// //Copyright (C) 2014 LunarG, Inc. // //All rights reserved. // //Redistribution and use in source and binary forms, with or without //modification, are permitted provided that the following conditions //are met: // // Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // // Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // // Neither the name of 3Dlabs Inc. Ltd. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // //THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS //"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT //LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS //FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE //COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, //INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, //BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; //LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER //CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT //LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN //ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE //POSSIBILITY OF SUCH DAMAGE. // // Author: John Kessenich, LunarG // // Visit the nodes in the glslang intermediate tree representation to // translate them to SPIR-V. // #include "spirv.hpp" #include "GlslangToSpv.h" #include "SpvBuilder.h" namespace spv { #include "GLSL.std.450.h" } // Glslang includes #include "../glslang/MachineIndependent/localintermediate.h" #include "../glslang/MachineIndependent/SymbolTable.h" #include "../glslang/Include/Common.h" #include #include #include #include #include #include namespace { const int GlslangMagic = 0x51a; // // The main holder of information for translating glslang to SPIR-V. // // Derives from the AST walking base class. // class TGlslangToSpvTraverser : public glslang::TIntermTraverser { public: TGlslangToSpvTraverser(const glslang::TIntermediate*); virtual ~TGlslangToSpvTraverser(); bool visitAggregate(glslang::TVisit, glslang::TIntermAggregate*); bool visitBinary(glslang::TVisit, glslang::TIntermBinary*); void visitConstantUnion(glslang::TIntermConstantUnion*); bool visitSelection(glslang::TVisit, glslang::TIntermSelection*); bool visitSwitch(glslang::TVisit, glslang::TIntermSwitch*); void visitSymbol(glslang::TIntermSymbol* symbol); bool visitUnary(glslang::TVisit, glslang::TIntermUnary*); bool visitLoop(glslang::TVisit, glslang::TIntermLoop*); bool visitBranch(glslang::TVisit visit, glslang::TIntermBranch*); void dumpSpv(std::vector& out) { builder.dump(out); } protected: spv::Id createSpvVariable(const glslang::TIntermSymbol*); spv::Id getSampledType(const glslang::TSampler&); spv::Id convertGlslangToSpvType(const glslang::TType& type); spv::Id convertGlslangToSpvType(const glslang::TType& type, bool explicitLayout); bool requiresExplicitLayout(const glslang::TType& type) const; int getArrayStride(const glslang::TType& arrayType); int getMatrixStride(const glslang::TType& matrixType); void updateMemberOffset(const glslang::TType& structType, const glslang::TType& memberType, int& currentOffset, int& nextOffset); bool isShaderEntrypoint(const glslang::TIntermAggregate* node); void makeFunctions(const glslang::TIntermSequence&); void makeGlobalInitializers(const glslang::TIntermSequence&); void visitFunctions(const glslang::TIntermSequence&); void handleFunctionEntry(const glslang::TIntermAggregate* node); void translateArguments(const glslang::TIntermSequence& glslangArguments, std::vector& arguments); void translateArguments(glslang::TIntermUnary& node, std::vector& arguments); spv::Id createImageTextureFunctionCall(glslang::TIntermOperator* node); spv::Id handleUserFunctionCall(const glslang::TIntermAggregate*); spv::Id createBinaryOperation(glslang::TOperator op, spv::Decoration precision, spv::Id typeId, spv::Id left, spv::Id right, glslang::TBasicType typeProxy, bool reduceComparison = true); spv::Id createUnaryOperation(glslang::TOperator op, spv::Decoration precision, spv::Id typeId, spv::Id operand, bool isFloat); spv::Id createConversion(glslang::TOperator op, spv::Decoration precision, spv::Id destTypeId, spv::Id operand); spv::Id makeSmearedConstant(spv::Id constant, int vectorSize); spv::Id createAtomicOperation(glslang::TOperator op, spv::Decoration precision, spv::Id typeId, std::vector& operands); spv::Id createMiscOperation(glslang::TOperator op, spv::Decoration precision, spv::Id typeId, std::vector& operands, glslang::TBasicType typeProxy); spv::Id createNoArgOperation(glslang::TOperator op); spv::Id getSymbolId(const glslang::TIntermSymbol* node); void addDecoration(spv::Id id, spv::Decoration dec); void addMemberDecoration(spv::Id id, int member, spv::Decoration dec); spv::Id createSpvConstant(const glslang::TType& type, const glslang::TConstUnionArray&, int& nextConst); spv::Function* shaderEntry; int sequenceDepth; // There is a 1:1 mapping between a spv builder and a module; this is thread safe spv::Builder builder; bool inMain; bool mainTerminated; bool linkageOnly; const glslang::TIntermediate* glslangIntermediate; spv::Id stdBuiltins; std::unordered_map symbolValues; std::unordered_set constReadOnlyParameters; // set of formal function parameters that have glslang qualifier constReadOnly, so we know they are not local function "const" that are write-once std::unordered_map functionMap; std::unordered_map structMap; std::unordered_map > memberRemapper; // for mapping glslang block indices to spv indices (e.g., due to hidden members) std::stack breakForLoop; // false means break for switch std::stack loopTerminal; // code from the last part of a for loop: for(...; ...; terminal), needed for e.g., continue }; }; // // Helper functions for translating glslang representations to SPIR-V enumerants. // // Translate glslang profile to SPIR-V source language. spv::SourceLanguage TranslateSourceLanguage(EProfile profile) { switch (profile) { case ENoProfile: case ECoreProfile: case ECompatibilityProfile: return spv::SourceLanguageGLSL; case EEsProfile: return spv::SourceLanguageESSL; default: return spv::SourceLanguageUnknown; } } // Translate glslang language (stage) to SPIR-V execution model. spv::ExecutionModel TranslateExecutionModel(EShLanguage stage) { switch (stage) { case EShLangVertex: return spv::ExecutionModelVertex; case EShLangTessControl: return spv::ExecutionModelTessellationControl; case EShLangTessEvaluation: return spv::ExecutionModelTessellationEvaluation; case EShLangGeometry: return spv::ExecutionModelGeometry; case EShLangFragment: return spv::ExecutionModelFragment; case EShLangCompute: return spv::ExecutionModelGLCompute; default: spv::MissingFunctionality("GLSL stage"); return spv::ExecutionModelFragment; } } // Translate glslang type to SPIR-V storage class. spv::StorageClass TranslateStorageClass(const glslang::TType& type) { if (type.getQualifier().isPipeInput()) return spv::StorageClassInput; else if (type.getQualifier().isPipeOutput()) return spv::StorageClassOutput; else if (type.getQualifier().isUniformOrBuffer()) { if (type.getBasicType() == glslang::EbtBlock) return spv::StorageClassUniform; else return spv::StorageClassUniformConstant; // TODO: how are we distuingishing between default and non-default non-writable uniforms? Do default uniforms even exist? } else { switch (type.getQualifier().storage) { case glslang::EvqShared: return spv::StorageClassWorkgroupLocal; break; case glslang::EvqGlobal: return spv::StorageClassPrivateGlobal; case glslang::EvqConstReadOnly: return spv::StorageClassFunction; case glslang::EvqTemporary: return spv::StorageClassFunction; default: spv::MissingFunctionality("unknown glslang storage class"); return spv::StorageClassFunction; } } } // Translate glslang sampler type to SPIR-V dimensionality. spv::Dim TranslateDimensionality(const glslang::TSampler& sampler) { switch (sampler.dim) { case glslang::Esd1D: return spv::Dim1D; case glslang::Esd2D: return spv::Dim2D; case glslang::Esd3D: return spv::Dim3D; case glslang::EsdCube: return spv::DimCube; case glslang::EsdRect: return spv::DimRect; case glslang::EsdBuffer: return spv::DimBuffer; default: spv::MissingFunctionality("unknown sampler dimension"); return spv::Dim2D; } } // Translate glslang type to SPIR-V precision decorations. spv::Decoration TranslatePrecisionDecoration(const glslang::TType& type) { switch (type.getQualifier().precision) { case glslang::EpqLow: return spv::DecorationRelaxedPrecision; // TODO: Map instead to 16-bit types? case glslang::EpqMedium: return spv::DecorationRelaxedPrecision; case glslang::EpqHigh: return spv::NoPrecision; default: return spv::NoPrecision; } } // Translate glslang type to SPIR-V block decorations. spv::Decoration TranslateBlockDecoration(const glslang::TType& type) { if (type.getBasicType() == glslang::EbtBlock) { switch (type.getQualifier().storage) { case glslang::EvqUniform: return spv::DecorationBlock; case glslang::EvqBuffer: return spv::DecorationBufferBlock; case glslang::EvqVaryingIn: return spv::DecorationBlock; case glslang::EvqVaryingOut: return spv::DecorationBlock; default: spv::MissingFunctionality("kind of block"); break; } } return (spv::Decoration)spv::BadValue; } // Translate glslang type to SPIR-V layout decorations. spv::Decoration TranslateLayoutDecoration(const glslang::TType& type) { if (type.isMatrix()) { switch (type.getQualifier().layoutMatrix) { case glslang::ElmRowMajor: return spv::DecorationRowMajor; default: return spv::DecorationColMajor; } } else { switch (type.getBasicType()) { default: return (spv::Decoration)spv::BadValue; break; case glslang::EbtBlock: switch (type.getQualifier().storage) { case glslang::EvqUniform: case glslang::EvqBuffer: switch (type.getQualifier().layoutPacking) { case glslang::ElpShared: return spv::DecorationGLSLShared; case glslang::ElpPacked: return spv::DecorationGLSLPacked; default: return (spv::Decoration)spv::BadValue; } case glslang::EvqVaryingIn: case glslang::EvqVaryingOut: if (type.getQualifier().layoutPacking != glslang::ElpNone) spv::MissingFunctionality("in/out block layout"); return (spv::Decoration)spv::BadValue; default: spv::MissingFunctionality("block storage qualification"); return (spv::Decoration)spv::BadValue; } } } } // Translate glslang type to SPIR-V interpolation decorations. spv::Decoration TranslateInterpolationDecoration(const glslang::TType& type) { if (type.getQualifier().smooth) return spv::DecorationSmooth; if (type.getQualifier().nopersp) return spv::DecorationNoperspective; else if (type.getQualifier().patch) return spv::DecorationPatch; else if (type.getQualifier().flat) return spv::DecorationFlat; else if (type.getQualifier().centroid) return spv::DecorationCentroid; else if (type.getQualifier().sample) return spv::DecorationSample; else return (spv::Decoration)spv::BadValue; } // If glslang type is invaraiant, return SPIR-V invariant decoration. spv::Decoration TranslateInvariantDecoration(const glslang::TType& type) { if (type.getQualifier().invariant) return spv::DecorationInvariant; else return (spv::Decoration)spv::BadValue; } // Translate glslang built-in variable to SPIR-V built in decoration. spv::BuiltIn TranslateBuiltInDecoration(glslang::TBuiltInVariable builtIn) { switch (builtIn) { case glslang::EbvPosition: return spv::BuiltInPosition; case