glslang/SPIRV/spvIR.h
arcady-lunarg 7c3c50ea94
spirv: Add a postprocessing pass to fix up uses of OpSampledImage
SPIR-V requires that any instruction using the result of an
OpSampledImage instruction be in the same block as the OpSampledImage.
This is hard to guarantee in code generation but easy to fix after the
fact, by simply inserting a new OpSampledImage before the user of its
result if needed, with the new instruction having the same operands as
the original OpSampledImage.
This change adds a new pass to spv::Builder::postProcess that does this.
This might leave the original OpSampledImage instructions "orphaned"
with no users of their result ID, but dead code elimination would take
care of those further down the line.
2024-05-20 13:25:55 -04:00

584 lines
20 KiB
C++

//
// Copyright (C) 2014 LunarG, Inc.
// Copyright (C) 2015-2018 Google, Inc.
//
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
//
// Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
//
// Neither the name of 3Dlabs Inc. Ltd. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
// FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
// COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
// BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
// LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
// LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
// ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
// SPIRV-IR
//
// Simple in-memory representation (IR) of SPIRV. Just for holding
// Each function's CFG of blocks. Has this hierarchy:
// - Module, which is a list of
// - Function, which is a list of
// - Block, which is a list of
// - Instruction
//
#pragma once
#ifndef spvIR_H
#define spvIR_H
#include "spirv.hpp"
#include <algorithm>
#include <cassert>
#include <functional>
#include <iostream>
#include <memory>
#include <vector>
#include <set>
#include <optional>
namespace spv {
class Block;
class Function;
class Module;
const Id NoResult = 0;
const Id NoType = 0;
const Decoration NoPrecision = DecorationMax;
#ifdef __GNUC__
# define POTENTIALLY_UNUSED __attribute__((unused))
#else
# define POTENTIALLY_UNUSED
#endif
POTENTIALLY_UNUSED
const MemorySemanticsMask MemorySemanticsAllMemory =
(MemorySemanticsMask)(MemorySemanticsUniformMemoryMask |
MemorySemanticsWorkgroupMemoryMask |
MemorySemanticsAtomicCounterMemoryMask |
MemorySemanticsImageMemoryMask);
struct IdImmediate {
bool isId; // true if word is an Id, false if word is an immediate
unsigned word;
IdImmediate(bool i, unsigned w) : isId(i), word(w) {}
};
//
// SPIR-V IR instruction.
//
class Instruction {
public:
Instruction(Id resultId, Id typeId, Op opCode) : resultId(resultId), typeId(typeId), opCode(opCode), block(nullptr) { }
explicit Instruction(Op opCode) : resultId(NoResult), typeId(NoType), opCode(opCode), block(nullptr) { }
virtual ~Instruction() {}
void reserveOperands(size_t count) {
operands.reserve(count);
idOperand.reserve(count);
}
void addIdOperand(Id id) {
// ids can't be 0
assert(id);
operands.push_back(id);
idOperand.push_back(true);
}
// This method is potentially dangerous as it can break assumptions
// about SSA and lack of forward references.
void setIdOperand(unsigned idx, Id id) {
assert(id);
assert(idOperand[idx]);
operands[idx] = id;
}
void addImmediateOperand(unsigned int immediate) {
operands.push_back(immediate);
idOperand.push_back(false);
}
void setImmediateOperand(unsigned idx, unsigned int immediate) {
assert(!idOperand[idx]);
operands[idx] = immediate;
}
void addStringOperand(const char* str)
{
unsigned int word = 0;
unsigned int shiftAmount = 0;
char c;
do {
c = *(str++);
word |= ((unsigned int)c) << shiftAmount;
shiftAmount += 8;
if (shiftAmount == 32) {
addImmediateOperand(word);
word = 0;
shiftAmount = 0;
}
} while (c != 0);
// deal with partial last word
if (shiftAmount > 0) {
addImmediateOperand(word);
}
}
bool isIdOperand(int op) const { return idOperand[op]; }
void setBlock(Block* b) { block = b; }
Block* getBlock() const { return block; }
Op getOpCode() const { return opCode; }
int getNumOperands() const
{
assert(operands.size() == idOperand.size());
return (int)operands.size();
}
Id getResultId() const { return resultId; }
Id getTypeId() const { return typeId; }
Id getIdOperand(int op) const {
assert(idOperand[op]);
return operands[op];
}
unsigned int getImmediateOperand(int op) const {
assert(!idOperand[op]);
return operands[op];
}
// Write out the binary form.
