MERGE_SINGLETON(writeonly); MERGE_SINGLETON(specConstant); } // used to flatten the sampler type space into a single dimension // correlates with the declaration of defaultSamplerPrecision[] int HlslParseContext::computeSamplerTypeIndex(TSampler& sampler) { int arrayIndex = sampler.arrayed ? 1 : 0; int shadowIndex = sampler.shadow ? 1 : 0; int externalIndex = sampler.external ? 1 : 0; return EsdNumDims * (EbtNumTypes * (2 * (2 * arrayIndex + shadowIndex) + externalIndex) + sampler.type) + sampler.dim; } // // Do size checking for an array type's size. // void HlslParseContext::arraySizeCheck(const TSourceLoc& loc, TIntermTyped* expr, TArraySize& sizePair) { bool isConst = false; sizePair.size = 1; sizePair.node = nullptr; TIntermConstantUnion* constant = expr->getAsConstantUnion(); if (constant) { // handle true (non-specialization) constant sizePair.size = constant->getConstArray()[0].getIConst(); isConst = true; } else { // see if it's a specialization constant instead if (expr->getQualifier().isSpecConstant()) { isConst = true; sizePair.node = expr; TIntermSymbol* symbol = expr->getAsSymbolNode(); if (symbol && symbol->getConstArray().size() > 0) sizePair.size = symbol->getConstArray()[0].getIConst(); } } if (! isConst || (expr->getBasicType() != EbtInt && expr->getBasicType() != EbtUint)) { error(loc, "array size must be a constant integer expression", "", ""); return; } if (sizePair.size <= 0) { error(loc, "array size must be a positive integer", "", ""); return; } } // // Require array to be completely sized // void HlslParseContext::arraySizeRequiredCheck(const TSourceLoc& loc, const TArraySizes& arraySizes) { if (arraySizes.isImplicit()) error(loc, "array size required", "", ""); } void HlslParseContext::structArrayCheck(const TSourceLoc& /*loc*/, const TType& type) { const TTypeList& structure = *type.getStruct(); for (int m = 0; m < (int)structure.size(); ++m) { const TType& member = *structure[m].type; if (member.isArray()) arraySizeRequiredCheck(structure[m].loc, *member.getArraySizes()); } } // Merge array dimensions listed in 'sizes' onto the type's array dimensions. // // From the spec: "vec4[2] a[3]; // size-3 array of size-2 array of vec4" // // That means, the 'sizes' go in front of the 'type' as outermost sizes. // 'type' is the type part of the declaration (to the left) // 'sizes' is the arrayness tagged on the identifier (to the right) // void HlslParseContext::arrayDimMerge(TType& type, const TArraySizes* sizes) { if (sizes) type.addArrayOuterSizes(*sizes); } // // Do all the semantic checking for declaring or redeclaring an array, with and // without a size, and make the right changes to the symbol table. // void HlslParseContext::declareArray(const TSourceLoc& loc, TString& identifier, const TType& type, TSymbol*& symbol, bool& newDeclaration) { if (! symbol) { bool currentScope; symbol = symbolTable.find(identifier, nullptr, ¤tScope); if (symbol && builtInName(identifier) && ! symbolTable.atBuiltInLevel()) { // bad shader (errors already reported) trying to redeclare a built-in name as an array return; } if (symbol == nullptr || ! currentScope) { // // Successfully process a new definition. // (Redeclarations have to take place at the same scope; otherwise they are hiding declarations) // symbol = new TVariable(&identifier, type); symbolTable.insert(*symbol); newDeclaration = true; if (! symbolTable.atBuiltInLevel()) { if (isIoResizeArray(type)) { ioArraySymbolResizeList.push_back(symbol); checkIoArraysConsistency(loc, true); } else fixIoArraySize(loc, symbol->getWritableType()); } return; } if (symbol->getAsAnonMember()) { error(loc, "cannot redeclare a user-block member array", identifier.c_str(), ""); symbol = nullptr; return; } } // // Process a redeclaration. // if (! symbol) { error(loc, "array variable name expected", identifier.c_str(), ""); return; } // redeclareBuiltinVariable() should have already done the copyUp() TType& existingType = symbol->getWritableType(); if (existingType.isExplicitlySizedArray()) { // be more lenient for input arrays to geometry shaders and tessellation control outputs, where the redeclaration is the same size if (! (isIoResizeArray(type) && existingType.getOuterArraySize() == type.getOuterArraySize())) error(loc, "redeclaration of array with size", identifier.c_str(), ""); return; } existingType.updateArraySizes(type); if (isIoResizeArray(type)) checkIoArraysConsistency(loc); } void HlslParseContext::updateImplicitArraySize(const TSourceLoc& loc, TIntermNode *node, int index) { // maybe there is nothing to do... TIntermTyped* typedNode = node->getAsTyped(); if (typedNode->getType().getImplicitArraySize() > index) return; // something to do... // Figure out what symbol to lookup, as we will use its type to edit for the size change, // as that type will be shared through shallow copies for future references. TSymbol* symbol = nullptr; int blockIndex = -1; const TString* lookupName = nullptr; if (node->getAsSymbolNode()) lookupName = &node->getAsSymbolNode()->getName(); else if (node->getAsBinaryNode()) { const TIntermBinary* deref = node->getAsBinaryNode(); // This has to be the result of a block dereference, unless it's bad shader code // If it's a uniform block, then an error will be issued elsewhere, but // return early now to avoid crashing later in this function. if (! deref->getLeft()->getAsSymbolNode() || deref->getLeft()->getBasicType() != EbtBlock || deref->getLeft()->getType().getQualifier().storage == EvqUniform || deref->getRight()->getAsConstantUnion() == nullptr) return; blockIndex = deref->getRight()->getAsConstantUnion()->getConstArray()[0].getIConst(); lookupName = &deref->getLeft()->getAsSymbolNode()->getName(); if (IsAnonymous(*lookupName)) lookupName = &(*deref->getLeft()->getType().getStruct())[blockIndex].type->getFieldName(); } // Lookup the symbol, should only fail if shader code is incorrect symbol = symbolTable.find(*lookupName); if (symbol == nullptr) return; if (symbol->getAsFunction()) { error(loc, "array variable name expected", symbol->getName().c_str(), ""); return; } symbol->getWritableType().setImplicitArraySize(index + 1); } // // See if the identifier is a built-in symbol that can be redeclared, and if so, // copy the symbol table's read-only built-in variable to the current // global level, where it can be modified based on the passed in type. // // Returns nullptr if no redeclaration took place; meaning a normal declaration still // needs to occur for it, not necessarily an error. // // Returns a redeclared and type-modified variable if a redeclared occurred. // TSymbol* HlslParseContext::redeclareBuiltinVariable(const TSourceLoc& loc, const TString& identifier, const TQualifier& qualifier, const TShaderQualifiers& publicType, bool& newDeclaration) { if (! builtInName(identifier) || symbolTable.atBuiltInLevel() || ! symbolTable.atGlobalLevel()) return nullptr; return nullptr; } // // Either redeclare the requested block, or give an error message why it can't be done. // // TODO: functionality: explicitly sizing members of redeclared blocks is not giving them an explicit size void HlslParseContext::redeclareBuiltinBlock(const TSourceLoc& loc, TTypeList& newTypeList, const TString& blockName, const TString* instanceName, TArraySizes* arraySizes) { // Redeclaring a built-in block... // Blocks with instance names are easy to find, lookup the instance name, // Anonymous blocks need to be found via a member. bool builtIn; TSymbol* block; if (instanceName) block = symbolTable.find(*instanceName, &builtIn); else block = symbolTable.find(newTypeList.front().type->getFieldName(), &builtIn); // If the block was not found, this must be a version/profile/stage // that doesn't have it, or the instance name is wrong. const char* errorName = instanceName ? instanceName->c_str() : newTypeList.front().type->getFieldName().c_str(); if (! block) { error(loc, "no declaration found for redeclaration", errorName, ""); return; } // Built-in blocks cannot be redeclared more than once, which if happened, // we'd be finding the already redeclared one here, rather than the built in. if (! builtIn) { error(loc, "can only redeclare a built-in block once, and before any use", blockName.c_str(), ""); return; } // Copy the block to make a writable version, to insert into the block table after editing. block = symbolTable.copyUpDeferredInsert(block); if (block->getType().getBasicType() != EbtBlock) { error(loc, "cannot redeclare a non block as a block", errorName, ""); return; } // Edit and error check the container against the redeclaration // - remove unused members // - ensure remaining qualifiers/types match TType& type = block->getWritableType(); TTypeList::iterator member = type.getWritableStruct()->begin(); size_t numOriginalMembersFound = 0; while (member != type.getStruct()->end()) { // look for match bool found = false; TTypeList::const_iterator newMember; TSourceLoc memberLoc; memberLoc.init(); for (newMember = newTypeList.begin(); newMember != newTypeList.end(); ++newMember) { if (member->type->getFieldName() == newMember->type->getFieldName()) { found = true; memberLoc = newMember->loc; break; } } if (found) { ++numOriginalMembersFound; // - ensure match between redeclared members' types // - check for things that can't be changed // - update things that can be changed TType& oldType = *member->type; const TType& newType = *newMember->type; if (! newType.sameElementType(oldType)) error(memberLoc, "cannot redeclare block member with a different type", member->type->getFieldName().c_str(), ""); if (oldType.isArray() != newType.isArray()) error(memberLoc, "cannot change arrayness of redeclared block member", member->type->getFieldName().c_str(), ""); else if (! oldType.sameArrayness(newType) && oldType.isExplicitlySizedArray()) error(memberLoc, "cannot change array size of redeclared block member", member->type->getFieldName().c_str(), ""); if (newType.getQualifier().isMemory()) error(memberLoc, "cannot add memory qualifier to redeclared block member", member->type->getFieldName().c_str(), ""); if (newType.getQualifier().hasLayout()) error(memberLoc, "cannot add layout to redeclared block member", member->type->getFieldName().c_str(), ""); if (newType.getQualifier().patch) error(memberLoc, "cannot add patch to redeclared block member", member->type->getFieldName().c_str(), ""); oldType.getQualifier().centroid = newType.getQualifier().centroid; oldType.getQualifier().sample = newType.getQualifier().sample; oldType.getQualifier().invariant = newType.getQualifier().invariant; oldType.getQualifier().noContraction = newType.getQualifier().noContraction; oldType.getQualifier().smooth = newType.getQualifier().smooth; oldType.getQualifier().flat = newType.getQualifier().flat; oldType.getQualifier().nopersp = newType.getQualifier().nopersp; // go to next member ++member; } else { // For missing members of anonymous blocks that have been redeclared, // hide the original (shared) declaration. // Instance-named blocks can just have the member removed. if (instanceName) member = type.getWritableStruct()->erase(member); else { member->type->hideMember(); ++member; } } } if (numOriginalMembersFound < newTypeList.size()) error(loc, "block redeclaration has extra members", blockName.c_str(), ""); if (type.isArray() != (arraySizes != nullptr)) error(loc, "cannot change arrayness of redeclared block", blockName.c_str(), ""); else if (type.isArray()) { if (type.isExplicitlySizedArray() && arraySizes->getOuterSize() == UnsizedArraySize) error(loc, "block already declared with size, can't redeclare as implicitly-sized", blockName.c_str(), ""); else if (type.isExplicitlySizedArray() && type.getArraySizes() != *arraySizes) error(loc, "cannot change array size of redeclared block", blockName.c_str(), ""); else if (type.isImplicitlySizedArray() && arraySizes->getOuterSize() != UnsizedArraySize) type.changeOuterArraySize(arraySizes->getOuterSize()); } symbolTable.insert(*block); // Tracking for implicit sizing of array if (isIoResizeArray(block->getType())) { ioArraySymbolResizeList.push_back(block); checkIoArraysConsistency(loc, true); } else if (block->getType().isArray()) fixIoArraySize(loc, block->getWritableType()); // Save it in the AST for linker use. intermediate.addSymbolLinkageNode(linkage, *block); } void HlslParseContext::paramFix(TType& type) { switch (type.getQualifier().storage) { case EvqConst: type.getQualifier().storage = EvqConstReadOnly; break; case EvqGlobal: case EvqTemporary: type.getQualifier().storage = EvqIn; break; default: break; } } void HlslParseContext::specializationCheck(const TSourceLoc& loc, const TType& type, const char* op) { if (type.containsSpecializationSize()) error(loc, "can't use with types containing arrays sized with a specialization constant", op, ""); } // // Layout qualifier stuff. // // Put the id's layout qualification into the public type, for qualifiers not having a number set. // This is before we know any type information for error checking. void HlslParseContext::setLayoutQualifier(const TSourceLoc& loc, TPublicType& publicType, TString& id) { std::transform(id.begin(), id.end(), id.begin(), ::tolower); if (id == TQualifier::getLayoutMatrixString(ElmColumnMajor)) { publicType.qualifier.layoutMatrix = ElmColumnMajor; return; } if (id == TQualifier::getLayoutMatrixString(ElmRowMajor)) { publicType.qualifier.layoutMatrix = ElmRowMajor; return; } if (id == "push_constant") { requireVulkan(loc, "push_constant"); publicType.qualifier.layoutPushConstant = true; return; } if (language == EShLangGeometry || language == EShLangTessEvaluation) { if (id == TQualifier::getGeometryString(ElgTriangles)) { publicType.shaderQualifiers.geometry = ElgTriangles; return; } if (language == EShLangGeometry) { if (id == TQualifier::getGeometryString(ElgPoints)) { publicType.shaderQualifiers.geometry = ElgPoints; return; } if (id == TQualifier::getGeometryString(ElgLineStrip)) { publicType.shaderQualifiers.geometry = ElgLineStrip; return; } if (id == TQualifier::getGeometryString(ElgLines)) { publicType.shaderQualifiers.geometry = ElgLines; return; } if (id == TQualifier::getGeometryString(ElgLinesAdjacency)) { publicType.shaderQualifiers.geometry = ElgLinesAdjacency; return; } if (id == TQualifier::getGeometryString(ElgTrianglesAdjacency)) { publicType.shaderQualifiers.geometry = ElgTrianglesAdjacency; return; } if (id == TQualifier::getGeometryString(ElgTriangleStrip)) { publicType.shaderQualifiers.geometry = ElgTriangleStrip; return; } } else { assert(language == EShLangTessEvaluation); // input primitive if (id == TQualifier::getGeometryString(ElgTriangles)) { publicType.shaderQualifiers.geometry = ElgTriangles; return; } if (id == TQualifier::getGeometryString(ElgQuads)) { publicType.shaderQualifiers.geometry = ElgQuads; return; } if (id == TQualifier::getGeometryString(ElgIsolines)) { publicType.shaderQualifiers.geometry = ElgIsolines; return; } // vertex spacing if (id == TQualifier::getVertexSpacingString(EvsEqual)) { publicType.shaderQualifiers.spacing = EvsEqual; return; } if (id == TQualifier::getVertexSpacingString(EvsFractionalEven)) { publicType.shaderQualifiers.spacing = EvsFractionalEven; return; } if (id == TQualifier::getVertexSpacingString(EvsFractionalOdd)) { publicType.shaderQualifiers.spacing = EvsFractionalOdd; return; } // triangle order if (id == TQualifier::getVertexOrderString(EvoCw)) { publicType.shaderQualifiers.order = EvoCw; return; } if (id == TQualifier::getVertexOrderString(EvoCcw)) { publicType.shaderQualifiers.order = EvoCcw; return; } // point mode if (id == "point_mode") { publicType.shaderQualifiers.pointMode = true; return; } } } if (language == EShLangFragment) { if (id == "origin_upper_left") { publicType.shaderQualifiers.originUpperLeft = true; return; } if (id == "pixel_center_integer") { publicType.shaderQualifiers.pixelCenterInteger = true; return; } if (id == "early_fragment_tests") { publicType.shaderQualifiers.earlyFragmentTests = true; return; } for (TLayoutDepth depth = (TLayoutDepth)(EldNone + 1); depth < EldCount; depth = (TLayoutDepth)(depth + 1)) { if (id == TQualifier::getLayoutDepthString(depth)) { publicType.shaderQualifiers.layoutDepth = depth; return; } } if (id.compare(0, 13, "blend_support") == 0) { bool found = false; for (TBlendEquationShift be = (TBlendEquationShift)0; be < EBlendCount; be = (TBlendEquationShift)(be + 1)) { if (id == TQualifier::getBlendEquationString(be)) { requireExtensions(loc, 1, &E_GL_KHR_blend_equation_advanced, "blend equation"); intermediate.addBlendEquation(be); publicType.shaderQualifiers.blendEquation = true; found = true; break; } } if (! found) error(loc, "unknown blend equation", "blend_support", ""); return; } } error(loc, "unrecognized layout identifier, or qualifier requires