// //Copyright (C) 2014 LunarG, Inc. // //All rights reserved. // //Redistribution and use in source and binary forms, with or without //modification, are permitted provided that the following conditions //are met: // // Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // // Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // // Neither the name of 3Dlabs Inc. Ltd. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // //THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS //"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT //LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS //FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE //COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, //INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, //BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; //LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER //CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT //LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN //ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE //POSSIBILITY OF SUCH DAMAGE. // // Author: John Kessenich, LunarG // // SPIRV-IR // // Simple in-memory representation (IR) of SPIRV. Just for holding // Each function's CFG of blocks. Has this hierarchy: // - Module, which is a list of // - Function, which is a list of // - Block, which is a list of // - Instruction // #pragma once #ifndef spvIR_H #define spvIR_H #include "spirv.hpp" #include #include #include #include namespace spv { class Function; class Module; const Id NoResult = 0; const Id NoType = 0; const unsigned int BadValue = 0xFFFFFFFF; const Decoration NoPrecision = (Decoration)BadValue; const MemorySemanticsMask MemorySemanticsAllMemory = (MemorySemanticsMask)0x3FF; // // SPIR-V IR instruction. // class Instruction { public: Instruction(Id resultId, Id typeId, Op opCode) : resultId(resultId), typeId(typeId), opCode(opCode) { } explicit Instruction(Op opCode) : resultId(NoResult), typeId(NoType), opCode(opCode) { } virtual ~Instruction() {} void addIdOperand(Id id) { operands.push_back(id); } void addImmediateOperand(unsigned int immediate) { operands.push_back(immediate); } void addStringOperand(const char* str) { originalString = str; unsigned int word; char* wordString = (char*)&word; char* wordPtr = wordString; int charCount = 0; char c; do { c = *(str++); *(wordPtr++) = c; ++charCount; if (charCount == 4) { addImmediateOperand(word); wordPtr = wordString; charCount = 0; } } while (c != 0); // deal with partial last word if (charCount > 0) { // pad with 0s for (; charCount < 4; ++charCount) *(wordPtr++) = 0; addImmediateOperand(word); } } Op getOpCode() const { return opCode; } int getNumOperands() const { return (int)operands.size(); } Id getResultId() const { return resultId; } Id getTypeId() const { return typeId; } Id getIdOperand(int op) const { return operands[op]; } unsigned int getImmediateOperand(int op) const { return operands[op]; } const char* getStringOperand() const { return originalString.c_str(); } // Write out the binary form. void dump(std::vector& out) const { // Compute the wordCount unsigned int wordCount = 1; if (typeId) ++wordCount; if (resultId) ++wordCount; wordCount += (unsigned int)operands.size(); // Write out the beginning of the instruction out.push_back(((wordCount) << WordCountShift) | opCode); if (typeId) out.push_back(typeId); if (resultId) out.push_back(resultId); // Write out the operands for (int op = 0; op < (int)operands.size(); ++op) out.push_back(operands[op]); } protected: Instruction(const Instruction&); Id resultId; Id typeId; Op opCode; std::vector operands; std::string originalString; // could be optimized away; convenience for getting string operand }; // // SPIR-V IR block. // class Block { public: Block(Id id, Function& parent); virtual ~Block() { // TODO: free instructions } Id getId() { return instructions.front()->getResultId(); } Function& getParent() const { return parent; } void addInstruction(Instruction* inst); void addPredecessor(Block* pred) { predecessors.push_back(pred); } void addLocalVariable(Instruction* inst) { localVariables.push_back(inst); } int getNumPredecessors() const { return (int)predecessors.size(); } void setUnreachable() { unreachable = true; } bool isUnreachable() const { return unreachable; } bool isTerminated() const { switch (instructions.back()->getOpCode()) { case OpBranch: case OpBranchConditional: case OpSwitch: case OpKill: case OpReturn: case OpReturnValue: return true; default: return false; } } void dump(std::vector& out) const { // skip the degenerate unreachable blocks // TODO: code gen: skip all unreachable blocks (transitive