glslang::EbvPointSize: return spv::BuiltInPointSize; case glslang::EbvClipDistance: return spv::BuiltInClipDistance; case glslang::EbvCullDistance: return spv::BuiltInCullDistance; case glslang::EbvVertexId: return spv::BuiltInVertexId; case glslang::EbvInstanceId: return spv::BuiltInInstanceId; case glslang::EbvPrimitiveId: return spv::BuiltInPrimitiveId; case glslang::EbvInvocationId: return spv::BuiltInInvocationId; case glslang::EbvLayer: return spv::BuiltInLayer; case glslang::EbvViewportIndex: return spv::BuiltInViewportIndex; case glslang::EbvTessLevelInner: return spv::BuiltInTessLevelInner; case glslang::EbvTessLevelOuter: return spv::BuiltInTessLevelOuter; case glslang::EbvTessCoord: return spv::BuiltInTessCoord; case glslang::EbvPatchVertices: return spv::BuiltInPatchVertices; case glslang::EbvFragCoord: return spv::BuiltInFragCoord; case glslang::EbvPointCoord: return spv::BuiltInPointCoord; case glslang::EbvFace: return spv::BuiltInFrontFacing; case glslang::EbvSampleId: return spv::BuiltInSampleId; case glslang::EbvSamplePosition: return spv::BuiltInSamplePosition; case glslang::EbvSampleMask: return spv::BuiltInSampleMask; case glslang::EbvFragColor: return spv::BuiltInFragColor; case glslang::EbvFragData: return spv::BuiltInFragColor; case glslang::EbvFragDepth: return spv::BuiltInFragDepth; case glslang::EbvHelperInvocation: return spv::BuiltInHelperInvocation; case glslang::EbvNumWorkGroups: return spv::BuiltInNumWorkgroups; case glslang::EbvWorkGroupSize: return spv::BuiltInWorkgroupSize; case glslang::EbvWorkGroupId: return spv::BuiltInWorkgroupId; case glslang::EbvLocalInvocationId: return spv::BuiltInLocalInvocationId; case glslang::EbvLocalInvocationIndex: return spv::BuiltInLocalInvocationIndex; case glslang::EbvGlobalInvocationId: return spv::BuiltInGlobalInvocationId; default: return (spv::BuiltIn)spv::BadValue; } } // // Implement the TGlslangToSpvTraverser class. // TGlslangToSpvTraverser::TGlslangToSpvTraverser(const glslang::TIntermediate* glslangIntermediate) : TIntermTraverser(true, false, true), shaderEntry(0), sequenceDepth(0), builder(GlslangMagic), inMain(false), mainTerminated(false), linkageOnly(false), glslangIntermediate(glslangIntermediate) { spv::ExecutionModel executionModel = TranslateExecutionModel(glslangIntermediate->getStage()); builder.clearAccessChain(); builder.setSource(TranslateSourceLanguage(glslangIntermediate->getProfile()), glslangIntermediate->getVersion()); stdBuiltins = builder.import("GLSL.std.450"); builder.setMemoryModel(spv::AddressingModelLogical, spv::MemoryModelGLSL450); shaderEntry = builder.makeMain(); builder.addEntryPoint(executionModel, shaderEntry, "main"); // Add the source extensions const auto& sourceExtensions = glslangIntermediate->getRequestedExtensions(); for (auto it = sourceExtensions.begin(); it != sourceExtensions.end(); ++it) builder.addSourceExtension(it->c_str()); // Add the top-level modes for this shader. if (glslangIntermediate->getXfbMode()) builder.addExecutionMode(shaderEntry, spv::ExecutionModeXfb); unsigned int mode; switch (glslangIntermediate->getStage()) { case EShLangVertex: builder.addCapability(spv::CapabilityShader); break; case EShLangTessControl: builder.addCapability(spv::CapabilityTessellation); builder.addExecutionMode(shaderEntry, spv::ExecutionModeOutputVertices, glslangIntermediate->getVertices()); break; case EShLangTessEvaluation: builder.addCapability(spv::CapabilityTessellation); switch (glslangIntermediate->getInputPrimitive()) { case glslang::ElgTriangles: mode = spv::ExecutionModeInputTriangles; break; case glslang::ElgQuads: mode = spv::ExecutionModeInputQuads; break; case glslang::ElgIsolines: mode = spv::ExecutionModeInputIsolines; break; default: mode = spv::BadValue; break; } if (mode != spv::BadValue) builder.addExecutionMode(shaderEntry, (spv::ExecutionMode)mode); // TODO //builder.addExecutionMode(spv::VertexSpacingMdName, glslangIntermediate->getVertexSpacing()); //builder.addExecutionMode(spv::VertexOrderMdName, glslangIntermediate->getVertexOrder()); //builder.addExecutionMode(spv::PointModeMdName, glslangIntermediate->getPointMode()); break; case EShLangGeometry: builder.addCapability(spv::CapabilityGeometry); switch (glslangIntermediate->getInputPrimitive()) { case glslang::ElgPoints: mode = spv::ExecutionModeInputPoints; break; case glslang::ElgLines: mode = spv::ExecutionModeInputLines; break; case glslang::ElgLinesAdjacency: mode = spv::ExecutionModeInputLinesAdjacency; break; case glslang::ElgTriangles: mode = spv::ExecutionModeInputTriangles; break; case glslang::ElgTrianglesAdjacency: mode = spv::ExecutionModeInputTrianglesAdjacency; break; default: mode = spv::BadValue; break; } if (mode != spv::BadValue) builder.addExecutionMode(shaderEntry, (spv::ExecutionMode)mode); builder.addExecutionMode(shaderEntry, spv::ExecutionModeInvocations, glslangIntermediate->getInvocations()); switch (glslangIntermediate->getOutputPrimitive()) { case glslang::ElgPoints: mode = spv::ExecutionModeOutputPoints; break; case glslang::ElgLineStrip: mode = spv::ExecutionModeOutputLineStrip; break; case glslang::ElgTriangleStrip: mode = spv::ExecutionModeOutputTriangleStrip; break; default: mode = spv::BadValue; break; } if (mode != spv::BadValue) builder.addExecutionMode(shaderEntry, (spv::ExecutionMode)mode); builder.addExecutionMode(shaderEntry, spv::ExecutionModeOutputVertices, glslangIntermediate->getVertices()); break; case EShLangFragment: builder.addCapability(spv::CapabilityShader); if (glslangIntermediate->getPixelCenterInteger()) builder.addExecutionMode(shaderEntry, spv::ExecutionModePixelCenterInteger); if (glslangIntermediate->getOriginUpperLeft()) builder.addExecutionMode(shaderEntry, spv::ExecutionModeOriginUpperLeft); else builder.addExecutionMode(shaderEntry, spv::ExecutionModeOriginLowerLeft); break; case EShLangCompute: builder.addCapability(spv::CapabilityShader); break; default: break; } } TGlslangToSpvTraverser::~TGlslangToSpvTraverser() { if (! mainTerminated) { spv::Block* lastMainBlock = shaderEntry->getLastBlock(); builder.setBuildPoint(lastMainBlock); builder.leaveFunction(true); } } // // Implement the traversal functions. // // Return true from interior nodes to have the external traversal // continue on to children. Return false if children were // already processed. // // // Symbols can turn into // - uniform/input reads // - output writes // - complex lvalue base setups: foo.bar[3].... , where we see foo and start up an access chain // - something simple that degenerates into the last bullet // void TGlslangToSpvTraverser::visitSymbol(glslang::TIntermSymbol* symbol) { // getSymbolId() will set up all the IO decorations on the first call. // Formal function parameters were mapped during makeFunctions(). spv::Id id = getSymbolId(symbol); if (! linkageOnly) { // Prepare to generate code for the access // L-value chains will be computed left to right. We're on the symbol now, // which is the left-most part of the access chain, so now is "clear" time, // followed by setting the base. builder.clearAccessChain(); // For now, we consider all user variables as being in memory, so they are pointers, // except for "const in" arguments to a function, which are an intermediate object. // See comments in handleUserFunctionCall(). glslang::TStorageQualifier qualifier = symbol->getQualifier().storage; if (qualifier == glslang::EvqConstReadOnly && constReadOnlyParameters.find(symbol->getId()) != constReadOnlyParameters.end()) builder.setAccessChainRValue(id); else builder.setAccessChainLValue(id); } } bool TGlslangToSpvTraverser::visitBinary(glslang::TVisit /* visit */, glslang::TIntermBinary* node) { // First, handle special cases switch (node->getOp()) { case glslang::EOpAssign: case glslang::EOpAddAssign: case glslang::EOpSubAssign: case glslang::EOpMulAssign: case glslang::EOpVectorTimesMatrixAssign: case glslang::EOpVectorTimesScalarAssign: case glslang::EOpMatrixTimesScalarAssign: case glslang::EOpMatrixTimesMatrixAssign: case glslang::EOpDivAssign: case glslang::EOpModAssign: case glslang::EOpAndAssign: case glslang::EOpInclusiveOrAssign: case glslang::EOpExclusiveOrAssign: case glslang::EOpLeftShiftAssign: case glslang::EOpRightShiftAssign: // A bin-op assign "a += b" means the same thing as "a = a + b" // where a is evaluated before b. For a simple assignment, GLSL // says to evaluate the left before the right. So, always, left // node then right node. { // get the left l-value, save it away builder.clearAccessChain(); node->getLeft()->traverse(this); spv::Builder::AccessChain lValue = builder.getAccessChain(); // evaluate the right builder.clearAccessChain(); node->getRight()->traverse(this); spv::Id rValue = builder.accessChainLoad(TranslatePrecisionDecoration(node->getRight()->getType())); if (node->getOp() != glslang::EOpAssign) { // the left is also an r-value builder.setAccessChain(lValue); spv::Id leftRValue = builder.accessChainLoad(TranslatePrecisionDecoration(node->getLeft()->getType())); // do the operation rValue = createBinaryOperation(node->getOp(), TranslatePrecisionDecoration(node->getType()), convertGlslangToSpvType(node->getType()), leftRValue, rValue, node->getType().getBasicType()); // these all need their counterparts in createBinaryOperation() if (rValue == 0) spv::MissingFunctionality("createBinaryOperation"); } // store the result builder.setAccessChain(lValue); builder.accessChainStore(rValue); // assignments are expressions having an rValue after they are evaluated... builder.clearAccessChain(); builder.setAccessChainRValue(rValue); } return false; case glslang::EOpIndexDirect: case glslang::EOpIndexDirectStruct: { // Get the left part of the access chain. node->getLeft()->traverse(this); // Add the next element in the chain int index = 0; if (node->getRight()->getAsConstantUnion() == 0) spv::MissingFunctionality("direct index without a constant node"); else index = node->getRight()->getAsConstantUnion()->getConstArray()[0].getIConst(); if (node->getLeft()->getBasicType() == glslang::EbtBlock && node->getOp() == glslang::EOpIndexDirectStruct) { // This may be, e.g., an anonymous block-member selection, which generally need // index remapping due to hidden members in anonymous blocks. std::vector& remapper = memberRemapper[node->getLeft()->getType().getStruct()]; if (remapper.size() == 0) spv::MissingFunctionality("block without member remapping"); else index = remapper[index]; } if (! node->getLeft()->getType().isArray() && node->getLeft()->getType().isVector() && node->getOp() == glslang::EOpIndexDirect) { // This is essentially a hard-coded vector swizzle of size 1, // so short circuit the access-chain stuff with a swizzle. std::vector swizzle; swizzle.push_back(node->getRight()->getAsConstantUnion()->getConstArray()[0].getIConst()); builder.accessChainPushSwizzle(swizzle); } else { // normal case for indexing array or structure or block builder.accessChainPush(builder.makeIntConstant(index), convertGlslangToSpvType(node->getType())); } } return false; case glslang::EOpIndexIndirect: { // Structure or array or vector indirection. // Will use native SPIR-V access-chain for struct and array indirection; // matrices are arrays of vectors, so will also work