assignment (e.g., binding = 4)", id.c_str(), ""); } // Put the id's layout qualifier value into the public type, for qualifiers having a number set. // This is before we know any type information for error checking. void HlslParseContext::setLayoutQualifier(const TSourceLoc& loc, TPublicType& publicType, TString& id, const TIntermTyped* node) { const char* feature = "layout-id value"; const char* nonLiteralFeature = "non-literal layout-id value"; integerCheck(node, feature); const TIntermConstantUnion* constUnion = node->getAsConstantUnion(); int value = 0; if (constUnion) { value = constUnion->getConstArray()[0].getIConst(); } std::transform(id.begin(), id.end(), id.begin(), ::tolower); if (id == "offset") { publicType.qualifier.layoutOffset = value; return; } else if (id == "align") { // "The specified alignment must be a power of 2, or a compile-time error results." if (! IsPow2(value)) error(loc, "must be a power of 2", "align", ""); else publicType.qualifier.layoutAlign = value; return; } else if (id == "location") { if ((unsigned int)value >= TQualifier::layoutLocationEnd) error(loc, "location is too large", id.c_str(), ""); else publicType.qualifier.layoutLocation = value; return; } else if (id == "set") { if ((unsigned int)value >= TQualifier::layoutSetEnd) error(loc, "set is too large", id.c_str(), ""); else publicType.qualifier.layoutSet = value; return; } else if (id == "binding") { if ((unsigned int)value >= TQualifier::layoutBindingEnd) error(loc, "binding is too large", id.c_str(), ""); else publicType.qualifier.layoutBinding = value; return; } else if (id == "component") { if ((unsigned)value >= TQualifier::layoutComponentEnd) error(loc, "component is too large", id.c_str(), ""); else publicType.qualifier.layoutComponent = value; return; } else if (id.compare(0, 4, "xfb_") == 0) { // "Any shader making any static use (after preprocessing) of any of these // *xfb_* qualifiers will cause the shader to be in a transform feedback // capturing mode and hence responsible for describing the transform feedback // setup." intermediate.setXfbMode(); if (id == "xfb_buffer") { // "It is a compile-time error to specify an *xfb_buffer* that is greater than // the implementation-dependent constant gl_MaxTransformFeedbackBuffers." if (value >= resources.maxTransformFeedbackBuffers) error(loc, "buffer is too large:", id.c_str(), "gl_MaxTransformFeedbackBuffers is %d", resources.maxTransformFeedbackBuffers); if (value >= (int)TQualifier::layoutXfbBufferEnd) error(loc, "buffer is too large:", id.c_str(), "internal max is %d", TQualifier::layoutXfbBufferEnd - 1); else publicType.qualifier.layoutXfbBuffer = value; return; } else if (id == "xfb_offset") { if (value >= (int)TQualifier::layoutXfbOffsetEnd) error(loc, "offset is too large:", id.c_str(), "internal max is %d", TQualifier::layoutXfbOffsetEnd - 1); else publicType.qualifier.layoutXfbOffset = value; return; } else if (id == "xfb_stride") { // "The resulting stride (implicit or explicit), when divided by 4, must be less than or equal to the // implementation-dependent constant gl_MaxTransformFeedbackInterleavedComponents." if (value > 4 * resources.maxTransformFeedbackInterleavedComponents) error(loc, "1/4 stride is too large:", id.c_str(), "gl_MaxTransformFeedbackInterleavedComponents is %d", resources.maxTransformFeedbackInterleavedComponents); else if (value >= (int)TQualifier::layoutXfbStrideEnd) error(loc, "stride is too large:", id.c_str(), "internal max is %d", TQualifier::layoutXfbStrideEnd - 1); if (value < (int)TQualifier::layoutXfbStrideEnd) publicType.qualifier.layoutXfbStride = value; return; } } if (id == "input_attachment_index") { requireVulkan(loc, "input_attachment_index"); if (value >= (int)TQualifier::layoutAttachmentEnd) error(loc, "attachment index is too large", id.c_str(), ""); else publicType.qualifier.layoutAttachment = value; return; } if (id == "constant_id") { requireSpv(loc, "constant_id"); if (value >= (int)TQualifier::layoutSpecConstantIdEnd) { error(loc, "specialization-constant id is too large", id.c_str(), ""); } else { publicType.qualifier.layoutSpecConstantId = value; publicType.qualifier.specConstant = true; if (! intermediate.addUsedConstantId(value)) error(loc, "specialization-constant id already used", id.c_str(), ""); } return; } switch (language) { case EShLangVertex: break; case EShLangTessControl: if (id == "vertices") { if (value == 0) error(loc, "must be greater than 0", "vertices", ""); else publicType.shaderQualifiers.vertices = value; return; } break; case EShLangTessEvaluation: break; case EShLangGeometry: if (id == "invocations") { if (value == 0) error(loc, "must be at least 1", "invocations", ""); else publicType.shaderQualifiers.invocations = value; return; } if (id == "max_vertices") { publicType.shaderQualifiers.vertices = value; if (value > resources.maxGeometryOutputVertices) error(loc, "too large, must be less than gl_MaxGeometryOutputVertices", "max_vertices", ""); return; } if (id == "stream") { publicType.qualifier.layoutStream = value; return; } break; case EShLangFragment: if (id == "index") { const char* exts[2] = { E_GL_ARB_separate_shader_objects, E_GL_ARB_explicit_attrib_location }; publicType.qualifier.layoutIndex = value; return; } break; case EShLangCompute: if (id.compare(0, 11, "local_size_") == 0) { if (id == "local_size_x") { publicType.shaderQualifiers.localSize[0] = value; return; } if (id == "local_size_y") { publicType.shaderQualifiers.localSize[1] = value; return; } if (id == "local_size_z") { publicType.shaderQualifiers.localSize[2] = value; return; } if (spvVersion.spv != 0) { if (id == "local_size_x_id") { publicType.shaderQualifiers.localSizeSpecId[0] = value; return; } if (id == "local_size_y_id") { publicType.shaderQualifiers.localSizeSpecId[1] = value; return; } if (id == "local_size_z_id") { publicType.shaderQualifiers.localSizeSpecId[2] = value; return; } } } break; default: break; } error(loc, "there is no such layout identifier for this stage taking an assigned value", id.c_str(), ""); } // Merge any layout qualifier information from src into dst, leaving everything else in dst alone // // "More than one layout qualifier may appear in a single declaration. // Additionally, the same layout-qualifier-name can occur multiple times // within a layout qualifier or across multiple layout qualifiers in the // same declaration. When the same layout-qualifier-name occurs // multiple times, in a single declaration, the last occurrence overrides // the former occurrence(s). Further, if such a layout-qualifier-name // will effect subsequent declarations or other observable behavior, it // is only the last occurrence that will have any effect, behaving as if // the earlier occurrence(s) within the declaration are not present. // This is also true for overriding layout-qualifier-names, where one // overrides the other (e.g., row_major vs. column_major); only the last // occurrence has any effect." // void HlslParseContext::mergeObjectLayoutQualifiers(TQualifier& dst, const TQualifier& src, bool inheritOnly) { if (src.hasMatrix()) dst.layoutMatrix = src.layoutMatrix; if (src.hasPacking()) dst.layoutPacking = src.layoutPacking; if (src.hasStream()) dst.layoutStream = src.layoutStream; if (src.hasFormat()) dst.layoutFormat = src.layoutFormat; if (src.hasXfbBuffer()) dst.layoutXfbBuffer = src.layoutXfbBuffer; if (src.hasAlign()) dst.layoutAlign = src.layoutAlign; if (! inheritOnly) { if (src.hasLocation()) dst.layoutLocation = src.layoutLocation; if (src.hasComponent()) dst.layoutComponent = src.layoutComponent; if (src.hasIndex()) dst.layoutIndex = src.layoutIndex; if (src.hasOffset()) dst.layoutOffset = src.layoutOffset; if (src.hasSet()) dst.layoutSet = src.layoutSet; if (src.layoutBinding != TQualifier::layoutBindingEnd) dst.layoutBinding = src.layoutBinding; if (src.hasXfbStride()) dst.layoutXfbStride = src.layoutXfbStride; if (src.hasXfbOffset()) dst.layoutXfbOffset = src.layoutXfbOffset; if (src.hasAttachment()) dst.layoutAttachment = src.layoutAttachment; if (src.hasSpecConstantId()) dst.layoutSpecConstantId = src.layoutSpecConstantId; if (src.layoutPushConstant) dst.layoutPushConstant = true; } } // // Look up a function name in the symbol table, and make sure it is a function. // // Return the function symbol if found, otherwise nullptr. // const TFunction* HlslParseContext::findFunction(const