float VertexShaderFunction(float inF0, float inF1, float inF2, uint inU0, uint inU1) { all(inF0); abs(inF0); acos(inF0); any(inF0); asin(inF0); asint(inF0); asuint(inF0); asfloat(inU0); // asdouble(inU0, inU1); // TODO: enable when HLSL parser used for intrinsics atan(inF0); atan2(inF0, inF1); ceil(inF0); clamp(inF0, inF1, inF2); cos(inF0); cosh(inF0); countbits(7); degrees(inF0); // EvaluateAttributeAtCentroid(inF0); // EvaluateAttributeAtSample(inF0, 0); // TODO: EvaluateAttributeSnapped(inF0, int2(1,2)); exp(inF0); exp2(inF0); firstbithigh(7); firstbitlow(7); floor(inF0); // TODO: fma(inD0, inD1, inD2); fmod(inF0, inF1); frac(inF0); frexp(inF0, inF1); isinf(inF0); isnan(inF0); ldexp(inF0, inF1); lerp(inF0, inF1, inF2); log(inF0); log10(inF0); log2(inF0); max(inF0, inF1); min(inF0, inF1); // TODO: mul(inF0, inF1); pow(inF0, inF1); radians(inF0); reversebits(2); round(inF0); rsqrt(inF0); saturate(inF0); sign(inF0); sin(inF0); sincos(inF0, inF1, inF2); sinh(inF0); smoothstep(inF0, inF1, inF2); sqrt(inF0); step(inF0, inF1); tan(inF0); tanh(inF0); // TODO: sampler intrinsics, when we can declare the types. trunc(inF0); return 0.0; } float1 VertexShaderFunction(float1 inF0, float1 inF1, float1 inF2) { // TODO: ... add when float1 prototypes are generated return 0.0; } float2 VertexShaderFunction(float2 inF0, float2 inF1, float2 inF2, uint2 inU0, uint2 inU1) { all(inF0); abs(inF0); acos(inF0); any(inF0); asin(inF0); asint(inF0); asuint(inF0); asfloat(inU0); // asdouble(inU0, inU1); // TODO: enable when HLSL parser used for intrinsics atan(inF0); atan2(inF0, inF1); ceil(inF0); clamp(inF0, inF1, inF2); cos(inF0); cosh(inF0); countbits(int2(7,3)); degrees(inF0); distance(inF0, inF1); dot(inF0, inF1); // EvaluateAttributeAtCentroid(inF0); // EvaluateAttributeAtSample(inF0, 0); // TODO: EvaluateAttributeSnapped(inF0, int2(1,2)); exp(inF0); exp2(inF0); faceforward(inF0, inF1, inF2); firstbithigh(7); firstbitlow(7); floor(inF0); // TODO: fma(inD0, inD1, inD2); fmod(inF0, inF1); frac(inF0); frexp(inF0, inF1); isinf(inF0); isnan(inF0); ldexp(inF0, inF1); lerp(inF0, inF1, inF2); length(inF0); log(inF0); log10(inF0); log2(inF0); max(inF0, inF1); min(inF0, inF1); // TODO: mul(inF0, inF1); normalize(inF0); pow(inF0, inF1); radians(inF0); reflect(inF0, inF1); refract(inF0, inF1, 2.0); reversebits(int2(1,2)); round(inF0); rsqrt(inF0); saturate(inF0); sign(inF0); sin(inF0); sincos(inF0, inF1, inF2); sinh(inF0); smoothstep(inF0, inF1, inF2); sqrt(inF0); step(inF0, inF1); tan(inF0); tanh(inF0); // TODO: sampler intrinsics, when we can declare the types. trunc(inF0); // TODO: ... add when float1 prototypes are generated return float2(1,2); } float3 VertexShaderFunction(float3 inF0, float3 inF1, float3 inF2, uint3 inU0, uint3 inU1) { all(inF0); abs(inF0); acos(inF0); any(inF0); asin(inF0); asint(inF0); asuint(inF0); asfloat(inU0); // asdouble(inU0, inU1); // TODO: enable when HLSL parser used for intrinsics