for a matrix. // Will use the access chain's 'component' for variable index into a vector. // This adapter is building access chains left to right. // Set up the access chain to the left. node->getLeft()->traverse(this); // save it so that computing the right side doesn't trash it spv::Builder::AccessChain partial = builder.getAccessChain(); // compute the next index in the chain builder.clearAccessChain(); node->getRight()->traverse(this); spv::Id index = builder.accessChainLoad(TranslatePrecisionDecoration(node->getRight()->getType())); // restore the saved access chain builder.setAccessChain(partial); if (! node->getLeft()->getType().isArray() && node->getLeft()->getType().isVector()) builder.accessChainPushComponent(index); else builder.accessChainPush(index, convertGlslangToSpvType(node->getType())); } return false; case glslang::EOpVectorSwizzle: { node->getLeft()->traverse(this); glslang::TIntermSequence& swizzleSequence = node->getRight()->getAsAggregate()->getSequence(); std::vector swizzle; for (int i = 0; i < (int)swizzleSequence.size(); ++i) swizzle.push_back(swizzleSequence[i]->getAsConstantUnion()->getConstArray()[0].getIConst()); builder.accessChainPushSwizzle(swizzle); } return false; default: break; } // Assume generic binary op... // Get the operands builder.clearAccessChain(); node->getLeft()->traverse(this); spv::Id left = builder.accessChainLoad(TranslatePrecisionDecoration(node->getLeft()->getType())); builder.clearAccessChain(); node->getRight()->traverse(this); spv::Id right = builder.accessChainLoad(TranslatePrecisionDecoration(node->getRight()->getType())); spv::Id result; spv::Decoration precision = TranslatePrecisionDecoration(node->getType()); result = createBinaryOperation(node->getOp(), precision, convertGlslangToSpvType(node->getType()), left, right, node->getLeft()->getType().getBasicType()); if (! result) { spv::MissingFunctionality("glslang binary operation"); } else { builder.clearAccessChain(); builder.setAccessChainRValue(result); return false; } return true; } bool TGlslangToSpvTraverser::visitUnary(glslang::TVisit /* visit */, glslang::TIntermUnary* node) { spv::Id result = spv::NoResult; // try texturing first result = createImageTextureFunctionCall(node); if (result != spv::NoResult) { builder.clearAccessChain(); builder.setAccessChainRValue(result); return false; // done with this node } // Non-texturing. if (node->getOp() == glslang::EOpArrayLength) { // Quite special; won't want to evaluate the operand. // Normal .length() would have been constant folded by the front-end. // So, this has to be block.lastMember.length(). // SPV wants "block" as the operand, go get it. assert(node->getOperand()->getType().isRuntimeSizedArray()); glslang::TIntermTyped* block = node->getOperand()->getAsBinaryNode()->getLeft(); block->traverse(this); spv::Id length = builder.createUnaryOp(spv::OpArrayLength, builder.makeIntType(32), builder.accessChainGetLValue()); builder.clearAccessChain(); builder.setAccessChainRValue(length); return false; } // Start by evaluating the operand builder.clearAccessChain(); node->getOperand()->traverse(this); spv::Id operand = builder.accessChainLoad(TranslatePrecisionDecoration(node->getOperand()->getType())); spv::Decoration precision = TranslatePrecisionDecoration(node->getType()); // it could be a conversion if (! result) result = createConversion(node->getOp(), precision, convertGlslangToSpvType(node->getType()), operand); // if not, then possibly an operation if (! result) result = createUnaryOperation(node->getOp(), precision, convertGlslangToSpvType(node->getType()), operand, node->getBasicType() == glslang::EbtFloat || node->getBasicType() == glslang::EbtDouble); if (result) { builder.clearAccessChain(); builder.setAccessChainRValue(result); return false; // done with this node } // it must be a special case, check... switch (node->getOp()) { case glslang::EOpPostIncrement: case glslang::EOpPostDecrement: case glslang::EOpPreIncrement: case glslang::EOpPreDecrement: { // we need the integer value "1" or the floating point "1.0" to add/subtract spv::Id one = node->getBasicType() == glslang::EbtFloat ? builder.makeFloatConstant(1.0F) : builder.makeIntConstant(1); glslang::TOperator op; if (node->getOp() == glslang::EOpPreIncrement || node->getOp() == glslang::EOpPostIncrement) op = glslang::EOpAdd; else op = glslang::EOpSub; spv::Id result = createBinaryOperation(op, TranslatePrecisionDecoration(node->getType()), convertGlslangToSpvType(node->getType()), operand, one, node->getType().getBasicType()); if (result == 0) spv::MissingFunctionality("createBinaryOperation for unary"); // The result of operation is always stored, but conditionally the // consumed result. The consumed result is always an r-value. builder.accessChainStore(result); builder.clearAccessChain(); if (node->getOp() == glslang::EOpPreIncrement || node->getOp() == glslang::EOpPreDecrement) builder.setAccessChainRValue(result); else builder.setAccessChainRValue(operand); } return false; case glslang::EOpEmitStreamVertex: builder.createNoResultOp(spv::OpEmitStreamVertex, operand); return false; case glslang::EOpEndStreamPrimitive: builder.createNoResultOp(spv::OpEndStreamPrimitive, operand); return false; default: spv::MissingFunctionality("glslang unary"); break; } return true; } bool TGlslangToSpvTraverser::visitAggregate(glslang::TVisit visit, glslang::TIntermAggregate* node) { spv::Id result = spv::NoResult; // try texturing result = createImageTextureFunctionCall(node); if (result != spv::NoResult) { builder.clearAccessChain(); builder.setAccessChainRValue(result); return false; } glslang::TOperator binOp = glslang::EOpNull; bool reduceComparison = true; bool isMatrix = false; bool noReturnValue = false; bool atomic = false; assert(node->getOp()); spv::Decoration precision = TranslatePrecisionDecoration(node->getType()); switch (node->getOp()) { case glslang::EOpSequence: { if (preVisit) ++sequenceDepth; else --sequenceDepth; if (sequenceDepth == 1) { // If this is the parent node of all the functions, we want to see them // early, so all call points have actual SPIR-V functions to reference. // In all cases, still let the traverser visit the children for us. makeFunctions(node->getAsAggregate()->getSequence()); // Also, we want all globals initializers to go into the entry of main(), before // anything else gets there, so visit out of order, doing them all now. makeGlobalInitializers(node->getAsAggregate()->getSequence()); // Initializers are done, don't want to visit again, but functions link objects need to be processed, // so do them manually. visitFunctions(node->getAsAggregate()->getSequence()); return false; } return true; } case glslang::EOpLinkerObjects: { if (visit == glslang::EvPreVisit) linkageOnly = true; else linkageOnly = false; return true; } case glslang::EOpComma: { // processing from left to right naturally leaves the right-most // lying around in the access chain glslang::TIntermSequence& glslangOperands = node->getSequence(); for (int i = 0; i < (int)glslangOperands.size(); ++i) glslangOperands[i]->traverse(this); return false; } case glslang::EOpFunction: if (visit == glslang::EvPreVisit) { if (isShaderEntrypoint(node)) { inMain = true; builder.setBuildPoint(shaderEntry->getLastBlock()); } else { handleFunctionEntry(node); } } else { if (inMain) mainTerminated = true; builder.leaveFunction(inMain); inMain = false; } return true; case glslang::EOpParameters: // Parameters will have been consumed by EOpFunction processing, but not // the body, so we still visited the function node's children, making this // child redundant. return false; case glslang::EOpFunctionCall: { if (node->isUserDefined()) result = handleUserFunctionCall(node); if (! result) { spv::MissingFunctionality("glslang function call"); glslang::TConstUnionArray emptyConsts; int nextConst = 0; result = createSpvConstant(node->getType(), emptyConsts, nextConst); } builder.clearAccessChain(); builder.setAccessChainRValue(result); return false; } case glslang::EOpConstructMat2x2: case glslang::EOpConstructMat2x3: case glslang::EOpConstructMat2x4: case glslang::EOpConstructMat3x2: case glslang::EOpConstructMat3x3: case glslang::EOpConstructMat3x4: case glslang::EOpConstructMat4x2: case glslang::EOpConstructMat4x3: case glslang::EOpConstructMat4x4: case glslang::EOpConstructDMat2x2: case glslang::EOpConstructDMat2x3: case glslang::EOpConstructDMat2x4: case glslang::EOpConstructDMat3x2: case glslang::EOpConstructDMat3x3: case glslang::EOpConstructDMat3x4: case glslang::EOpConstructDMat4x2: case glslang::EOpConstructDMat4x3: case glslang::EOpConstructDMat4x4: isMatrix = true; // fall through case glslang::EOpConstructFloat: case glslang::EOpConstructVec2: case glslang::EOpConstructVec3: case glslang::EOpConstructVec4: case glslang::EOpConstructDouble: case glslang::EOpConstructDVec2: case glslang::EOpConstructDVec3: case glslang::EOpConstructDVec4: case glslang::EOpConstructBool: case glslang::EOpConstructBVec2: case glslang::EOpConstructBVec3: case glslang::EOpConstructBVec4: case glslang::EOpConstructInt: case glslang::EOpConstructIVec2: case glslang::EOpConstructIVec3: case glslang::EOpConstructIVec4: case glslang::EOpConstructUint: case glslang::EOpConstructUVec2: case glslang::EOpConstructUVec3: case glslang::EOpConstructUVec4: case glslang::EOpConstructStruct: { std::vector arguments; translateArguments(node->getSequence(), arguments); spv::Id resultTypeId = convertGlslangToSpvType(node->getType()); spv::Id constructed; if (node->getOp() == glslang::EOpConstructStruct || node->getType().isArray()) { std::vector constituents; for (int c = 0; c < (int)arguments.size(); ++c) constituents.push_back(arguments[c]); constructed = builder.createCompositeConstruct(resultTypeId, constituents); } else { if (isMatrix) constructed = builder.createMatrixConstructor(precision, arguments, resultTypeId); else constructed = builder.createConstructor(precision, arguments, resultTypeId); } builder.clearAccessChain(); builder.setAccessChainRValue(constructed); return false; } // These six are component-wise compares with component-wise results. // Forward on to createBinaryOperation(), requesting a vector result. case glslang::EOpLessThan: case glslang::EOpGreaterThan: case glslang::EOpLessThanEqual: case glslang::EOpGreaterThanEqual: case glslang::EOpVectorEqual: case glslang::EOpVectorNotEqual: { // Map the operation to a binary binOp = node->getOp(); reduceComparison = false; switch (node->getOp()) { case glslang::EOpVectorEqual: binOp = glslang::EOpVectorEqual; break; case glslang::EOpVectorNotEqual: binOp = glslang::EOpVectorNotEqual; break; default: binOp = node->getOp(); break; } break; } case glslang::EOpMul: // compontent-wise matrix multiply binOp = glslang::EOpMul; break; case glslang::EOpOuterProduct: // two vectors multiplied to make a matrix binOp = glslang::EOpOuterProduct; break; case glslang::EOpDot: { // for scalar dot product, use multiply glslang::TIntermSequence& glslangOperands = node->getSequence(); if (! glslangOperands[0]->getAsTyped()->isVector()) binOp = glslang::EOpMul; break; } case glslang::EOpMod: // when an aggregate, this is the floating-point mod built-in function, // which can be emitted by the