TSourceLoc& loc, const TFunction& call, bool& builtIn) { const TFunction* function = nullptr; if (symbolTable.isFunctionNameVariable(call.getName())) { error(loc, "can't use function syntax on variable", call.getName().c_str(), ""); return nullptr; } // first, look for an exact match TSymbol* symbol = symbolTable.find(call.getMangledName(), &builtIn); if (symbol) return symbol->getAsFunction(); // exact match not found, look through a list of overloaded functions of the same name const TFunction* candidate = nullptr; TVector candidateList; symbolTable.findFunctionNameList(call.getMangledName(), candidateList, builtIn); for (TVector::const_iterator it = candidateList.begin(); it != candidateList.end(); ++it) { const TFunction& function = *(*it); // to even be a potential match, number of arguments has to match if (call.getParamCount() != function.getParamCount()) continue; bool possibleMatch = true; for (int i = 0; i < function.getParamCount(); ++i) { // same types is easy if (*function[i].type == *call[i].type) continue; // We have a mismatch in type, see if it is implicitly convertible if (function[i].type->isArray() || call[i].type->isArray() || ! function[i].type->sameElementShape(*call[i].type)) possibleMatch = false; else { // do direction-specific checks for conversion of basic type if (function[i].type->getQualifier().isParamInput()) { if (! intermediate.canImplicitlyPromote(call[i].type->getBasicType(), function[i].type->getBasicType())) possibleMatch = false; } if (function[i].type->getQualifier().isParamOutput()) { if (! intermediate.canImplicitlyPromote(function[i].type->getBasicType(), call[i].type->getBasicType())) possibleMatch = false; } } if (! possibleMatch) break; } if (possibleMatch) { if (candidate) { // our second match, meaning ambiguity error(loc, "ambiguous function signature match: multiple signatures match under implicit type conversion", call.getName().c_str(), ""); } else candidate = &function; } } if (candidate == nullptr) error(loc, "no matching overloaded function found", call.getName().c_str(), ""); return candidate; } // // Do everything necessary to handle a variable (non-block) declaration. // Either redeclaring a variable, or making a new one, updating the symbol // table, and all error checking. // // Returns a subtree node that computes an initializer, if needed. // Returns nullptr if there is no code to execute for initialization. // // 'publicType' is the type part of the declaration (to the left) // 'arraySizes' is the arrayness tagged on the identifier (to the right) // TIntermNode* HlslParseContext::declareVariable(const TSourceLoc& loc, TString& identifier, const TType& parseType, TArraySizes* arraySizes, TIntermTyped* initializer) { TType type; type.shallowCopy(parseType); if (type.isImplicitlySizedArray()) { // Because "int[] a = int[2](...), b = int[3](...)" makes two arrays a and b // of different sizes, for this case sharing the shallow copy of arrayness // with the publicType oversubscribes it, so get a deep copy of the arrayness. type.newArraySizes(*parseType.getArraySizes()); } if (voidErrorCheck(loc, identifier, type.getBasicType())) return nullptr; // Check for redeclaration of built-ins and/or attempting to declare a reserved name bool newDeclaration = false; // true if a new entry gets added to the symbol table TSymbol* symbol = nullptr; // = redeclareBuiltinVariable(loc, identifier, type.getQualifier(), publicType.shaderQualifiers, newDeclaration); inheritGlobalDefaults(type.getQualifier()); // Declare the variable if (arraySizes || type.isArray()) { // Arrayness is potentially coming both from the type and from the // variable: "int[] a[];" or just one or the other. // Merge it all to the type, so all arrayness is part of the type. arrayDimMerge(type, arraySizes); declareArray(loc, identifier, type, symbol, newDeclaration); } else { // non-array case if (! symbol) symbol = declareNonArray(loc, identifier, type, newDeclaration); else if (type != symbol->getType()) error(loc, "cannot change the type of", "redeclaration", symbol->getName().c_str()); } if (! symbol) return nullptr; // Deal with initializer TIntermNode* initNode = nullptr; if (symbol && initializer) { TVariable* variable = symbol->getAsVariable(); if (! variable) { error(loc, "initializer requires a variable, not a member", identifier.c_str(), ""); return nullptr; } initNode = executeInitializer(loc, initializer, variable); } // see if it's a linker-level object to track if (newDeclaration && symbolTable.atGlobalLevel()) intermediate.addSymbolLinkageNode(linkage, *symbol); return initNode; } // Pick up global defaults from the provide global defaults into dst. void HlslParseContext::inheritGlobalDefaults(TQualifier& dst) const { if (dst.storage == EvqVaryingOut) { if (! dst.hasStream() && language == EShLangGeometry) dst.layoutStream = globalOutputDefaults.layoutStream; if (! dst.hasXfbBuffer()) dst.layoutXfbBuffer = globalOutputDefaults.layoutXfbBuffer; } } // // Make an internal-only variable whose name is for debug purposes only // and won't be searched for. Callers will only use the return value to use // the variable, not the name to look it up. It is okay if the name // is the same as other names; there won't be any conflict. // TVariable* HlslParseContext::makeInternalVariable(const char* name, const TType& type) const { TString* nameString = new TString(name); TVariable* variable = new TVariable(nameString, type); symbolTable.makeInternalVariable(*variable); return variable; } // // Declare a non-array variable, the main point being there is no redeclaration // for resizing allowed. // // Return the successfully declared variable. // TVariable* HlslParseContext::declareNonArray(const TSourceLoc& loc, TString& identifier, TType& type, bool& newDeclaration) { // make a new variable TVariable* variable = new TVariable(&identifier, type); // add variable to symbol table if (! symbolTable.insert(*variable)) { error(loc, "redefinition", variable->getName().c_str(), ""); return nullptr; } else { newDeclaration = true; return variable; } } // // Handle all types of initializers from the grammar. // // Returning nullptr just means there is no code to execute to handle the // initializer, which will, for example, be the case for constant initializers. // TIntermNode* HlslParseContext::executeInitializer(const TSourceLoc& loc, TIntermTyped* initializer, TVariable* variable) { // // Identifier must be of type constant, a global, or a temporary, and // starting at version 120, desktop allows uniforms to have initializers. // TStorageQualifier qualifier = variable->getType().getQualifier().storage; // // If the initializer was from braces { ... }, we convert the whole subtree to a // constructor-style subtree, allowing the rest of the code to operate // identically for both kinds of initializers. // initializer = convertInitializerList(loc, variable->getType(), initializer); if (! initializer) { // error recovery; don't leave const without constant values if (qualifier == EvqConst) variable->getWritableType().getQualifier().storage = EvqTemporary; return nullptr; } // Fix outer arrayness if variable is unsized, getting size from the initializer if (initializer->getType().isExplicitlySizedArray() && variable->getType().isImplicitlySizedArray()) variable->getWritableType().changeOuterArraySize(initializer->getType().getOuterArraySize()); // Inner arrayness can also get set by an initializer if (initializer->getType().isArrayOfArrays() && variable->getType().isArrayOfArrays() && initializer->getType().getArraySizes()->getNumDims() == variable->getType().getArraySizes()->getNumDims()) { // adopt unsized sizes from the initializer's sizes for (int d = 1; d < variable->getType().getArraySizes()->getNumDims(); ++d) { if (variable->getType().getArraySizes()->getDimSize(d) == UnsizedArraySize) variable->getWritableType().getArraySizes().setDimSize(d, initializer->getType().getArraySizes()->getDimSize(d)); } } // Uniform and global consts require a constant initializer if (qualifier == EvqUniform && initializer->getType().getQualifier().storage != EvqConst) { error(loc, "uniform initializers must be constant", "=", "'%s'", variable->getType().getCompleteString().c_str()); variable->getWritableType().getQualifier().storage = EvqTemporary; return nullptr; } if (qualifier == EvqConst && symbolTable.atGlobalLevel() && initializer->getType().getQualifier().storage != EvqConst) { error(loc, "global const initializers must be constant", "=", "'%s'", variable->getType().getCompleteString().c_str()); variable->getWritableType().getQualifier().storage = EvqTemporary; return nullptr; } // Const variables require a constant initializer, depending on version if (qualifier == EvqConst) { if (initializer->getType().getQualifier().storage != EvqConst) { variable->getWritableType().getQualifier().storage = EvqConstReadOnly; qualifier = EvqConstReadOnly; } } if (qualifier == EvqConst || qualifier == EvqUniform) { // Compile-time tagging of the variable with its constant value... initializer = intermediate.addConversion(EOpAssign, variable->getType(), initializer); if (! initializer || ! initializer->getAsConstantUnion() || variable->getType() != initializer->getType()) { error(loc, "non-matching or non-convertible constant type for const initializer", variable->getType().getStorageQualifierString(), ""); variable->getWritableType().getQualifier().storage = EvqTemporary; return nullptr; } variable->setConstArray(initializer->getAsConstantUnion()->getConstArray()); } else { // normal assigning of a value to a variable... specializationCheck(loc, initializer->getType(), "initializer"); TIntermSymbol* intermSymbol = intermediate.addSymbol(*variable, loc); TIntermNode* initNode = intermediate.addAssign(EOpAssign, intermSymbol, initializer, loc); if (! initNode) assignError(loc, "=", intermSymbol->getCompleteString(), initializer->getCompleteString()); return initNode; } return nullptr; } // // Reprocess any initializer-list { ... } parts of the initializer. // Need to hierarchically assign correct types and implicit // conversions. Will do this mimicking the same process used for // creating a constructor-style initializer, ensuring we get the // same form. // TIntermTyped* HlslParseContext::convertInitializerList(const TSourceLoc& loc, const TType& type, TIntermTyped* initializer) { // Will operate recursively. Once a subtree is found that is constructor style, // everything below it is already good: Only the "top part" of the initializer // can be an initializer list, where "top part" can extend for several (or all) levels. // see if we have bottomed out in the tree within the initializer-list part TIntermAggregate* initList = initializer->getAsAggregate(); if (! initList || initList->getOp() != EOpNull) return initializer; // Of the initializer-list set of nodes, need to process bottom up, // so recurse deep, then process on the way up. // Go down the tree here... if (type.isArray()) { // The type's array might be unsized, which could be okay, so base sizes on the size of the aggregate. // Later on, initializer execution code will deal with array size logic. TType arrayType; arrayType.shallowCopy(type); // sharing struct stuff is fine arrayType.newArraySizes(*type.getArraySizes()); // but get a fresh copy of the array information, to edit below // edit array sizes to fill in unsized dimensions arrayType.changeOuterArraySize((int)initList->getSequence().size()); TIntermTyped* firstInit = initList->getSequence()[0]->getAsTyped(); if (arrayType.isArrayOfArrays() && firstInit->getType().isArray() && arrayType.getArraySizes().getNumDims() == firstInit->getType().getArraySizes()->getNumDims() + 1) { for (int d = 1; d < arrayType.getArraySizes().getNumDims(); ++d) { if (arrayType.getArraySizes().getDimSize(d) == UnsizedArraySize) arrayType.getArraySizes().setDimSize(d, firstInit->getType().getArraySizes()->getDimSize(d - 1)); } } TType elementType(arrayType, 0); // dereferenced type for (size_t i = 0; i < initList->getSequence().size(); ++i) { initList->getSequence()[i] = convertInitializerList(loc, elementType, initList->getSequence()[i]->getAsTyped()); if (initList->getSequence()[i] == nullptr) return nullptr; } return addConstructor(loc, initList, arrayType, mapTypeToConstructorOp(arrayType)); } else if (type.isStruct()) { if (type.getStruct()->size() != initList->getSequence().size()) { error(loc, "wrong number of structure members", "initializer list", ""); return nullptr; } for (size_t i = 0; i < type.getStruct()->size(); ++i) { initList->getSequence()[i] = convertInitializerList(loc, *(*type.getStruct())[i].type, initList->getSequence()[i]->getAsTyped()); if (initList->getSequence()[i] == nullptr) return nullptr; } } else if (type.isMatrix()) { if (type.getMatrixCols() != (int)initList->getSequence().size()) { error(loc, "wrong number of matrix columns:", "initializer list", type.getCompleteString().c_str()); return nullptr; } TType vectorType(type, 0); // dereferenced type for (int i = 0; i < type.getMatrixCols(); ++i) { initList->getSequence()[i] = convertInitializerList(loc, vectorType, initList->getSequence()[i]->getAsTyped()); if (initList->getSequence()[i] == nullptr) return nullptr; } } else if (type.isVector()) { if (type.getVectorSize() != (int)initList->getSequence().size()) { error(loc, "wrong vector size (or rows in a matrix column):", "initializer list", type.getCompleteString().c_str()); return nullptr; } } else { error(loc, "unexpected initializer-list type:", "initializer list", type.getCompleteString().c_str()); return nullptr; } // now that the subtree is processed, process this node return addConstructor(loc, initList, type, mapTypeToConstructorOp(type)); } // // Test for the correctness of the parameters passed to various constructor functions // and also convert them to the right data type, if allowed and required. // // Returns nullptr for an error or the constructed node (aggregate or typed) for no error. // TIntermTyped* HlslParseContext::addConstructor(const TSourceLoc& loc, TIntermNode* node, const TType& type, TOperator op) { if (node == nullptr || node->getAsTyped() == nullptr) return nullptr; TIntermAggregate* aggrNode = node->getAsAggregate(); // Combined texture-sampler constructors are completely semantic checked // in constructorTextureSamplerError() if (op == EOpConstructTextureSampler) return intermediate.setAggregateOperator(aggrNode, op, type, loc); TTypeList::const_iterator memberTypes; if (op == EOpConstructStruct) memberTypes = type.getStruct()->begin(); TType elementType; if (type.isArray()) { TType dereferenced(type, 0); elementType.shallowCopy(dereferenced); } else elementType.shallowCopy(type); bool singleArg; if (aggrNode) { if (aggrNode->getOp() != EOpNull || aggrNode->getSequence().size() == 1) singleArg = true; else singleArg = false; } else singleArg = true; TIntermTyped *newNode; if (singleArg) { // If structure constructor or array constructor is being called // for only one parameter inside the structure, we need to call constructAggregate function once. if (type.isArray()) newNode = constructAggregate(node, elementType, 1, node->getLoc()); else if (op == EOpConstructStruct) newNode = constructAggregate(node, *(*memberTypes).type, 1, node->getLoc()); else newNode = constructBuiltIn(type, op, node->getAsTyped(), node->getLoc(), false); if (newNode && (type.isArray() || op == EOpConstructStruct)) newNode = intermediate.setAggregateOperator(newNode, EOpConstructStruct, type, loc); return newNode; } // // Handle list of arguments. // TIntermSequence &sequenceVector = aggrNode->getSequence(); // Stores the information about the parameter to the constructor // if the structure constructor contains more than one parameter, then construct // each parameter int paramCount = 0; // keeps a track of the constructor parameter number being checked // for each parameter to the constructor call, check to see if the right type is passed or convert them // to the right type if possible (and allowed). // for structure constructors, just check if the right type is passed, no conversion is allowed. for (TIntermSequence::iterator p = sequenceVector.begin(); p != sequenceVector.end(); p++, paramCount++) { if (type.isArray()) newNode = constructAggregate(*p, elementType, paramCount + 1, node->getLoc()); else if (op == EOpConstructStruct) newNode = constructAggregate(*p, *(memberTypes[paramCount]).type, paramCount + 1, node->getLoc()); else newNode = constructBuiltIn(type, op, (*p)->getAsTyped(), node->getLoc(), true); if (newNode) *p = newNode; else return nullptr; } TIntermTyped* constructor = intermediate.setAggregateOperator(aggrNode, op, type, loc); return constructor; } // Function for constructor implementation. Calls