void dump(std::vector<unsigned int>& out) const
{
// Compute the wordCount
unsigned int wordCount = 1;
if (typeId)
++wordCount;
if (resultId)
++wordCount;
wordCount += (unsigned int)operands.size();
// Write out the beginning of the instruction
out.push_back(((wordCount) << WordCountShift) | opCode);
if (typeId)
out.push_back(typeId);
if (resultId)
out.push_back(resultId);
// Write out the operands
for (int op = 0; op < (int)operands.size(); ++op)
out.push_back(operands[op]);
}
protected:
Instruction(const Instruction&);
Id resultId;
Id typeId;
Op opCode;
std::vector<Id> operands; // operands, both <id> and immediates (both are unsigned int)
std::vector<bool> idOperand; // true for operands that are <id>, false for immediates
Block* block;
};
//
// SPIR-V IR block.
//
struct DebugSourceLocation {
int line;
int column;
spv::Id fileId;
};
class Block {
public:
Block(Id id, Function& parent);
virtual ~Block()
{
}
Id getId() { return instructions.front()->getResultId(); }
Function& getParent() const { return parent; }
// Returns true if the source location is actually updated.
// Note we still need the builder to insert the line marker instruction. This is just a tracker.
bool updateDebugSourceLocation(int line, int column, spv::Id fileId) {
if (currentSourceLoc && currentSourceLoc->line == line && currentSourceLoc->column == column &&
currentSourceLoc->fileId == fileId) {
return false;
}
currentSourceLoc = DebugSourceLocation{line, column, fileId};
return true;
}
// Returns true if the scope is actually updated.
// Note we still need the builder to insert the debug scope instruction. This is just a tracker.
bool updateDebugScope(spv::Id scopeId) {
assert(scopeId);
if (currentDebugScope && *currentDebugScope == scopeId) {
return false;
}
currentDebugScope = scopeId;
return true;
}
void addInstruction(std::unique_ptr<Instruction> inst);
void addPredecessor(Block* pred) { predecessors.push_back(pred); pred->successors.push_back(this);}
void addLocalVariable(std::unique_ptr<Instruction> inst) { localVariables.push_back(std::move(inst)); }
const std::vector<Block*>& getPredecessors() const { return predecessors; }
const std::vector<Block*>& getSuccessors() const { return successors; }
std::vector<std::unique_ptr<Instruction> >& getInstructions() {
return instructions;
}
const std::vector<std::unique_ptr<Instruction> >& getLocalVariables() const { return localVariables; }
void setUnreachable() { unreachable = true; }
bool isUnreachable() const { return unreachable; }
// Returns the block's merge instruction, if one exists (otherwise null).
const Instruction* getMergeInstruction() const {
if (instructions.size() < 2) return nullptr;
const Instruction* nextToLast = (instructions.cend() - 2)->get();
switch (nextToLast->getOpCode()) {
case OpSelectionMerge:
case OpLoopMerge:
return nextToLast;
default:
return nullptr;
}
return nullptr;
}
// Change this block into a canonical dead merge block. Delete instructions
// as necessary. A canonical dead merge block has only an OpLabel and an
// OpUnreachable.
void rewriteAsCanonicalUnreachableMerge() {
assert(localVariables.empty());
// Delete all instructions except for the label.
assert(instructions.size() > 0);
instructions.resize(1);
successors.clear();
addInstruction(std::unique_ptr<Instruction>(new Instruction(OpUnreachable)));
}
// Change this block into a canonical dead continue target branching to the
// given header ID. Delete instructions as necessary. A canonical dead continue
// target has only an OpLabel and an unconditional branch back to the corresponding
// header.
void rewriteAsCanonicalUnreachableContinue(Block* header) {
assert(localVariables.empty());
// Delete all instructions except for the label.
assert(instructions.size() > 0);
instructions.resize(1);
successors.clear();
// Add OpBranch back to the header.
assert(header != nullptr);
Instruction* branch = new Instruction(OpBranch);
branch->addIdOperand(header->getId());
addInstruction(std::unique_ptr<Instruction>(branch));
successors.push_back(header);
}
bool isTerminated() const
{
switch (instructions.back()->getOpCode()) {
case OpBranch:
case OpBranchConditional:
case OpSwitch:
case OpKill:
case OpTerminateInvocation:
case OpReturn:
case OpReturnValue:
case OpUnreachable:
return true;
default:
return false;
}
}
void dump(std::vector<unsigned int>& out) const
{
instructions[0]->dump(out);
for (int i = 0; i < (int)localVariables.size(); ++i)
localVariables[i]->dump(out);
for (int i = 1; i < (int)instructions.size(); ++i)
instructions[i]->dump(out);
}
protected:
Block(const Block&);
Block& operator=(Block&);
// To enforce keeping parent and ownership in sync:
friend Function;
std::vector<std::unique_ptr<Instruction> > instructions;
std::vector<Block*> predecessors, successors;
std::vector<std::unique_ptr<Instruction> > localVariables;
Function& parent;
// Track source location of the last source location marker instruction.