atan(inF0); atan2(inF0, inF1); ceil(inF0); clamp(inF0, inF1, inF2); cos(inF0); cosh(inF0); countbits(int3(7,3,5)); cross(inF0, inF1); degrees(inF0); distance(inF0, inF1); dot(inF0, inF1); // EvaluateAttributeAtCentroid(inF0); // EvaluateAttributeAtSample(inF0, 0); // TODO: EvaluateAttributeSnapped(inF0, int2(1,2)); exp(inF0); exp2(inF0); faceforward(inF0, inF1, inF2); firstbithigh(7); firstbitlow(7); floor(inF0); // TODO: fma(inD0, inD1, inD2); fmod(inF0, inF1); frac(inF0); frexp(inF0, inF1); isinf(inF0); isnan(inF0); ldexp(inF0, inF1); lerp(inF0, inF1, inF2); length(inF0); log(inF0); log10(inF0); log2(inF0); max(inF0, inF1); min(inF0, inF1); // TODO: mul(inF0, inF1); normalize(inF0); pow(inF0, inF1); radians(inF0); reflect(inF0, inF1); refract(inF0, inF1, 2.0); reversebits(int3(1,2,3)); round(inF0); rsqrt(inF0); saturate(inF0); sign(inF0); sin(inF0); sincos(inF0, inF1, inF2); sinh(inF0); smoothstep(inF0, inF1, inF2); sqrt(inF0); step(inF0, inF1); tan(inF0); tanh(inF0); // TODO: sampler intrinsics, when we can declare the types. trunc(inF0); // TODO: ... add when float1 prototypes are generated return float3(1,2,3); } float4 VertexShaderFunction(float4 inF0, float4 inF1, float4 inF2, uint4 inU0, uint4 inU1) { all(inF0); abs(inF0); acos(inF0); any(inF0); asin(inF0); asint(inF0); asuint(inF0); asfloat(inU0); // asdouble(inU0, inU1); // TODO: enable when HLSL parser used for intrinsics atan(inF0); atan2(inF0, inF1); ceil(inF0); clamp(inF0, inF1, inF2); cos(inF0); cosh(inF0); countbits(int4(7,3,5,2)); degrees(inF0); distance(inF0, inF1); dot(inF0, inF1); dst(inF0, inF1); // EvaluateAttributeAtCentroid(inF0); // EvaluateAttributeAtSample(inF0, 0); // TODO: EvaluateAttributeSnapped(inF0, int2(1,2)); exp(inF0); exp2(inF0); faceforward(inF0, inF1, inF2); firstbithigh(7); firstbitlow(7); floor(inF0); // TODO: fma(inD0, inD1, inD2); fmod(inF0, inF1); frac(inF0); frexp(inF0, inF1); isinf(inF0); isnan(inF0); ldexp(inF0, inF1); lerp(inF0, inF1, inF2); length(inF0); log(inF0); log10(inF0); log2(inF0); max(inF0, inF1); min(inF0, inF1); // TODO: mul(inF0, inF1); normalize(inF0); pow(inF0, inF1); radians(inF0); reflect(inF0, inF1); refract(inF0, inF1, 2.0); reversebits(int4(1,2,3,4)); round(inF0); rsqrt(inF0); saturate(inF0); sign(inF0); sin(inF0); sincos(inF0, inF1, inF2); sinh(inF0); smoothstep(inF0, inF1, inF2); sqrt(inF0); step(inF0, inF1); tan(inF0); tanh(inF0); // TODO: sampler intrinsics, when we can declare the types. trunc(inF0); // TODO: ... add when float1 prototypes are generated return float4(1,2,3,4); } // TODO: for mats: // asfloat(inU0); \ // asint(inF0); \ // asuint(inF0); \ // TODO: FXC doesn't accept this with (), but glslang doesn't accept it without. #define MATFNS() \ all(inF0); \ abs(inF0); \ acos(inF0); \ any(inF0); \ asin(inF0); \ atan(inF0); \ atan2(inF0, inF1); \ ceil(inF0); \ clamp(inF0, inF1, inF2); \ cos(inF0); \ cosh(inF0); \ degrees(inF0); \ determinant(inF0); \ exp(inF0); \ exp2(inF0); \ firstbithigh(7); \ firstbitlow(7); \ floor(inF0); \ fmod(inF0, inF1); \ frac(inF0); \ frexp(inF0, inF1); \ ldexp(inF0, inF1); \ lerp(inF0, inF1, inF2); \ log(inF0); \ log10(inF0); \ log2(inF0); \ max(inF0, inF1); \ min(inF0, inF1); \ pow(inF0, inF1); \ radians(inF0); \ round(inF0); \ rsqrt(inF0); \ saturate(inF0); \ sign(inF0); \ sin(inF0); \ sincos(inF0, inF1, inF2); \ sinh(inF0); \ smoothstep(inF0, inF1, inF2); \ sqrt(inF0); \ step(inF0, inF1); \ tan(inF0); \ tanh(inF0); \ transpose(inF0); \ trunc(inF0); // TODO: turn on non-square matrix tests when protos are available. float2x2 VertexShaderFunction(float2x2 inF0, float2x2 inF1, float2x2 inF2) { // TODO: FXC doesn't accept this with (), but glslang doesn't accept it without. MATFNS(); // TODO: ... add when float1 prototypes are generated return float2x2(2,2,2,2); } float3x3 VertexShaderFunction(float3x3 inF0, float3x3 inF1, float3x3 inF2) { // TODO: FXC doesn't accept this with (), but glslang doesn't accept it without. MATFNS(); // TODO: ... add when float1 prototypes are generated return float3x3(3,3,3,3,3,3,3,3,3); } float4x4 VertexShaderFunction(float4x4 inF0, float4x4 inF1, float4x4 inF2) { // TODO: FXC doesn't accept this with (), but glslang doesn't accept it without. MATFNS(); // TODO: ... add when float1 prototypes are generated return float4x4(4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4); } #define TESTGENMUL(ST, VT, MT) \ ST r0 = mul(inF0, inF1); \ VT r1 = mul(inFV0, inF0); \ VT r2 = mul(inF0, inFV0); \ ST r3 = mul(inFV0, inFV1); \ VT r4 = mul(inFM0, inFV0); \ VT r5 = mul(inFV0, inFM0); \ MT r6 = mul(inFM0, inF0); \ MT r7 = mul(inF0, inFM0); \ MT r8 = mul(inFM0, inFM1); void TestGenMul(float inF0, float inF1, float2 inFV0, float2 inFV1, float2x2 inFM0, float2x2 inFM1) { TESTGENMUL(float, float2, float2x2); } void TestGenMul(float inF0, float inF1, float3 inFV0, float3 inFV1, float3x3 inFM0, float3x3 inFM1) { TESTGENMUL(float, float3, float3x3); } void TestGenMul(float inF0, float inF1, float4 inFV0, float4 inFV1, float4x4 inFM0, float4x4 inFM1) { TESTGENMUL(float, float4, float4x4); } // Test some non-square mats void TestGenMul(float inF0, float inF1, float2 inFV2, float3 inFV3, float2x3 inFM2x3, float3x2 inFM3x2, float3x3 inFM3x3, float3x4 inFM3x4, float2x4 inFM2x4) { float r00 = mul(inF0, inF1); // S=S*S float2 r01 = mul(inFV2, inF0); // V=V*S float3 r02 = mul(inFV3, inF0); // V=V*S float2 r03 = mul(inF0, inFV2); // V=S*V float3 r04 = mul(inF0, inFV3); // V=S*V float r05 = mul(inFV2, inFV2); // S=V*V float r06 = mul(inFV3, inFV3); // S=V*V float3 r07 = mul(inFV2, inFM2x3); // V=V*M (return V dim is Mcols) float2 r08 = mul(inFV3, inFM3x2); // V=V*M (return V dim is Mcols) float2 r09 = mul(inFM2x3, inFV3); // V=M*V (return V dim is Mrows) float3 r10 = mul(inFM3x2, inFV2); // V=M*V (return V dim is Mrows) float2x3 r11 = mul(inFM2x3, inF0); float3x2 r12 = mul(inFM3x2, inF0); float2x2 r13 = mul(inFM2x3, inFM3x2); float2x3 r14 = mul(inFM2x3, inFM3x3); float2x4 r15 = mul(inFM2x3, inFM3x4); float3x4 r16 = mul(inFM3x2, inFM2x4); }