addUnaryMath with appropriate EOp value // for the parameter to the constructor (passed to this function). Essentially, it converts // the parameter types correctly. If a constructor expects an int (like ivec2) and is passed a // float, then float is converted to int. // // Returns nullptr for an error or the constructed node. // TIntermTyped* HlslParseContext::constructBuiltIn(const TType& type, TOperator op, TIntermTyped* node, const TSourceLoc& loc, bool subset) { TIntermTyped* newNode; TOperator basicOp; // // First, convert types as needed. // switch (op) { case EOpConstructVec2: case EOpConstructVec3: case EOpConstructVec4: case EOpConstructMat2x2: case EOpConstructMat2x3: case EOpConstructMat2x4: case EOpConstructMat3x2: case EOpConstructMat3x3: case EOpConstructMat3x4: case EOpConstructMat4x2: case EOpConstructMat4x3: case EOpConstructMat4x4: case EOpConstructFloat: basicOp = EOpConstructFloat; break; case EOpConstructDVec2: case EOpConstructDVec3: case EOpConstructDVec4: case EOpConstructDMat2x2: case EOpConstructDMat2x3: case EOpConstructDMat2x4: case EOpConstructDMat3x2: case EOpConstructDMat3x3: case EOpConstructDMat3x4: case EOpConstructDMat4x2: case EOpConstructDMat4x3: case EOpConstructDMat4x4: case EOpConstructDouble: basicOp = EOpConstructDouble; break; case EOpConstructIVec2: case EOpConstructIVec3: case EOpConstructIVec4: case EOpConstructInt: basicOp = EOpConstructInt; break; case EOpConstructUVec2: case EOpConstructUVec3: case EOpConstructUVec4: case EOpConstructUint: basicOp = EOpConstructUint; break; case EOpConstructBVec2: case EOpConstructBVec3: case EOpConstructBVec4: case EOpConstructBool: basicOp = EOpConstructBool; break; default: error(loc, "unsupported construction", "", ""); return nullptr; } newNode = intermediate.addUnaryMath(basicOp, node, node->getLoc()); if (newNode == nullptr) { error(loc, "can't convert", "constructor", ""); return nullptr; } // // Now, if there still isn't an operation to do the construction, and we need one, add one. // // Otherwise, skip out early. if (subset || (newNode != node && newNode->getType() == type)) return newNode; // setAggregateOperator will insert a new node for the constructor, as needed. return intermediate.setAggregateOperator(newNode, op, type, loc); } // This function tests for the type of the parameters to the structure or array constructor. Raises // an error message if the expected type does not match the parameter passed to the constructor. // // Returns nullptr for an error or the input node itself if the expected and the given parameter types match. // TIntermTyped* HlslParseContext::constructAggregate(TIntermNode* node, const TType& type, int paramCount, const TSourceLoc& loc) { TIntermTyped* converted = intermediate.addConversion(EOpConstructStruct, type, node->getAsTyped()); if (! converted || converted->getType() != type) { error(loc, "", "constructor", "cannot convert parameter %d from '%s' to '%s'", paramCount, node->getAsTyped()->getType().getCompleteString().c_str(), type.getCompleteString().c_str()); return nullptr; } return converted; } // // Do everything needed to add an interface block. // void HlslParseContext::declareBlock(const TSourceLoc& loc, TTypeList& typeList, const TString* instanceName, TArraySizes* arraySizes) { // fix and check for member storage qualifiers and types that don't belong within a block for (unsigned int member = 0; member < typeList.size(); ++member) { TType& memberType = *typeList[member].type; TQualifier& memberQualifier = memberType.getQualifier(); const TSourceLoc& memberLoc = typeList[member].loc; globalQualifierFix(memberLoc, memberQualifier); memberQualifier.storage = currentBlockQualifier.storage; } // This might be a redeclaration of a built-in block. If so, redeclareBuiltinBlock() will // do all the rest. if (! symbolTable.atBuiltInLevel() && builtInName(*blockName)) { redeclareBuiltinBlock(loc, typeList, *blockName, instanceName, arraySizes); return; } // Make default block qualification, and adjust the member qualifications TQualifier defaultQualification; switch (currentBlockQualifier.storage) { case EvqUniform: defaultQualification = globalUniformDefaults; break; case EvqBuffer: defaultQualification = globalBufferDefaults; break; case EvqVaryingIn: defaultQualification = globalInputDefaults; break; case EvqVaryingOut: defaultQualification = globalOutputDefaults; break; default: defaultQualification.clear(); break; } // Special case for "push_constant uniform", which has a default of std430, // contrary to normal uniform defaults, and can't have a default tracked for it. if (currentBlockQualifier.layoutPushConstant && ! currentBlockQualifier.hasPacking()) currentBlockQualifier.layoutPacking = ElpStd430; // fix and check for member layout qualifiers mergeObjectLayoutQualifiers(defaultQualification, currentBlockQualifier, true); bool memberWithLocation = false; bool memberWithoutLocation = false; for (unsigned int member = 0; member < typeList.size(); ++member) { TQualifier& memberQualifier = typeList[member].type->getQualifier(); const TSourceLoc& memberLoc = typeList[member].loc; if (memberQualifier.hasStream()) { if (defaultQualification.layoutStream != memberQualifier.layoutStream) error(memberLoc, "member cannot contradict block", "stream", ""); } // "This includes a block's inheritance of the // current global default buffer, a block member's inheritance of the block's // buffer, and the requirement that any *xfb_buffer* declared on a block // member must match the buffer inherited from the block." if (memberQualifier.hasXfbBuffer()) { if (defaultQualification.layoutXfbBuffer != memberQualifier.layoutXfbBuffer) error(memberLoc, "member cannot contradict block (or what block inherited from global)", "xfb_buffer", ""); } if (memberQualifier.hasPacking()) error(memberLoc, "member of block cannot have a packing layout qualifier", typeList[member].type->getFieldName().c_str(), ""); if (memberQualifier.hasLocation()) { switch (currentBlockQualifier.storage) { case EvqVaryingIn: case EvqVaryingOut: memberWithLocation = true; break; default: break; } } else memberWithoutLocation = true; if (memberQualifier.hasAlign()) { if (defaultQualification.layoutPacking != ElpStd140 && defaultQualification.layoutPacking != ElpStd430) error(memberLoc, "can only be used with std140 or std430 layout packing", "align", ""); } TQualifier newMemberQualification = defaultQualification; mergeQualifiers(memberLoc, newMemberQualification, memberQualifier, false); memberQualifier = newMemberQualification; } // Process the members fixBlockLocations(loc, currentBlockQualifier, typeList, memberWithLocation, memberWithoutLocation); fixBlockXfbOffsets(currentBlockQualifier, typeList); fixBlockUniformOffsets(currentBlockQualifier, typeList); // reverse merge, so that currentBlockQualifier now has all layout information // (can't use defaultQualification directly, it's missing other non-layout-default-class qualifiers) mergeObjectLayoutQualifiers(currentBlockQualifier, defaultQualification, true); // // Build and add the interface block as a new type named 'blockName' // TType blockType(&typeList, *blockName, currentBlockQualifier); if (arraySizes) blockType.newArraySizes(*arraySizes); // // Don't make a user-defined type out of block name; that will cause an error // if the same block name gets reused in a different interface. // // "Block names have no other use within a shader // beyond interface matching; it is a compile-time error to use a block name at global scope for anything // other than as a block name (e.g., use of a block name for a global variable name or function name is // currently reserved)." // // Use the symbol table to prevent normal reuse of the block's name, as a variable entry, // whose type is EbtBlock, but without all the structure; that will come from the type // the instances point to. // TType blockNameType(EbtBlock, blockType.getQualifier().storage); TVariable* blockNameVar = new TVariable(blockName, blockNameType); if (! symbolTable.insert(*blockNameVar)) { TSymbol* existingName = symbolTable.find(*blockName); if (existingName->getType().getBasicType() == EbtBlock) { if (existingName->getType().getQualifier().storage == blockType.getQualifier().storage) { error(loc, "Cannot reuse block name within the same interface:", blockName->c_str(), blockType.getStorageQualifierString()); return; } } else { error(loc, "block name cannot redefine a non-block name", blockName->c_str(), ""); return; } } // Add the variable, as anonymous or named instanceName. // Make an anonymous variable if no name was provided. if (! instanceName) instanceName = NewPoolTString(""); TVariable& variable = *new TVariable(instanceName, blockType); if (! symbolTable.insert(variable)) { if (*instanceName == "") error(loc, "nameless block contains a member that already has a name at global scope", blockName->c_str(), ""); else error(loc, "block instance name redefinition", variable.getName().c_str(), ""); return; } if (isIoResizeArray(blockType)) { ioArraySymbolResizeList.push_back(&variable); checkIoArraysConsistency(loc, true); } else fixIoArraySize(loc, variable.getWritableType()); // Save it in the AST for linker use. intermediate.addSymbolLinkageNode(linkage, variable); } // // "For a block, this process applies to the entire block, or until the first member // is reached that has a location layout qualifier. When a block member is declared with a location // qualifier, its location comes from that qualifier: The member's location qualifier overrides the block-level // declaration. Subsequent members are again assigned consecutive locations, based on the newest location, // until the next member declared with a location qualifier. The values used for locations do not have to be // declared in increasing order." void HlslParseContext::fixBlockLocations(const TSourceLoc& loc, TQualifier& qualifier, TTypeList& typeList, bool memberWithLocation, bool memberWithoutLocation) { // "If a block has no block-level location layout qualifier, it is required that either all or none of its members // have a location layout qualifier, or a compile-time error results." if (! qualifier.hasLocation() && memberWithLocation && memberWithoutLocation) error(loc, "either the block needs a location, or all members need a location, or no members have a location", "location", ""); else { if (memberWithLocation) { // remove any block-level location and make it per *every* member int nextLocation = 0; // by the rule above, initial value is not relevant if (qualifier.hasAnyLocation()) { nextLocation = qualifier.layoutLocation; qualifier.layoutLocation = TQualifier::layoutLocationEnd; if (qualifier.hasComponent()) { // "It is a compile-time error to apply the *component* qualifier to a ... block" error(loc, "cannot apply to a block", "component", ""); } if (qualifier.hasIndex()) { error(loc, "cannot apply to a block", "index", ""); } } for (unsigned int member = 0; member < typeList.size(); ++member) { TQualifier& memberQualifier = typeList[member].type->getQualifier(); const TSourceLoc& memberLoc = typeList[member].loc; if (! memberQualifier.hasLocation()) { if (nextLocation >= (int)TQualifier::layoutLocationEnd) error(memberLoc, "location is too large", "location", ""); memberQualifier.layoutLocation = nextLocation; memberQualifier.layoutComponent = 0; } nextLocation = memberQualifier.layoutLocation + intermediate.computeTypeLocationSize(*typeList[member].type); } } } } void HlslParseContext::fixBlockXfbOffsets(TQualifier& qualifier, TTypeList& typeList) { // "If a block is qualified with xfb_offset, all its // members are assigned transform feedback buffer offsets. If a block is not qualified with xfb_offset, any // members of that block not qualified with an xfb_offset will not be assigned transform feedback buffer // offsets." if (! qualifier.hasXfbBuffer() || ! qualifier.hasXfbOffset()) return; int nextOffset = qualifier.layoutXfbOffset; for (unsigned int member = 0; member < typeList.size(); ++member) { TQualifier& memberQualifier = typeList[member].type->getQualifier(); bool containsDouble = false; int memberSize = intermediate.computeTypeXfbSize(*typeList[member].type, containsDouble); // see if we need to auto-assign an offset to this member if (! memberQualifier.hasXfbOffset()) { // "if applied to an aggregate containing a double, the offset must also be a multiple of 8" if (containsDouble) RoundToPow2(nextOffset, 8); memberQualifier.layoutXfbOffset = nextOffset; } else nextOffset = memberQualifier.layoutXfbOffset; nextOffset += memberSize; } // The above gave all block members an offset, so we can take it off the block now, // which will avoid double counting the offset usage. qualifier.layoutXfbOffset = TQualifier::layoutXfbOffsetEnd; } // Calculate and save the offset of each block member, using the recursively // defined block offset rules and the user-provided offset and align. // // Also, compute and save the total size of the block. For the block's size, arrayness // is not taken into account, as each element is backed by a separate buffer. // void HlslParseContext::fixBlockUniformOffsets(TQualifier& qualifier, TTypeList& typeList) { if (! qualifier.isUniformOrBuffer()) return; if (qualifier.layoutPacking != ElpStd140 && qualifier.layoutPacking != ElpStd430) return; int offset = 0; int memberSize; for (unsigned int member = 0; member < typeList.size(); ++member) { TQualifier& memberQualifier = typeList[member].type->getQualifier(); const TSourceLoc& memberLoc = typeList[member].loc; // "When align is applied to an array, it effects only the start of the array, not the array's internal stride." // modify just the children's view of matrix layout, if there is one for this member TLayoutMatrix subMatrixLayout = typeList[member].type->getQualifier().layoutMatrix; int dummyStride; int memberAlignment = intermediate.getBaseAlignment(*typeList[member].type, memberSize, dummyStride, qualifier.layoutPacking == ElpStd140, subMatrixLayout != ElmNone ? subMatrixLayout == ElmRowMajor : qualifier.layoutMatrix == ElmRowMajor); if (memberQualifier.hasOffset()) { // "The specified offset must be a multiple // of the base alignment of the type of the block member it qualifies, or a compile-time error results." if (! IsMultipleOfPow2(memberQualifier.layoutOffset, memberAlignment)) error(memberLoc, "must be a multiple of the member's alignment", "offset", ""); // "It is a compile-time error to specify an offset that is smaller than the offset of the previous // member in the block or that lies within the previous member of the block" if (memberQualifier.layoutOffset < offset) error(memberLoc, "cannot lie in previous members", "offset", ""); // "The offset qualifier forces the qualified member to start at or after the specified // integral-constant expression, which will be its byte offset from the beginning of the buffer. // "The actual offset of a member is computed as // follows: If offset was declared, start with that offset, otherwise start with the next available offset." offset = std::max(offset, memberQualifier.layoutOffset); } // "The actual alignment of a member will be the greater of the specified align alignment and the standard // (e.g., std140) base alignment for the member's type." if (memberQualifier.hasAlign()) memberAlignment = std::max(memberAlignment, memberQualifier.layoutAlign); // "If the resulting offset is not a multiple of the actual alignment, // increase it to the first offset that is a multiple of // the actual alignment." RoundToPow2(offset, memberAlignment); typeList[member].type->getQualifier().layoutOffset = offset; offset += memberSize; } } // For an identifier that is already declared, add more qualification to it. void HlslParseContext::addQualifierToExisting(const TSourceLoc& loc, TQualifier qualifier, const TString& identifier) { TSymbol* symbol = symbolTable.find(identifier); if (! symbol) { error(loc, "identifier not previously declared", identifier.c_str(), ""); return; } if (symbol->getAsFunction()) { error(loc, "cannot re-qualify a function name", identifier.c_str(), ""); return; } if (qualifier.isAuxiliary() || qualifier.isMemory() || qualifier.isInterpolation() || qualifier.hasLayout() || qualifier.storage != EvqTemporary || qualifier.precision != EpqNone) { error(loc, "cannot add storage, auxiliary, memory, interpolation, layout, or precision qualifier to an existing variable", identifier.c_str(), ""); return; } // For read-only built-ins, add a new symbol for holding the modified qualifier. // This will bring up an entire block, if a block type has to be modified (e.g., gl_Position inside a block) if (symbol->isReadOnly()) symbol = symbolTable.copyUp(symbol); if (qualifier.invariant) { if (intermediate.inIoAccessed(identifier)) error(loc, "cannot