one in createBinaryOperation() binOp = glslang::EOpMod; break; case glslang::EOpEmitVertex: case glslang::EOpEndPrimitive: case glslang::EOpBarrier: case glslang::EOpMemoryBarrier: case glslang::EOpMemoryBarrierAtomicCounter: case glslang::EOpMemoryBarrierBuffer: case glslang::EOpMemoryBarrierImage: case glslang::EOpMemoryBarrierShared: case glslang::EOpGroupMemoryBarrier: noReturnValue = true; // These all have 0 operands and will naturally finish up in the code below for 0 operands break; case glslang::EOpAtomicAdd: case glslang::EOpAtomicMin: case glslang::EOpAtomicMax: case glslang::EOpAtomicAnd: case glslang::EOpAtomicOr: case glslang::EOpAtomicXor: case glslang::EOpAtomicExchange: case glslang::EOpAtomicCompSwap: atomic = true; break; case glslang::EOpAddCarry: case glslang::EOpSubBorrow: case glslang::EOpUMulExtended: case glslang::EOpIMulExtended: case glslang::EOpBitfieldExtract: case glslang::EOpBitfieldInsert: spv::MissingFunctionality("integer aggregate"); break; case glslang::EOpFma: case glslang::EOpFrexp: case glslang::EOpLdexp: spv::MissingFunctionality("fma/frexp/ldexp aggregate"); break; default: break; } // // See if it maps to a regular operation. // if (binOp != glslang::EOpNull) { glslang::TIntermTyped* left = node->getSequence()[0]->getAsTyped(); glslang::TIntermTyped* right = node->getSequence()[1]->getAsTyped(); assert(left && right); builder.clearAccessChain(); left->traverse(this); spv::Id leftId = builder.accessChainLoad(TranslatePrecisionDecoration(left->getType())); builder.clearAccessChain(); right->traverse(this); spv::Id rightId = builder.accessChainLoad(TranslatePrecisionDecoration(right->getType())); result = createBinaryOperation(binOp, precision, convertGlslangToSpvType(node->getType()), leftId, rightId, left->getType().getBasicType(), reduceComparison); // code above should only make binOp that exists in createBinaryOperation if (result == 0) spv::MissingFunctionality("createBinaryOperation for aggregate"); builder.clearAccessChain(); builder.setAccessChainRValue(result); return false; } // // Create the list of operands. // glslang::TIntermSequence& glslangOperands = node->getSequence(); std::vector operands; for (int arg = 0; arg < (int)glslangOperands.size(); ++arg) { builder.clearAccessChain(); glslangOperands[arg]->traverse(this); // special case l-value operands; there are just a few bool lvalue = false; switch (node->getOp()) { //case glslang::EOpFrexp: case glslang::EOpModf: if (arg == 1) lvalue = true; break; //case glslang::EOpUAddCarry: //case glslang::EOpUSubBorrow: //case glslang::EOpUMulExtended: default: break; } if (lvalue) operands.push_back(builder.accessChainGetLValue()); else operands.push_back(builder.accessChainLoad(TranslatePrecisionDecoration(glslangOperands[arg]->getAsTyped()->getType()))); } if (atomic) { // Handle all atomics result = createAtomicOperation(node->getOp(), precision, convertGlslangToSpvType(node->getType()), operands); } else { // Pass through to generic operations. switch (glslangOperands.size()) { case 0: result = createNoArgOperation(node->getOp()); break; case 1: result = createUnaryOperation(node->getOp(), precision, convertGlslangToSpvType(node->getType()), operands.front(), node->getType().getBasicType() == glslang::EbtFloat || node->getType().getBasicType() == glslang::EbtDouble); break; default: result = createMiscOperation(node->getOp(), precision, convertGlslangToSpvType(node->getType()), operands, node->getBasicType()); break; } } if (noReturnValue) return false; if (! result) { spv::MissingFunctionality("glslang aggregate"); return true; } else { builder.clearAccessChain(); builder.setAccessChainRValue(result); return false; } } bool TGlslangToSpvTraverser::visitSelection(glslang::TVisit /* visit */, glslang::TIntermSelection* node) { // This path handles both if-then-else and ?: // The if-then-else has a node type of void, while // ?: has a non-void node type spv::Id result = 0; if (node->getBasicType() != glslang::EbtVoid) { // don't handle this as just on-the-fly temporaries, because there will be two names // and better to leave SSA to later passes result = builder.createVariable(spv::StorageClassFunction, convertGlslangToSpvType(node->getType())); } // emit the condition before doing anything with selection node->getCondition()->traverse(this); // make an "if" based on the value created by the condition spv::Builder::If ifBuilder(builder.accessChainLoad(spv::NoPrecision), builder); if (node->getTrueBlock()) { // emit the "then" statement node->getTrueBlock()->traverse(this); if (result) builder.createStore(builder.accessChainLoad(TranslatePrecisionDecoration(node->getTrueBlock()->getAsTyped()->getType())), result); } if (node->getFalseBlock()) { ifBuilder.makeBeginElse(); // emit the "else" statement node->getFalseBlock()->traverse(this); if (result) builder.createStore(builder.accessChainLoad(TranslatePrecisionDecoration(node->getFalseBlock()->getAsTyped()->getType())), result); } ifBuilder.makeEndIf(); if (result) { // GLSL only has r-values as the result of a :?, but // if we have an l-value, that can be more efficient if it will // become the base of a complex r-value expression, because the // next layer copies r-values into memory to use the access-chain mechanism builder.clearAccessChain(); builder.setAccessChainLValue(result); } return false; } bool TGlslangToSpvTraverser::visitSwitch(glslang::TVisit /* visit */, glslang::TIntermSwitch* node) { // emit and get the condition before doing anything with switch node->getCondition()->traverse(this); spv::Id selector = builder.accessChainLoad(TranslatePrecisionDecoration(node->getCondition()->getAsTyped()->getType())); // browse the children to sort out code segments int defaultSegment = -1; std::vector codeSegments; glslang::TIntermSequence& sequence = node->getBody()->getSequence(); std::vector caseValues; std::vector valueIndexToSegment(sequence.size()); // note: probably not all are used, it is an overestimate for (glslang::TIntermSequence::iterator c = sequence.begin(); c != sequence.end(); ++c) { TIntermNode* child = *c; if (child->getAsBranchNode() && child->getAsBranchNode()->getFlowOp() == glslang::EOpDefault) defaultSegment = (int)codeSegments.size(); else if (child->getAsBranchNode() && child->getAsBranchNode()->getFlowOp() == glslang::EOpCase) { valueIndexToSegment[caseValues.size()] = (int)codeSegments.size(); caseValues.push_back(child->getAsBranchNode()->getExpression()->getAsConstantUnion()->getConstArray()[0].getIConst()); } else codeSegments.push_back(child); } // handle the case where the last code segment is missing, due to no code // statements between the last case and the end of the switch statement if ((caseValues.size() && (int)codeSegments.size() == valueIndexToSegment[caseValues.size() - 1]) || (int)codeSegments.size() == defaultSegment) codeSegments.push_back(nullptr); // make the switch statement std::vector segmentBlocks; // returned, as the blocks allocated in the call builder.makeSwitch(selector, (int)codeSegments.size(), caseValues, valueIndexToSegment, defaultSegment, segmentBlocks); // emit all the code in the segments breakForLoop.push(false); for (unsigned int s = 0; s < codeSegments.size(); ++s) { builder.nextSwitchSegment(segmentBlocks, s); if (codeSegments[s]) codeSegments[s]->traverse(this); else builder.addSwitchBreak(); } breakForLoop.pop(); builder.endSwitch(segmentBlocks); return false; } void TGlslangToSpvTraverser::visitConstantUnion(glslang::TIntermConstantUnion* node) { int nextConst = 0; spv::Id constant = createSpvConstant(node->getType(), node->getConstArray(), nextConst); builder.clearAccessChain(); builder.setAccessChainRValue(constant); } bool TGlslangToSpvTraverser::visitLoop(glslang::TVisit /* visit */, glslang::TIntermLoop* node) { // body emission needs to know what the for-loop terminal is when it sees a "continue" loopTerminal.push(node->getTerminal()); builder.makeNewLoop(node->testFirst()); if (node->getTest()) { node->getTest()->traverse(this); // the AST only contained the test computation, not the branch, we have to add it spv::Id condition = builder.accessChainLoad(TranslatePrecisionDecoration(node->getTest()->getType())); builder.createLoopTestBranch(condition); } else { builder.createBranchToBody(); } if (node->getBody()) { breakForLoop.push(true); node->getBody()->traverse(this); breakForLoop.pop(); } if (loopTerminal.top()) loopTerminal.top()->traverse(this); builder.closeLoop(); loopTerminal.pop(); return false; } bool TGlslangToSpvTraverser::visitBranch(glslang::TVisit /* visit */, glslang::TIntermBranch* node) { if (node->getExpression()) node->getExpression()->traverse(this); switch (node->getFlowOp()) { case glslang::EOpKill: builder.makeDiscard(); break; case glslang::EOpBreak: if (breakForLoop.top()) builder.createLoopExit(); else builder.addSwitchBreak(); break; case glslang::EOpContinue: if (loopTerminal.top()) loopTerminal.top()->traverse(this); builder.createLoopContinue(); break; case glslang::EOpReturn: if (inMain) builder.makeMainReturn(); else if (node->getExpression()) builder.makeReturn(false, builder.accessChainLoad(TranslatePrecisionDecoration(node->getExpression()->getType()))); else builder.makeReturn(); builder.clearAccessChain(); break; default: spv::MissingFunctionality("branch type"); break; } return false; } spv::Id TGlslangToSpvTraverser::createSpvVariable(const glslang::TIntermSymbol* node) { // First, steer off constants, which are not SPIR-V variables, but // can still have a mapping to a SPIR-V Id. if (node->getQualifier().storage == glslang::EvqConst) { int nextConst = 0; return createSpvConstant(node->getType(), node->getConstArray(), nextConst); } // Now, handle actual variables spv::StorageClass storageClass = TranslateStorageClass(node->getType()); spv::Id spvType = convertGlslangToSpvType(node->getType()); const char* name = node->getName().c_str(); if (glslang::IsAnonymous(name)) name = ""; return builder.createVariable(storageClass, spvType, name); } // Return type Id of the sampled type. spv::Id TGlslangToSpvTraverser::getSampledType(const glslang::TSampler& sampler) { switch (sampler.type) { case glslang::EbtFloat: return builder.makeFloatType(32); case glslang::EbtInt: return builder.makeIntType(32); case glslang::EbtUint: return builder.makeUintType(32); default: spv::MissingFunctionality("sampled type"); return builder.makeFloatType(32); } } // Convert from a glslang type to an SPV type, by calling into // recursive version of this function. spv::Id TGlslangToSpvTraverser::convertGlslangToSpvType(const glslang::TType& type) { return convertGlslangToSpvType(type, requiresExplicitLayout(type)); } // Do full recursive conversion of an arbitrary glslang type to a SPIR-V Id. // explicitLayout can be kept the same throughout the heirarchical recursive walk. spv::Id TGlslangToSpvTraverser::convertGlslangToSpvType(const glslang::TType& type, bool explicitLayout) { spv::Id spvType = 0; switch (type.getBasicType()) { case glslang::EbtVoid: spvType = builder.makeVoidType(); if (type.isArray()) spv::MissingFunctionality("array of void"); break; case glslang::EbtFloat: spvType = builder.makeFloatType(32); break; case glslang::EbtDouble: spvType = builder.makeFloatType(64); break; case glslang::EbtBool: spvType = builder.makeBoolType(); break; case glslang::EbtInt: spvType = builder.makeIntType(32); break; case glslang::EbtUint: spvType = builder.makeUintType(32); break; case glslang::EbtAtomicUint: spv::TbdFunctionality("Is atomic_uint an opaque handle in the uniform storage class, or an addresses in the atomic storage class?"); spvType = builder.makeUintType(32); break; case glslang::EbtSampler: { const glslang::TSampler& sampler = type.getSampler(); spvType = builder.makeImageType(getSampledType(sampler), TranslateDimensionality(sampler), sampler.shadow, sampler.arrayed, sampler.ms, sampler.image ? 