closure) // (but, until that's done safer to keep non-degenerate unreachable blocks, in case others depend on something) if (unreachable && instructions.size() <= 2) return; instructions[0]->dump(out); for (int i = 0; i < (int)localVariables.size(); ++i) localVariables[i]->dump(out); for (int i = 1; i < (int)instructions.size(); ++i) instructions[i]->dump(out); } protected: Block(const Block&); Block& operator=(Block&); // To enforce keeping parent and ownership in sync: friend Function; std::vector instructions; std::vector predecessors; std::vector localVariables; Function& parent; // track whether this block is known to be uncreachable (not necessarily // true for all unreachable blocks, but should be set at least // for the extraneous ones introduced by the builder). bool unreachable; }; // // SPIR-V IR Function. // class Function { public: Function(Id id, Id resultType, Id functionType, Id firstParam, Module& parent); virtual ~Function() { for (int i = 0; i < (int)parameterInstructions.size(); ++i) delete parameterInstructions[i]; for (int i = 0; i < (int)blocks.size(); ++i) delete blocks[i]; } Id getId() const { return functionInstruction.getResultId(); } Id getParamId(int p) { return parameterInstructions[p]->getResultId(); } void addBlock(Block* block) { blocks.push_back(block); } void removeBlock(Block* block) { auto found = find(blocks.begin(), blocks.end(), block); assert(found != blocks.end()); blocks.erase(found); delete block; } Module& getParent() const { return parent; } Block* getEntryBlock() const { return blocks.front(); } Block* getLastBlock() const { return blocks.back(); } void addLocalVariable(Instruction* inst); Id getReturnType() const { return functionInstruction.getTypeId(); } void dump(std::vector& out) const { // OpFunction functionInstruction.dump(out); // OpFunctionParameter for (int p = 0; p < (int)parameterInstructions.size(); ++p) parameterInstructions[p]->dump(out); // Blocks for (int b = 0; b < (int)blocks.size(); ++b) blocks[b]->dump(out); Instruction end(0, 0, OpFunctionEnd); end.dump(out); } protected: Function(const Function&); Function& operator=(Function&); Module& parent; Instruction functionInstruction; std::vector parameterInstructions; std::vector blocks; }; // // SPIR-V IR Module. // class Module { public: Module() {} virtual ~Module() { // TODO delete things } void addFunction(Function *fun) { functions.push_back(fun); } void mapInstruction(Instruction *instruction) { spv::Id resultId = instruction->getResultId(); // map the instruction's result id if (resultId >= idToInstruction.size()) idToInstruction.resize(resultId + 16); idToInstruction[resultId] = instruction; } Instruction* getInstruction(Id id) const { return idToInstruction[id]; } spv::Id getTypeId(Id resultId) const { return idToInstruction[resultId]->getTypeId(); } StorageClass getStorageClass(Id typeId) const { assert(idToInstruction[typeId]->getOpCode() == spv::OpTypePointer); return (StorageClass)idToInstruction[typeId]->getImmediateOperand(0); } void dump(std::vector& out) const { for (int f = 0; f < (int)functions.size(); ++f) functions[f]->dump(out); } protected: Module(const Module&); std::vector functions; // map from result id to instruction having that result id std::vector idToInstruction; // map from a result id to its type id }; // // Implementation (it's here due to circular type definitions). // // Add both // - the OpFunction instruction // - all the OpFunctionParameter instructions __inline Function::Function(Id id, Id resultType, Id functionType, Id firstParamId, Module& parent) : parent(parent), functionInstruction(id, resultType, OpFunction) { // OpFunction functionInstruction.addImmediateOperand(FunctionControlMaskNone); functionInstruction.addIdOperand(functionType); parent.mapInstruction(&functionInstruction); parent.addFunction(this); // OpFunctionParameter Instruction* typeInst = parent.getInstruction(functionType); int numParams = typeInst->getNumOperands() - 1; for (int p = 0; p < numParams; ++p) { Instruction* param = new Instruction(firstParamId + p, typeInst->getIdOperand(p + 1), OpFunctionParameter); parent.mapInstruction(param); parameterInstructions.push_back(param); } } __inline void Function::addLocalVariable(Instruction* inst) { blocks[0]->addLocalVariable(inst); parent.mapInstruction(inst); } __inline Block::Block(Id id, Function& parent) : parent(parent), unreachable(false) { instructions.push_back(new Instruction(id, NoType, OpLabel)); } __inline void Block::addInstruction(Instruction* inst) { instructions.push_back(inst); if (inst->getResultId()) parent.getParent().mapInstruction(inst); } }; // end spv namespace #endif // spvIR_H