change qualification after use", "invariant", ""); symbol->getWritableType().getQualifier().invariant = true; } else if (qualifier.noContraction) { if (intermediate.inIoAccessed(identifier)) error(loc, "cannot change qualification after use", "precise", ""); symbol->getWritableType().getQualifier().noContraction = true; } else if (qualifier.specConstant) { symbol->getWritableType().getQualifier().makeSpecConstant(); if (qualifier.hasSpecConstantId()) symbol->getWritableType().getQualifier().layoutSpecConstantId = qualifier.layoutSpecConstantId; } else warn(loc, "unknown requalification", "", ""); } void HlslParseContext::addQualifierToExisting(const TSourceLoc& loc, TQualifier qualifier, TIdentifierList& identifiers) { for (unsigned int i = 0; i < identifiers.size(); ++i) addQualifierToExisting(loc, qualifier, *identifiers[i]); } // // Updating default qualifier for the case of a declaration with just a qualifier, // no type, block, or identifier. // void HlslParseContext::updateStandaloneQualifierDefaults(const TSourceLoc& loc, const TPublicType& publicType) { if (publicType.shaderQualifiers.vertices != TQualifier::layoutNotSet) { assert(language == EShLangTessControl || language == EShLangGeometry); const char* id = (language == EShLangTessControl) ? "vertices" : "max_vertices"; if (language == EShLangTessControl) checkIoArraysConsistency(loc); } if (publicType.shaderQualifiers.invocations != TQualifier::layoutNotSet) { if (! intermediate.setInvocations(publicType.shaderQualifiers.invocations)) error(loc, "cannot change previously set layout value", "invocations", ""); } if (publicType.shaderQualifiers.geometry != ElgNone) { if (publicType.qualifier.storage == EvqVaryingIn) { switch (publicType.shaderQualifiers.geometry) { case ElgPoints: case ElgLines: case ElgLinesAdjacency: case ElgTriangles: case ElgTrianglesAdjacency: case ElgQuads: case ElgIsolines: if (intermediate.setInputPrimitive(publicType.shaderQualifiers.geometry)) { if (language == EShLangGeometry) checkIoArraysConsistency(loc); } else error(loc, "cannot change previously set input primitive", TQualifier::getGeometryString(publicType.shaderQualifiers.geometry), ""); break; default: error(loc, "cannot apply to input", TQualifier::getGeometryString(publicType.shaderQualifiers.geometry), ""); } } else if (publicType.qualifier.storage == EvqVaryingOut) { switch (publicType.shaderQualifiers.geometry) { case ElgPoints: case ElgLineStrip: case ElgTriangleStrip: if (! intermediate.setOutputPrimitive(publicType.shaderQualifiers.geometry)) error(loc, "cannot change previously set output primitive", TQualifier::getGeometryString(publicType.shaderQualifiers.geometry), ""); break; default: error(loc, "cannot apply to 'out'", TQualifier::getGeometryString(publicType.shaderQualifiers.geometry), ""); } } else error(loc, "cannot apply to:", TQualifier::getGeometryString(publicType.shaderQualifiers.geometry), GetStorageQualifierString(publicType.qualifier.storage)); } if (publicType.shaderQualifiers.spacing != EvsNone) intermediate.setVertexSpacing(publicType.shaderQualifiers.spacing); if (publicType.shaderQualifiers.order != EvoNone) intermediate.setVertexOrder(publicType.shaderQualifiers.order); if (publicType.shaderQualifiers.pointMode) intermediate.setPointMode(); for (int i = 0; i < 3; ++i) { if (publicType.shaderQualifiers.localSize[i] > 1) { int max = 0; switch (i) { case 0: max = resources.maxComputeWorkGroupSizeX; break; case 1: max = resources.maxComputeWorkGroupSizeY; break; case 2: max = resources.maxComputeWorkGroupSizeZ; break; default: break; } if (intermediate.getLocalSize(i) > (unsigned int)max) error(loc, "too large; see gl_MaxComputeWorkGroupSize", "local_size", ""); // Fix the existing constant gl_WorkGroupSize with this new information. TVariable* workGroupSize = getEditableVariable("gl_WorkGroupSize"); workGroupSize->getWritableConstArray()[i].setUConst(intermediate.getLocalSize(i)); } if (publicType.shaderQualifiers.localSizeSpecId[i] != TQualifier::layoutNotSet) { intermediate.setLocalSizeSpecId(i, publicType.shaderQualifiers.localSizeSpecId[i]); // Set the workgroup built-in variable as a specialization constant TVariable* workGroupSize = getEditableVariable("gl_WorkGroupSize"); workGroupSize->getWritableType().getQualifier().specConstant = true; } } if (publicType.shaderQualifiers.earlyFragmentTests) intermediate.setEarlyFragmentTests(); const TQualifier& qualifier = publicType.qualifier; switch (qualifier.storage) { case EvqUniform: if (qualifier.hasMatrix()) globalUniformDefaults.layoutMatrix = qualifier.layoutMatrix; if (qualifier.hasPacking()) globalUniformDefaults.layoutPacking = qualifier.layoutPacking; break; case EvqBuffer: if (qualifier.hasMatrix()) globalBufferDefaults.layoutMatrix = qualifier.layoutMatrix; if (qualifier.hasPacking()) globalBufferDefaults.layoutPacking = qualifier.layoutPacking; break; case EvqVaryingIn: break; case EvqVaryingOut: if (qualifier.hasStream()) globalOutputDefaults.layoutStream = qualifier.layoutStream; if (qualifier.hasXfbBuffer()) globalOutputDefaults.layoutXfbBuffer = qualifier.layoutXfbBuffer; if (globalOutputDefaults.hasXfbBuffer() && qualifier.hasXfbStride()) { if (! intermediate.setXfbBufferStride(globalOutputDefaults.layoutXfbBuffer, qualifier.layoutXfbStride)) error(loc, "all stride settings must match for xfb buffer", "xfb_stride", "%d", qualifier.layoutXfbBuffer); } break; default: error(loc, "default qualifier requires 'uniform', 'buffer', 'in', or 'out' storage qualification", "", ""); return; } } // // Take the sequence of statements that has been built up since the last case/default, // put it on the list of top-level nodes for the current (inner-most) switch statement, // and follow that by the case/default we are on now. (See switch topology comment on // TIntermSwitch.) // void HlslParseContext::wrapupSwitchSubsequence(TIntermAggregate* statements, TIntermNode* branchNode) { TIntermSequence* switchSequence = switchSequenceStack.back(); if (statements) { if (switchSequence->size() == 0) error(statements->getLoc(), "cannot have statements before first case/default label", "switch", ""); statements->setOperator(EOpSequence); switchSequence->push_back(statements); } if (branchNode) { // check all previous cases for the same label (or both are 'default') for (unsigned int s = 0; s < switchSequence->size(); ++s) { TIntermBranch* prevBranch = (*switchSequence)[s]->getAsBranchNode(); if (prevBranch) { TIntermTyped* prevExpression = prevBranch->getExpression(); TIntermTyped* newExpression = branchNode->getAsBranchNode()->getExpression(); if (prevExpression == nullptr && newExpression == nullptr) error(branchNode->getLoc(), "duplicate label", "default", ""); else if (prevExpression != nullptr && newExpression != nullptr && prevExpression->getAsConstantUnion() && newExpression->getAsConstantUnion() && prevExpression->getAsConstantUnion()->getConstArray()[0].getIConst() == newExpression->getAsConstantUnion()->getConstArray()[0].getIConst()) error(branchNode->getLoc(), "duplicated value", "case", ""); } } switchSequence->push_back(branchNode); } } // // Turn the top-level node sequence built up of wrapupSwitchSubsequence // into a switch node. // TIntermNode* HlslParseContext::addSwitch(const TSourceLoc& loc, TIntermTyped* expression, TIntermAggregate* lastStatements) { wrapupSwitchSubsequence(lastStatements, nullptr); if (expression == nullptr || (expression->getBasicType() != EbtInt && expression->getBasicType() != EbtUint) || expression->getType().isArray() || expression->getType().isMatrix() || expression->getType().isVector()) error(loc, "condition must be a scalar integer expression", "switch", ""); // If there is nothing to do, drop the switch but still execute the expression TIntermSequence* switchSequence = switchSequenceStack.back(); if (switchSequence->size() == 0) return expression; if (lastStatements == nullptr) { // emulate a break for error recovery lastStatements = intermediate.makeAggregate(intermediate.addBranch(EOpBreak, loc)); lastStatements->setOperator(EOpSequence); switchSequence->push_back(lastStatements); } TIntermAggregate* body = new TIntermAggregate(EOpSequence); body->getSequence() = *switchSequenceStack.back(); body->setLoc(loc); TIntermSwitch* switchNode = new TIntermSwitch(expression, body); switchNode->setLoc(loc); return switchNode; } } // end namespace glslang