2 : 1, spv::ImageFormatUnknown); // TODO: translate format, needed for GLSL image ops // OpenGL "textures" need to be combined with a sampler if (! sampler.image) spvType = builder.makeSampledImageType(spvType); } break; case glslang::EbtStruct: case glslang::EbtBlock: { // If we've seen this struct type, return it const glslang::TTypeList* glslangStruct = type.getStruct(); std::vector structFields; spvType = structMap[glslangStruct]; if (spvType) break; // else, we haven't seen it... // Create a vector of struct types for SPIR-V to consume int memberDelta = 0; // how much the member's index changes from glslang to SPIR-V, normally 0, except sometimes for blocks if (type.getBasicType() == glslang::EbtBlock) memberRemapper[glslangStruct].resize(glslangStruct->size()); for (int i = 0; i < (int)glslangStruct->size(); i++) { glslang::TType& glslangType = *(*glslangStruct)[i].type; if (glslangType.hiddenMember()) { ++memberDelta; if (type.getBasicType() == glslang::EbtBlock) memberRemapper[glslangStruct][i] = -1; } else { if (type.getBasicType() == glslang::EbtBlock) memberRemapper[glslangStruct][i] = i - memberDelta; structFields.push_back(convertGlslangToSpvType(glslangType, explicitLayout)); } } // Make the SPIR-V type spvType = builder.makeStructType(structFields, type.getTypeName().c_str()); structMap[glslangStruct] = spvType; // Name and decorate the non-hidden members int offset = -1; for (int i = 0; i < (int)glslangStruct->size(); i++) { glslang::TType& glslangType = *(*glslangStruct)[i].type; int member = i; if (type.getBasicType() == glslang::EbtBlock) member = memberRemapper[glslangStruct][i]; // using -1 above to indicate a hidden member if (member >= 0) { builder.addMemberName(spvType, member, glslangType.getFieldName().c_str()); addMemberDecoration(spvType, member, TranslateLayoutDecoration(glslangType)); addMemberDecoration(spvType, member, TranslatePrecisionDecoration(glslangType)); addMemberDecoration(spvType, member, TranslateInterpolationDecoration(glslangType)); addMemberDecoration(spvType, member, TranslateInvariantDecoration(glslangType)); if (glslangType.getQualifier().hasLocation()) builder.addMemberDecoration(spvType, member, spv::DecorationLocation, glslangType.getQualifier().layoutLocation); if (glslangType.getQualifier().hasComponent()) builder.addMemberDecoration(spvType, member, spv::DecorationComponent, glslangType.getQualifier().layoutComponent); if (glslangType.getQualifier().hasXfbOffset()) builder.addMemberDecoration(spvType, member, spv::DecorationOffset, glslangType.getQualifier().layoutXfbOffset); else if (explicitLayout) { // figure out what to do with offset, which is accumulating int nextOffset; updateMemberOffset(type, glslangType, offset, nextOffset); if (offset >= 0) builder.addMemberDecoration(spvType, member, spv::DecorationOffset, offset); offset = nextOffset; } if (glslangType.isMatrix() && explicitLayout) { builder.addMemberDecoration(spvType, member, spv::DecorationMatrixStride, getMatrixStride(glslangType)); } // built-in variable decorations spv::BuiltIn builtIn = TranslateBuiltInDecoration(glslangType.getQualifier().builtIn); if (builtIn != spv::BadValue) builder.addMemberDecoration(spvType, member, spv::DecorationBuiltIn, (int)builtIn); } } // Decorate the structure addDecoration(spvType, TranslateLayoutDecoration(type)); addDecoration(spvType, TranslateBlockDecoration(type)); if (type.getQualifier().hasStream()) builder.addDecoration(spvType, spv::DecorationStream, type.getQualifier().layoutStream); if (glslangIntermediate->getXfbMode()) { if (type.getQualifier().hasXfbStride()) builder.addDecoration(spvType, spv::DecorationXfbStride, type.getQualifier().layoutXfbStride); if (type.getQualifier().hasXfbBuffer()) builder.addDecoration(spvType, spv::DecorationXfbBuffer, type.getQualifier().layoutXfbBuffer); } } break; default: spv::MissingFunctionality("basic type"); break; } if (type.isMatrix()) spvType = builder.makeMatrixType(spvType, type.getMatrixCols(), type.getMatrixRows()); else { // If this variable has a vector element count greater than 1, create a SPIR-V vector if (type.getVectorSize() > 1) spvType = builder.makeVectorType(spvType, type.getVectorSize()); } if (type.isArray()) { // Do all but the outer dimension for (int dim = type.getArraySizes()->getNumDims() - 1; dim > 0; --dim) { assert(type.getArraySizes()->getDimSize(dim) > 0); spvType = builder.makeArrayType(spvType, type.getArraySizes()->getDimSize(dim)); } // Do the outer dimension, which might not be known for a runtime-sized array if (type.isRuntimeSizedArray()) { spvType = builder.makeRuntimeArray(spvType); } else { assert(type.getOuterArraySize() > 0); spvType = builder.makeArrayType(spvType, type.getOuterArraySize()); } // TODO: layout still needs to be done hierarchically for arrays of arrays, which // may still require additional "link time" support from the front-end // for arrays of arrays if (explicitLayout) builder.addDecoration(spvType, spv::DecorationArrayStride, getArrayStride(type)); } return spvType; } bool TGlslangToSpvTraverser::requiresExplicitLayout(const glslang::TType& type) const { return type.getBasicType() == glslang::EbtBlock && type.getQualifier().layoutPacking != glslang::ElpShared && type.getQualifier().layoutPacking != glslang::ElpPacked && (type.getQualifier().storage == glslang::EvqUniform || type.getQualifier().storage == glslang::EvqBuffer); } // Given an array type, returns the integer stride required for that array int TGlslangToSpvTraverser::getArrayStride(const glslang::TType& arrayType) { glslang::TType derefType(arrayType, 0); int size; glslangIntermediate->getBaseAlignment(derefType, size, true); return size; } // Given a matrix type, returns the integer stride required for that matrix // when used as a member of an interface block int TGlslangToSpvTraverser::getMatrixStride(const glslang::TType& matrixType) { int size; return glslangIntermediate->getBaseAlignment(matrixType, size, true); } // Given a member type of a struct, realign the current offset for it, and compute // the next (not yet aligned) offset for the next member, which will get aligned // on the next call. // 'currentOffset' should be passed in already initialized, ready to modify, and reflecting // the migration of data from nextOffset -> currentOffset. It should be -1 on the first call. // -1 means a non-forced member offset (no decoration needed). void TGlslangToSpvTraverser::updateMemberOffset(const glslang::TType& structType, const glslang::TType& memberType, int& currentOffset, int& nextOffset) { // this will get a positive value when deemed necessary nextOffset = -1; bool forceOffset = structType.getQualifier().layoutPacking == glslang::ElpStd140 || structType.getQualifier().layoutPacking == glslang::ElpStd430; // override anything in currentOffset with user-set offset if (memberType.getQualifier().hasOffset()) currentOffset = memberType.getQualifier().layoutOffset; // It could be that current linker usage in glslang updated all the layoutOffset, // in which case the following code does not matter. But, that's not quite right // once cross-compilation unit GLSL validation is done, as the original user // settings are needed in layoutOffset, and then the following will come into play. if (! forceOffset) { if (! memberType.getQualifier().hasOffset()) currentOffset = -1; return; } // Getting this far means we are forcing offsets if (currentOffset < 0) currentOffset = 0; // Now, currentOffset is valid (either 0, or from a previous nextOffset), // but possibly not yet correctly aligned. int memberSize; int memberAlignment = glslangIntermediate->getBaseAlignment(memberType, memberSize, memberType.getQualifier().layoutPacking == glslang::ElpStd140); glslang::RoundToPow2(currentOffset, memberAlignment); nextOffset = currentOffset + memberSize; } bool TGlslangToSpvTraverser::isShaderEntrypoint(const glslang::TIntermAggregate* node) { return node->getName() == "main("; } // Make all the functions, skeletally, without actually visiting their bodies. void TGlslangToSpvTraverser::makeFunctions(const glslang::TIntermSequence& glslFunctions) { for (int f = 0; f < (int)glslFunctions.size(); ++f) { glslang::TIntermAggregate* glslFunction = glslFunctions[f]->getAsAggregate(); if (! glslFunction || glslFunction->getOp() != glslang::EOpFunction || isShaderEntrypoint(glslFunction)) continue; // We're on a user function. Set up the basic interface for the function now, // so that it's available to call. // Translating the body will happen later. // // Typically (except for a "const in" parameter), an address will be passed to the // function. What it is an address of varies: // // - "in" parameters not marked as "const" can be written to without modifying the argument, // so that write needs to be to a copy, hence the address of a copy works. // // - "const in" parameters can just be the r-value, as no writes need occur. // // - "out" and "inout" arguments can't be done as direct pointers, because GLSL has // copy-in/copy-out semantics. They can be handled though with a pointer to a copy. std::vector paramTypes; glslang::TIntermSequence& parameters = glslFunction->getSequence()[0]->getAsAggregate()->getSequence(); for (int p = 0; p < (int)parameters.size(); ++p) { const glslang::TType& paramType = parameters[p]->getAsTyped()->getType(); spv::Id typeId = convertGlslangToSpvType(paramType); if (paramType.getQualifier().storage != glslang::EvqConstReadOnly) typeId = builder.makePointer(spv::StorageClassFunction, typeId); else constReadOnlyParameters.insert(parameters[p]->getAsSymbolNode()->getId()); paramTypes.push_back(typeId); } spv::Block* functionBlock; spv::Function *function = builder.makeFunctionEntry(convertGlslangToSpvType(glslFunction->getType()), glslFunction->getName().c_str(), paramTypes, &functionBlock); // Track function to emit/call later functionMap[glslFunction->getName().c_str()] = function; // Set the parameter id's for (int p = 0; p < (int)parameters.size(); ++p) { symbolValues[parameters[p]->getAsSymbolNode()->getId()] = function->getParamId(p); // give a name too builder.addName(function->getParamId(p), parameters[p]->getAsSymbolNode()->getName().c_str()); } } } // Process all the initializers, while skipping the functions and link objects void TGlslangToSpvTraverser::makeGlobalInitializers(const glslang::TIntermSequence& initializers) { builder.setBuildPoint(shaderEntry->getLastBlock()); for (int i = 0; i < (int)initializers.size(); ++i) { glslang::TIntermAggregate* initializer = initializers[i]->getAsAggregate(); if (initializer && initializer->getOp() != glslang::EOpFunction && initializer->getOp() != glslang::EOpLinkerObjects) { // We're on a top-level node that's not a function. Treat as an initializer, whose // code goes into the beginning of main. initializer->traverse(this); } } } // Process all the functions, while skipping initializers. void TGlslangToSpvTraverser::visitFunctions(const glslang::TIntermSequence& glslFunctions) { for (int f = 0; f < (int)glslFunctions.size(); ++f) { glslang::TIntermAggregate* node = glslFunctions[f]->getAsAggregate(); if (node && (node->getOp() == glslang::EOpFunction || node->getOp() == glslang ::EOpLinkerObjects)) node->traverse(this); } } void TGlslangToSpvTraverser::handleFunctionEntry(const glslang::TIntermAggregate* node) { // SPIR-V functions should already be in the functionMap from the prepass // that called makeFunctions(). spv::Function* function = functionMap[node->getName().c_str()]; spv::Block* functionBlock = function->getEntryBlock(); builder.setBuildPoint(functionBlock); } void TGlslangToSpvTraverser::translateArguments(const glslang::TIntermSequence& glslangArguments, std::vector& arguments) { for (int i = 0; i < (int)glslangArguments.size(); ++i) { builder.clearAccessChain(); glslangArguments[i]->traverse(this); arguments.push_back(builder.accessChainLoad(TranslatePrecisionDecoration(glslangArguments[i]->getAsTyped()->getType()))); } } void TGlslangToSpvTraverser::translateArguments(glslang::TIntermUnary& node, std::vector& arguments) { builder.clearAccessChain(); node.getOperand()->traverse(this); arguments.push_back(builder.accessChainLoad(TranslatePrecisionDecoration(node.getAsTyped()->getType()))); } spv::Id TGlslangToSpvTraverser::createImageTextureFunctionCall(glslang::TIntermOperator* node) { if (node->isImage()) { spv::MissingFunctionality("GLSL image function"); return spv::NoResult; } else if (! node->isTexture()) { return spv::NoResult; } // Process a GLSL texturing op (will be SPV image) glslang::TCrackedTextureOp cracked; node->crackTexture(cracked); const glslang::TSampler sampler = node->getAsAggregate() ? node->getAsAggregate()->getSequence()[0]->getAsTyped()->getType().getSampler() : node->getAsUnaryNode()->getOperand()->getAsTyped()->getType().getSampler(); std::vector arguments; if (node->getAsAggregate()) translateArguments(node->getAsAggregate()->getSequence(), arguments); else translateArguments(*node->getAsUnaryNode(), arguments); spv::Decoration precision = TranslatePrecisionDecoration(node->getType()); spv::Builder::TextureParameters params = { }; params.sampler = arguments[0]; // Check for queries if (cracked.query) { switch (node->getOp()) { case glslang::EOpImageQuerySize: case glslang::EOpTextureQuerySize: if (arguments.size() > 1) { params.lod = arguments[1]; return builder.createTextureQueryCall(spv::OpImageQuerySizeLod, params); } else return builder.createTextureQueryCall(spv::OpImageQuerySize, params); case glslang::EOpImageQuerySamples: case glslang::EOpTextureQuerySamples: return builder.createTextureQueryCall(spv::OpImageQuerySamples, params); case glslang::EOpTextureQueryLod: params.coords = arguments[1]; return builder.createTextureQueryCall(spv::OpImageQueryLod, params); case glslang::EOpTextureQueryLevels: return builder.createTextureQueryCall(spv::OpImageQueryLevels, params); default: assert(0); break; } } // This is no longer a query.... if (cracked.gather) spv::MissingFunctionality("texture gather"); // check for bias argument bool bias = false; if (! cracked.lod && ! cracked.gather && ! cracked.grad && ! cracked.fetch) { int nonBiasArgCount = 2; if (cracked.offset) ++nonBiasArgCount; if (cracked.grad) nonBiasArgCount += 2; if ((int)arguments.size() > nonBiasArgCount) bias = true; } bool cubeCompare = sampler.dim == glslang::EsdCube && sampler.arrayed && sampler.shadow; // set the rest of the arguments params.coords = arguments[1]; int extraArgs = 0; if (cubeCompare) params.Dref = arguments[2]; else if (sampler.shadow) { std::vector indexes; int comp; if (cracked.proj) comp = 3; else comp = builder.getNumComponents(params.coords) - 1; indexes.push_back(comp); params.Dref = builder.createCompositeExtract(params.coords, builder.getScalarTypeId(builder.getTypeId(params.coords)), indexes); } if (cracked.lod) { params.lod = arguments[2]; ++extraArgs; } if (cracked.grad) { params.gradX = arguments[2 + extraArgs]; params.gradY = arguments[3 + extraArgs]; extraArgs += 2; } //if (gather && compare) { // params.compare = arguments[2 + extraArgs]; // ++extraArgs; //} if (cracked.offset || cracked.offsets) { params.offset = arguments[2 + extraArgs]; ++extraArgs; } if (bias) { params.bias = arguments[2 + extraArgs]; ++extraArgs; } return builder.createTextureCall(precision, convertGlslangToSpvType(node->getType()), cracked.fetch, cracked.proj, params); } spv::Id TGlslangToSpvTraverser::handleUserFunctionCall(const glslang::TIntermAggregate* node) { // Grab the function's pointer from the previously created function spv::Function* function = functionMap[node->getName().c_str()]; if (! function) return 0; const glslang::TIntermSequence& glslangArgs = node->getSequence(); const glslang::TQualifierList& qualifiers = node->getQualifierList(); // See comments in makeFunctions() for details about the semantics for parameter passing. // // These imply we need a four step process: // 1. Evaluate the arguments // 2. Allocate and make copies of in, out, and inout arguments // 3. Make the call // 4. Copy back the results // 1. Evaluate the arguments std::vector lValues; std::vector rValues; for (int a = 0; a < (int)glslangArgs.size(); ++a) { // build l-value builder.clearAccessChain(); glslangArgs[a]->traverse(this); // keep outputs as l-values, evaluate input-only as r-values if (qualifiers[a] != glslang::EvqConstReadOnly) { // save l-value lValues.push_back(builder.getAccessChain()); } else { // process r-value rValues.push_back(builder.accessChainLoad(TranslatePrecisionDecoration(glslangArgs[a]->getAsTyped()->getType()))); } } // 2. Allocate space for anything needing a copy, and if it's "in" or "inout" // copy the original into that space. // // Also, build up the list of actual arguments to pass in for the call int lValueCount = 0; int rValueCount = 0; std::vector spvArgs; for (int a = 0; a < (int)glslangArgs.size(); ++a) { spv::Id arg; if (qualifiers[a] != glslang::EvqConstReadOnly) { // need space to hold the copy const glslang::TType& paramType = glslangArgs[a]->getAsTyped()->getType(); arg = builder.createVariable(spv::StorageClassFunction, convertGlslangToSpvType(paramType), "param"); if (qualifiers[a] == glslang::EvqIn || qualifiers[a] == glslang::EvqInOut) { // need to copy the input into output space builder.setAccessChain(lValues[lValueCount]); spv::Id copy = builder.accessChainLoad(spv::NoPrecision); // TODO: get precision builder.createStore(copy, arg); } ++lValueCount; } else { arg = rValues[rValueCount]; ++rValueCount; } spvArgs.push_back(arg); } // 3. Make the call. spv::Id result = builder.createFunctionCall(function, spvArgs); // 4. Copy back out an "out" arguments. lValueCount = 0; for (int a = 0; a < (int)glslangArgs.size(); ++a) { if (qualifiers[a] != glslang::EvqConstReadOnly) { if (qualifiers[a] == glslang::EvqOut || qualifiers[a] == glslang::EvqInOut) { spv::Id copy = builder.createLoad(spvArgs[a]); builder.setAccessChain(lValues[lValueCount]); builder.accessChainStore(copy); } ++lValueCount; } } return result; } // Translate AST operation to SPV operation, already having SPV-based operands/types. spv::Id TGlslangToSpvTraverser::createBinaryOperation(glslang::TOperator op, spv::Decoration precision, spv::Id typeId, spv::Id left, spv::Id right, glslang::TBasicType typeProxy, bool reduceComparison) { bool isUnsigned = typeProxy == glslang::EbtUint; bool isFloat = typeProxy == glslang::EbtFloat || typeProxy == glslang::EbtDouble; spv::Op binOp = spv::OpNop; bool needMatchingVectors = true; // for non-matrix ops, would a scalar need to smear to match a vector? bool comparison = false; switch (op) { case glslang::EOpAdd: case glslang::EOpAddAssign: if (isFloat) binOp = spv::OpFAdd; else binOp = spv::OpIAdd; break; case glslang::EOpSub: case glslang::EOpSubAssign: if (isFloat) binOp = spv::OpFSub; else binOp = spv::OpISub; break; case glslang::EOpMul: case glslang::EOpMulAssign: if (isFloat) binOp = spv::OpFMul; else binOp = spv::OpIMul; break; case glslang::EOpVectorTimesScalar: case glslang::EOpVectorTimesScalarAssign: if (isFloat) { if (builder.isVector(right)) std::swap(left, right); assert(builder.isScalar(right)); needMatchingVectors = false; binOp = spv::OpVectorTimesScalar; } else binOp = spv::OpIMul; break; case glslang::EOpVectorTimesMatrix: case glslang::EOpVectorTimesMatrixAssign: assert(builder.isVector(left)); assert(builder.isMatrix(right)); binOp = spv::OpVectorTimesMatrix; break; case glslang::EOpMatrixTimesVector: assert(builder.isMatrix(left)); assert(builder.isVector(right)); binOp = spv::OpMatrixTimesVector; break; case glslang::EOpMatrixTimesScalar: case glslang::EOpMatrixTimesScalarAssign: if (builder.isMatrix(right)) std::swap(left, right); assert(builder.isScalar(right)); binOp = spv::OpMatrixTimesScalar; break; case glslang::EOpMatrixTimesMatrix: case glslang::EOpMatrixTimesMatrixAssign: assert(builder.isMatrix(left)); assert(builder.isMatrix(right)); binOp = spv::OpMatrixTimesMatrix; break; case glslang::EOpOuterProduct: binOp = spv::OpOuterProduct; needMatchingVectors = false; break; case glslang::EOpDiv: case glslang::EOpDivAssign: if (isFloat) binOp = spv::OpFDiv; else if (isUnsigned) binOp = spv::OpUDiv; else binOp = spv::OpSDiv; break; case glslang::EOpMod: case glslang::EOpModAssign: if (isFloat) binOp = spv::OpFMod; else if (isUnsigned) binOp = spv::OpUMod; else binOp = spv::OpSMod; break; case glslang::EOpRightShift: case glslang::EOpRightShiftAssign: if (isUnsigned) binOp = spv::OpShiftRightLogical; else binOp = spv::OpShiftRightArithmetic; break; case glslang::EOpLeftShift: case glslang::EOpLeftShiftAssign: binOp = spv::OpShiftLeftLogical; break; case glslang::EOpAnd: case glslang::EOpAndAssign: binOp = spv::OpBitwiseAnd; break; case glslang::EOpLogicalAnd: needMatchingVectors = false; binOp = spv::OpLogicalAnd; break; case glslang::EOpInclusiveOr: case glslang::EOpInclusiveOrAssign: binOp = spv::OpBitwiseOr; break; case glslang::EOpLogicalOr: needMatchingVectors = false; binOp = spv::OpLogicalOr; break; case glslang::EOpExclusiveOr: case glslang::EOpExclusiveOrAssign: binOp = spv::OpBitwiseXor; break; case glslang::EOpLogicalXor: needMatchingVectors = false; binOp = spv::OpLogicalNotEqual; break; case glslang::EOpLessThan: case glslang::EOpGreaterThan: case glslang::EOpLessThanEqual: case glslang::EOpGreaterThanEqual: case glslang::EOpEqual: case glslang::EOpNotEqual: case glslang::EOpVectorEqual: case glslang::EOpVectorNotEqual: comparison = true; break; default: break; } if (binOp != spv::OpNop) { if (builder.isMatrix(left) || builder.isMatrix(right)) { switch (binOp) { case spv::OpMatrixTimesScalar: case spv::OpVectorTimesMatrix: case spv::OpMatrixTimesVector: case spv::OpMatrixTimesMatrix: break; case spv::OpFDiv: // turn it into a multiply... assert(builder.isMatrix(left) && builder.isScalar(right)); right = builder.createBinOp(spv::OpFDiv, builder.getTypeId(right), builder.makeFloatConstant(1.0F), right); binOp = spv::OpFMul; break; default: spv::MissingFunctionality("binary operation on matrix"); break; } spv::Id id = builder.createBinOp(binOp, typeId, left, right); builder.setPrecision(id, precision); return id; } // No matrix involved; make both operands be the same number of components, if needed if (needMatchingVectors) builder.promoteScalar(precision, left, right); spv::Id id = builder.createBinOp(binOp, typeId, left, right); builder.setPrecision(id, precision); return id; } if (! comparison) return 0; // Comparison instructions if (reduceComparison && (builder.isVector(left) || builder.isMatrix(left) || builder.isAggregate(left))) { assert(op == glslang::EOpEqual || op == glslang::EOpNotEqual); return builder.createCompare(precision, left, right, op == glslang::EOpEqual); } switch (op) { case glslang::EOpLessThan: if (isFloat) binOp = spv::OpFOrdLessThan; else if (isUnsigned) binOp = spv::OpULessThan; else binOp = spv::OpSLessThan; break; case glslang::EOpGreaterThan: if (isFloat) binOp = spv::OpFOrdGreaterThan; else if (isUnsigned) binOp = spv::OpUGreaterThan; else binOp = spv::OpSGreaterThan; break; case glslang::EOpLessThanEqual: if (isFloat) binOp = spv::OpFOrdLessThanEqual; else if (isUnsigned) binOp = spv::OpULessThanEqual; else binOp = spv::OpSLessThanEqual; break; case glslang::EOpGreaterThanEqual: if (isFloat) binOp = spv::OpFOrdGreaterThanEqual; else if (isUnsigned) binOp = spv::OpUGreaterThanEqual; else binOp = spv::OpSGreaterThanEqual; break; case glslang::EOpEqual: case glslang::EOpVectorEqual: if (isFloat) binOp = spv::OpFOrdEqual; else binOp = spv::OpIEqual; break; case glslang::EOpNotEqual: case glslang::EOpVectorNotEqual: if (isFloat) binOp = spv::OpFOrdNotEqual; else binOp = spv::OpINotEqual; break; default: break; } if (binOp != spv::OpNop) { spv::Id id = builder.createBinOp(binOp, typeId, left, right); builder.setPrecision(id, precision); return id; } return 0; } spv::Id TGlslangToSpvTraverser::createUnaryOperation(glslang::TOperator op, spv::Decoration precision, spv::Id typeId, spv::Id operand, bool isFloat) { spv::Op unaryOp = spv::OpNop; int libCall = -1; switch (op) { case glslang::EOpNegative: if (isFloat) unaryOp = spv::OpFNegate; else unaryOp = spv::OpSNegate; break; case glslang::EOpLogicalNot: case glslang::EOpVectorLogicalNot: unaryOp = spv::OpLogicalNot; break; case glslang::EOpBitwiseNot: unaryOp = spv::OpNot; break; case glslang::EOpDeterminant: libCall = spv::GLSLstd450Determinant; break; case glslang::EOpMatrixInverse: libCall = spv::GLSLstd450MatrixInverse; break; case glslang::EOpTranspose: unaryOp = spv::OpTranspose; break; case glslang::EOpRadians: libCall = spv::GLSLstd450Radians; break; case glslang::EOpDegrees: libCall = spv::GLSLstd450Degrees; break; case glslang::EOpSin: libCall = spv::GLSLstd450Sin; break; case glslang::EOpCos: libCall = spv::GLSLstd450Cos; break; case glslang::EOpTan: libCall = spv::GLSLstd450Tan; break; case glslang::EOpAcos: libCall = spv::GLSLstd450Acos; break; case glslang::EOpAsin: libCall = spv::GLSLstd450Asin; break; case glslang::EOpAtan: libCall = spv::GLSLstd450Atan; break; case glslang::EOpAcosh: libCall = spv::GLSLstd450Acosh; break; case glslang::EOpAsinh: libCall = spv::GLSLstd450Asinh; break; case glslang::EOpAtanh: libCall = spv::GLSLstd450Atanh; break; case glslang::EOpTanh: libCall = spv::GLSLstd450Tanh; break; case glslang::EOpCosh: libCall = spv::GLSLstd450Cosh; break; case glslang::EOpSinh: libCall = spv::GLSLstd450Sinh; break; case glslang::EOpLength: libCall = spv::GLSLstd450Length; break; case glslang::EOpNormalize: libCall = spv::GLSLstd450Normalize; break; case glslang::EOpExp: libCall = spv::GLSLstd450Exp; break; case glslang::EOpLog: libCall = spv::GLSLstd450Log; break; case glslang::EOpExp2: libCall = spv::GLSLstd450Exp2; break; case glslang::EOpLog2: libCall = spv::GLSLstd450Log2; break; case glslang::EOpSqrt: libCall = spv::GLSLstd450Sqrt; break; case glslang::EOpInverseSqrt: libCall = spv::GLSLstd450InverseSqrt; break; case glslang::EOpFloor: libCall = spv::GLSLstd450Floor; break; case glslang::EOpTrunc: libCall = spv::GLSLstd450Trunc; break; case glslang::EOpRound: libCall = spv::GLSLstd450Round; break; case glslang::EOpRoundEven: libCall = spv::GLSLstd450RoundEven; break; case glslang::EOpCeil: libCall = spv::GLSLstd450Ceil; break; case glslang::EOpFract: libCall = spv::GLSLstd450Fract; break; case glslang::EOpIsNan: unaryOp = spv::OpIsNan; break; case glslang::EOpIsInf: unaryOp = spv::OpIsInf; break; case glslang::EOpPackSnorm2x16: libCall = spv::GLSLstd450PackSnorm2x16; break; case glslang::EOpUnpackSnorm2x16: libCall = spv::GLSLstd450UnpackSnorm2x16; break; case glslang::EOpPackUnorm2x16: libCall = spv::GLSLstd450PackUnorm2x16; break; case glslang::EOpUnpackUnorm2x16: libCall = spv::GLSLstd450UnpackUnorm2x16; break; case glslang::EOpPackHalf2x16: libCall = spv::GLSLstd450PackHalf2x16; break; case glslang::EOpUnpackHalf2x16: libCall = spv::GLSLstd450UnpackHalf2x16; break; case glslang::EOpPackSnorm4x8: libCall = spv::GLSLstd450PackSnorm4x8; break; case glslang::EOpUnpackSnorm4x8: libCall = spv::GLSLstd450UnpackSnorm4x8; break; case glslang::EOpPackUnorm4x8: libCall = spv::GLSLstd450PackUnorm4x8; break; case glslang::EOpUnpackUnorm4x8: libCall = spv::GLSLstd450UnpackUnorm4x8; break; case glslang::EOpPackDouble2x32: libCall = spv::GLSLstd450PackDouble2x32; break; case glslang::EOpUnpackDouble2x32: libCall = spv::GLSLstd450UnpackDouble2x32; break; case glslang::EOpDPdx: unaryOp = spv::OpDPdx; break; case glslang::EOpDPdy: unaryOp = spv::OpDPdy; break; case glslang::EOpFwidth: unaryOp = spv::OpFwidth; break; case glslang::EOpDPdxFine: unaryOp = spv::OpDPdxFine; break; case glslang::EOpDPdyFine: unaryOp = spv::OpDPdyFine; break; case glslang::EOpFwidthFine: unaryOp = spv::OpFwidthFine; break; case glslang::EOpDPdxCoarse: unaryOp = spv::OpDPdxCoarse; break; case glslang::EOpDPdyCoarse: unaryOp = spv::OpDPdyCoarse; break; case glslang::EOpFwidthCoarse: unaryOp = spv::OpFwidthCoarse; break; case glslang::EOpAny: unaryOp = spv::OpAny; break; case glslang::EOpAll: unaryOp = spv::OpAll; break; case glslang::EOpAbs: if (isFloat) libCall = spv::GLSLstd450FAbs; else libCall = spv::GLSLstd450SAbs; break; case glslang::EOpSign: if (isFloat) libCall = spv::GLSLstd450FSign; else libCall = spv::GLSLstd450SSign; break; case glslang::EOpAtomicCounterIncrement: case glslang::EOpAtomicCounterDecrement: case glslang::EOpAtomicCounter: { // Handle all of the atomics in one place, in createAtomicOperation() std::vector operands; operands.push_back(operand); return createAtomicOperation(op, precision, typeId, operands); } case glslang::EOpImageLoad: unaryOp = spv::OpImageRead; break; case glslang::EOpBitFieldReverse: unaryOp = spv::OpBitReverse; break; case glslang::EOpBitCount: unaryOp = spv::OpBitCount; break; case glslang::EOpFindLSB: libCall = spv::GLSLstd450FindILSB; break; case glslang::EOpFindMSB: spv::MissingFunctionality("signed vs. unsigned FindMSB"); libCall = spv::GLSLstd450FindSMSB; break; default: return 0; } spv::Id id; if (libCall >= 0) { std::vector args; args.push_back(operand); id = builder.createBuiltinCall(precision, typeId, stdBuiltins, libCall, args); } else id = builder.createUnaryOp(unaryOp, typeId, operand); builder.setPrecision(id, precision); return id; } spv::Id TGlslangToSpvTraverser::createConversion(glslang::TOperator op, spv::Decoration precision, spv::Id destType, spv::Id operand) { spv::Op convOp = spv::OpNop; spv::Id zero = 0; spv::Id one = 0; int vectorSize = builder.isVectorType(destType) ? builder.getNumTypeComponents(destType) : 0; switch (op) { case glslang::EOpConvIntToBool: case glslang::EOpConvUintToBool: zero = builder.makeUintConstant(0); zero = makeSmearedConstant(zero, vectorSize); return builder.createBinOp(spv::OpINotEqual, destType, operand, zero); case glslang::EOpConvFloatToBool: zero = builder.makeFloatConstant(0.0F); zero = makeSmearedConstant(zero, vectorSize); return builder.createBinOp(spv::OpFOrdNotEqual, destType, operand, zero); case glslang::EOpConvDoubleToBool: zero = builder.makeDoubleConstant(0.0); zero = makeSmearedConstant(zero, vectorSize); return builder.createBinOp(spv::OpFOrdNotEqual, destType, operand, zero); case glslang::EOpConvBoolToFloat: convOp = spv::OpSelect; zero = builder.makeFloatConstant(0.0); one = builder.makeFloatConstant(1.0); break; case glslang::EOpConvBoolToDouble: convOp = spv::OpSelect; zero = builder.makeDoubleConstant(0.0); one = builder.makeDoubleConstant(1.0); break; case glslang::EOpConvBoolToInt: zero = builder.makeIntConstant(0); one = builder.makeIntConstant(1); convOp = spv::OpSelect; break; case glslang::EOpConvBoolToUint: zero = builder.makeUintConstant(0); one = builder.makeUintConstant(1); convOp = spv::OpSelect; break; case glslang::EOpConvIntToFloat: case glslang::EOpConvIntToDouble: convOp = spv::OpConvertSToF; break; case glslang::EOpConvUintToFloat: case glslang::EOpConvUintToDouble: convOp = spv::OpConvertUToF; break; case glslang::EOpConvDoubleToFloat: case glslang::EOpConvFloatToDouble: convOp = spv::OpFConvert; break; case glslang::EOpConvFloatToInt: case glslang::EOpConvDoubleToInt: convOp = spv::OpConvertFToS; break; case glslang::EOpConvUintToInt: case glslang::EOpConvIntToUint: convOp = spv::OpBitcast; break; case glslang::EOpConvFloatToUint: case glslang::EOpConvDoubleToUint: convOp = spv::OpConvertFToU; break; default: break; } spv::Id result = 0; if (convOp == spv::OpNop) return result; if (convOp == spv::OpSelect) { zero = makeSmearedConstant(zero, vectorSize); one = makeSmearedConstant(one, vectorSize); result = builder.createTriOp(convOp, destType, operand, one, zero); } else result = builder.createUnaryOp(convOp, destType, operand); builder.setPrecision(result, precision); return result; } spv::Id TGlslangToSpvTraverser::makeSmearedConstant(spv::Id constant, int vectorSize) { if (vectorSize == 0) return constant; spv::Id vectorTypeId = builder.makeVectorType(builder.getTypeId(constant), vectorSize); std::vector components; for (int c = 0; c < vectorSize; ++c) components.push_back(constant); return builder.makeCompositeConstant(vectorTypeId, components); } // For glslang ops that map to SPV atomic opCodes spv::Id TGlslangToSpvTraverser::createAtomicOperation(glslang::TOperator op, spv::Decoration precision, spv::Id typeId, std::vector& operands) { spv::Op opCode = spv::OpNop; switch (op) { case glslang::EOpAtomicAdd: opCode = spv::OpAtomicIAdd; break; case glslang::EOpAtomicMin: opCode = spv::OpAtomicSMin; break; case glslang::EOpAtomicMax: opCode = spv::OpAtomicSMax; break; case glslang::EOpAtomicAnd: opCode = spv::OpAtomicAnd; break; case glslang::EOpAtomicOr: opCode = spv::OpAtomicOr; break; case glslang::EOpAtomicXor: opCode = spv::OpAtomicXor; break; case glslang::EOpAtomicExchange: opCode = spv::OpAtomicExchange; break; case glslang::EOpAtomicCompSwap: opCode = spv::OpAtomicCompareExchange; break; case glslang::EOpAtomicCounterIncrement: opCode = spv::OpAtomicIIncrement; break; case glslang::EOpAtomicCounterDecrement: opCode = spv::OpAtomicIDecrement; break; case glslang::EOpAtomicCounter: opCode = spv::OpAtomicLoad; break; default: spv::MissingFunctionality("missing nested atomic"); break; } // Sort out the operands // - mapping from glslang -> SPV // - there are extra SPV operands with no glslang source std::vector spvAtomicOperands; // hold the spv operands auto opIt = operands.begin(); // walk the glslang operands spvAtomicOperands.push_back(*(opIt++)); spvAtomicOperands.push_back(builder.makeUintConstant(spv::ScopeDevice)); // TBD: what is the correct scope? spvAtomicOperands.push_back(builder.makeUintConstant(spv::MemorySemanticsMaskNone)); // TBD: what are the correct memory semantics? // Add the rest of the operands, skipping the first one, which was dealt with above. // For some ops, there are none, for some 1, for compare-exchange, 2. for (; opIt != operands.end(); ++opIt) spvAtomicOperands.push_back(*opIt); return builder.createOp(opCode, typeId, spvAtomicOperands); } spv::Id TGlslangToSpvTraverser::createMiscOperation(glslang::TOperator op, spv::Decoration precision, spv::Id typeId, std::vector& operands, glslang::TBasicType typeProxy) { bool isUnsigned = typeProxy == glslang::EbtUint; bool isFloat = typeProxy == glslang::EbtFloat || typeProxy == glslang::EbtDouble; spv::Op opCode = spv::OpNop; int libCall = -1; switch (op) { case glslang::EOpMin: if (isFloat) libCall = spv::GLSLstd450FMin; else if (isUnsigned) libCall = spv::GLSLstd450UMin; else libCall = spv::GLSLstd450SMin; break; case glslang::EOpModf: libCall = spv::GLSLstd450Modf; break; case glslang::EOpMax: if (isFloat) libCall = spv::GLSLstd450FMax; else if (isUnsigned) libCall = spv::GLSLstd450UMax; else libCall = spv::GLSLstd450SMax; break; case glslang::EOpPow: libCall = spv::GLSLstd450Pow; break; case glslang::EOpDot: opCode = spv::OpDot; break; case glslang::EOpAtan: libCall = spv::GLSLstd450Atan2; break; case glslang::EOpClamp: if (isFloat) libCall = spv::GLSLstd450FClamp; else if (isUnsigned) libCall = spv::GLSLstd450UClamp; else libCall = spv::GLSLstd450SClamp; break; case glslang::EOpMix: libCall = spv::GLSLstd450Mix; break; case glslang::EOpStep: libCall = spv::GLSLstd450Step; break; case glslang::EOpSmoothStep: libCall = spv::GLSLstd450SmoothStep; break; case glslang::EOpDistance: libCall = spv::GLSLstd450Distance; break; case glslang::EOpCross: libCall = spv::GLSLstd450Cross; break; case glslang::EOpFaceForward: libCall = spv::GLSLstd450FaceForward; break; case glslang::EOpReflect: libCall = spv::GLSLstd450Reflect; break; case glslang::EOpRefract: libCall = spv::GLSLstd450Refract; break; default: return 0; } spv::Id id = 0; if (libCall >= 0) id = builder.createBuiltinCall(precision, typeId, stdBuiltins, libCall, operands); else { switch (operands.size()) { case 0: // should all be handled by visitAggregate and createNoArgOperation assert(0); return 0; case 1: // should all be handled by createUnaryOperation assert(0); return 0; case 2: id = builder.createBinOp(opCode, typeId, operands[0], operands[1]); break; case 3: id = builder.createTriOp(opCode, typeId, operands[0], operands[1], operands[2]); break; default: // These do not exist yet assert(0 && "operation with more than 3 operands"); break; } } builder.setPrecision(id, precision); return id; } // Intrinsics with no arguments, no return value, and no precision. spv::Id TGlslangToSpvTraverser::createNoArgOperation(glslang::TOperator op) { // TODO: get the barrier operands correct switch (op) { case glslang::EOpEmitVertex: builder.createNoResultOp(spv::OpEmitVertex); return 0; case glslang::EOpEndPrimitive: builder.createNoResultOp(spv::OpEndPrimitive); return 0; case glslang::EOpBarrier: builder.createMemoryBarrier(spv::ScopeDevice, spv::MemorySemanticsAllMemory); builder.createControlBarrier(spv::ScopeDevice, spv::ScopeDevice, spv::MemorySemanticsMaskNone); return 0; case glslang::EOpMemoryBarrier: builder.createMemoryBarrier(spv::ScopeDevice, spv::MemorySemanticsAllMemory); return 0; case glslang::EOpMemoryBarrierAtomicCounter: builder.createMemoryBarrier(spv::ScopeDevice, spv::MemorySemanticsAtomicCounterMemoryMask); return 0; case glslang::EOpMemoryBarrierBuffer: builder.createMemoryBarrier(spv::ScopeDevice, spv::MemorySemanticsUniformMemoryMask); return 0; case glslang::EOpMemoryBarrierImage: builder.createMemoryBarrier(spv::ScopeDevice, spv::MemorySemanticsImageMemoryMask); return 0; case glslang::EOpMemoryBarrierShared: builder.createMemoryBarrier(spv::ScopeDevice, spv::MemorySemanticsWorkgroupLocalMemoryMask); return 0; case glslang::EOpGroupMemoryBarrier: builder.createMemoryBarrier(spv::ScopeDevice, spv::MemorySemanticsWorkgroupGlobalMemoryMask); return 0; default: spv::MissingFunctionality("operation with no arguments"); return 0; } } spv::Id TGlslangToSpvTraverser::getSymbolId(const glslang::TIntermSymbol* symbol) { auto iter = symbolValues.find(symbol->getId()); spv::Id id; if (symbolValues.end() != iter) { id = iter->second; return id; } // it was not found, create it id = createSpvVariable(symbol); symbolValues[symbol->getId()] = id; if (! symbol->getType().isStruct()) { addDecoration(id, TranslatePrecisionDecoration(symbol->getType())); addDecoration(id, TranslateInterpolationDecoration(symbol->getType())); if (symbol->getQualifier().hasLocation()) builder.addDecoration(id, spv::DecorationLocation, symbol->getQualifier().layoutLocation); if (symbol->getQualifier().hasIndex()) builder.addDecoration(id, spv::DecorationIndex, symbol->getQualifier().layoutIndex); if (symbol->getQualifier().hasComponent()) builder.addDecoration(id, spv::DecorationComponent, symbol->getQualifier().layoutComponent); if (glslangIntermediate->getXfbMode()) { if (symbol->getQualifier().hasXfbStride()) builder.addDecoration(id, spv::DecorationXfbStride, symbol->getQualifier().layoutXfbStride); if (symbol->getQualifier().hasXfbBuffer()) builder.addDecoration(id, spv::DecorationXfbBuffer, symbol->getQualifier().layoutXfbBuffer); if (symbol->getQualifier().hasXfbOffset()) builder.addDecoration(id, spv::DecorationOffset, symbol->getQualifier().layoutXfbOffset); } } addDecoration(id, TranslateInvariantDecoration(symbol->getType())); if (symbol->getQualifier().hasStream()) builder.addDecoration(id, spv::DecorationStream, symbol->getQualifier().layoutStream); if (symbol->getQualifier().hasSet()) builder.addDecoration(id, spv::DecorationDescriptorSet, symbol->getQualifier().layoutSet); if (symbol->getQualifier().hasBinding()) builder.addDecoration(id, spv::DecorationBinding, symbol->getQualifier().layoutBinding); if (glslangIntermediate->getXfbMode()) { if (symbol->getQualifier().hasXfbStride()) builder.addDecoration(id, spv::DecorationXfbStride, symbol->getQualifier().layoutXfbStride); if (symbol->getQualifier().hasXfbBuffer()) builder.addDecoration(id, spv::DecorationXfbBuffer, symbol->getQualifier().layoutXfbBuffer); } // built-in variable decorations spv::BuiltIn builtIn = TranslateBuiltInDecoration(symbol->getQualifier().builtIn); if (builtIn != spv::BadValue) builder.addDecoration(id, spv::DecorationBuiltIn, (int)builtIn); if (linkageOnly) builder.addDecoration(id, spv::DecorationNoStaticUse); return id; } void TGlslangToSpvTraverser::addDecoration(spv::Id id, spv::Decoration dec) { if (dec != spv::BadValue) builder.addDecoration(id, dec); } void TGlslangToSpvTraverser::addMemberDecoration(spv::Id id, int member, spv::Decoration dec) { if (dec != spv::BadValue) builder.addMemberDecoration(id, (unsigned)member, dec); } // Use 'consts' as the flattened glslang source of scalar constants to recursively // build the aggregate SPIR-V constant. // // If there are not enough elements present in 'consts', 0 will be substituted; // an empty 'consts' can be used to create a fully zeroed SPIR-V constant. // spv::Id TGlslangToSpvTraverser::createSpvConstant(const glslang::TType& glslangType, const glslang::TConstUnionArray& consts, int& nextConst) { // vector of constants for SPIR-V std::vector spvConsts; // Type is used for struct and array constants spv::Id typeId = convertGlslangToSpvType(glslangType); if (glslangType.isArray()) { glslang::TType elementType(glslangType, 0); for (int i = 0; i < glslangType.getOuterArraySize(); ++i) spvConsts.push_back(createSpvConstant(elementType, consts, nextConst)); } else if (glslangType.isMatrix()) { glslang::TType vectorType(glslangType, 0); for (int col = 0; col < glslangType.getMatrixCols(); ++col) spvConsts.push_back(createSpvConstant(vectorType, consts, nextConst)); } else if (glslangType.getStruct()) { glslang::TVector::const_iterator iter; for (iter = glslangType.getStruct()->begin(); iter != glslangType.getStruct()->end(); ++iter) spvConsts.push_back(createSpvConstant(*iter->type, consts, nextConst)); } else if (glslangType.isVector()) { for (unsigned int i = 0; i < (unsigned int)glslangType.getVectorSize(); ++i) { bool zero = nextConst >= consts.size(); switch (glslangType.getBasicType()) { case glslang::EbtInt: spvConsts.push_back(builder.makeIntConstant(zero ? 0 : consts[nextConst].getIConst())); break; case glslang::EbtUint: spvConsts.push_back(builder.makeUintConstant(zero ? 0 : consts[nextConst].getUConst())); break; case glslang::EbtFloat: spvConsts.push_back(builder.makeFloatConstant(zero ? 0.0F : (float)consts[nextConst].getDConst())); break; case glslang::EbtDouble: spvConsts.push_back(builder.makeDoubleConstant(zero ? 0.0 : consts[nextConst].getDConst())); break; case glslang::EbtBool: spvConsts.push_back(builder.makeBoolConstant(zero ? false : consts[nextConst].getBConst())); break; default: spv::MissingFunctionality("constant vector type"); break; } ++nextConst; } } else { // we have a non-aggregate (scalar) constant bool zero = nextConst >= consts.size(); spv::Id scalar = 0; switch (glslangType.getBasicType()) { case glslang::EbtInt: scalar = builder.makeIntConstant(zero ? 0 : consts[nextConst].getIConst()); break; case glslang::EbtUint: scalar = builder.makeUintConstant(zero ? 0 : consts[nextConst].getUConst()); break; case glslang::EbtFloat: scalar = builder.makeFloatConstant(zero ? 0.0F : (float)consts[nextConst].getDConst()); break; case glslang::EbtDouble: scalar = builder.makeDoubleConstant(zero ? 0.0 : consts[nextConst].getDConst()); break; case glslang::EbtBool: scalar = builder.makeBoolConstant(zero ? false : consts[nextConst].getBConst()); break; default: spv::MissingFunctionality("constant scalar type"); break; } ++nextConst; return scalar; } return builder.makeCompositeConstant(typeId, spvConsts); } }; // end anonymous namespace namespace glslang { void GetSpirvVersion(std::string& version) { const int bufSize = 100; char buf[bufSize]; snprintf(buf, bufSize, "%d, Revision %d", spv::Version, spv::Revision); version = buf; } // Write SPIR-V out to a binary file void OutputSpv(const std::vector& spirv, const char* baseName) { std::ofstream out; out.open(baseName, std::ios::binary | std::ios::out); for (int i = 0; i < (int)spirv.size(); ++i) { unsigned int word = spirv[i]; out.write((const char*)&word, 4); } out.close(); } // // Set up the glslang traversal // void GlslangToSpv(const glslang::TIntermediate& intermediate, std::vector& spirv) { TIntermNode* root = intermediate.getTreeRoot(); if (root == 0) return; glslang::GetThreadPoolAllocator().push(); TGlslangToSpvTraverser it(&intermediate); root->traverse(&it); it.dumpSpv(spirv); glslang::GetThreadPoolAllocator().pop(); } }; // end namespace glslang