std::optional<DebugSourceLocation> currentSourceLoc;
// Track scope of the last debug scope instruction.
std::optional<spv::Id> currentDebugScope;
// track whether this block is known to be uncreachable (not necessarily
// true for all unreachable blocks, but should be set at least
// for the extraneous ones introduced by the builder).
bool unreachable;
};
// The different reasons for reaching a block in the inReadableOrder traversal.
enum ReachReason {
// Reachable from the entry block via transfers of control, i.e. branches.
ReachViaControlFlow = 0,
// A continue target that is not reachable via control flow.
ReachDeadContinue,
// A merge block that is not reachable via control flow.
ReachDeadMerge
};
// Traverses the control-flow graph rooted at root in an order suited for
// readable code generation. Invokes callback at every node in the traversal
// order. The callback arguments are:
// - the block,
// - the reason we reached the block,
// - if the reason was that block is an unreachable continue or unreachable merge block
// then the last parameter is the corresponding header block.
void inReadableOrder(Block* root, std::function<void(Block*, ReachReason, Block* header)> callback);
//
// SPIR-V IR Function.
//
class Function {
public:
Function(Id id, Id resultType, Id functionType, Id firstParam, LinkageType linkage, const std::string& name, Module& parent);
virtual ~Function()
{
for (int i = 0; i < (int)parameterInstructions.size(); ++i)
delete parameterInstructions[i];
for (int i = 0; i < (int)blocks.size(); ++i)
delete blocks[i];
}
Id getId() const { return functionInstruction.getResultId(); }
Id getParamId(int p) const { return parameterInstructions[p]->getResultId(); }
Id getParamType(int p) const { return parameterInstructions[p]->getTypeId(); }
void addBlock(Block* block) { blocks.push_back(block); }
void removeBlock(Block* block)
{
auto found = find(blocks.begin(), blocks.end(), block);
assert(found != blocks.end());
blocks.erase(found);
delete block;
}
Module& getParent() const { return parent; }
Block* getEntryBlock() const { return blocks.front(); }
Block* getLastBlock() const { return blocks.back(); }
const std::vector<Block*>& getBlocks() const { return blocks; }
void addLocalVariable(std::unique_ptr<Instruction> inst);
Id getReturnType() const { return functionInstruction.getTypeId(); }
Id getFuncId() const { return functionInstruction.getResultId(); }
Id getFuncTypeId() const { return functionInstruction.getIdOperand(1); }
void setReturnPrecision(Decoration precision)
{
if (precision == DecorationRelaxedPrecision)
reducedPrecisionReturn = true;
}
Decoration getReturnPrecision() const
{ return reducedPrecisionReturn ? DecorationRelaxedPrecision : NoPrecision; }
void setDebugLineInfo(Id fileName, int line, int column) {
lineInstruction = std::unique_ptr<Instruction>{new Instruction(OpLine)};
lineInstruction->reserveOperands(3);
lineInstruction->addIdOperand(fileName);
lineInstruction->addImmediateOperand(line);
lineInstruction->addImmediateOperand(column);
}
bool hasDebugLineInfo() const { return lineInstruction != nullptr; }
void setImplicitThis() { implicitThis = true; }
bool hasImplicitThis() const { return implicitThis; }
void addParamPrecision(unsigned param, Decoration precision)
{
if (precision == DecorationRelaxedPrecision)
reducedPrecisionParams.insert(param);
}
Decoration getParamPrecision(unsigned param) const
{
return reducedPrecisionParams.find(param) != reducedPrecisionParams.end() ?
DecorationRelaxedPrecision : NoPrecision;
}
void dump(std::vector<unsigned int>& out) const
{
// OpLine
if (lineInstruction != nullptr) {
lineInstruction->dump(out);
}
// OpFunction
functionInstruction.dump(out);
// OpFunctionParameter
for (int p = 0; p < (int)parameterInstructions.size(); ++p)
parameterInstructions[p]->dump(out);
// Blocks
inReadableOrder(blocks[0], [&out](const Block* b, ReachReason, Block*) { b->dump(out); });
Instruction end(0, 0, OpFunctionEnd);
end.dump(out);
}
LinkageType getLinkType() const { return linkType; }
const char* getExportName() const { return exportName.c_str(); }
protected:
Function(const Function&);
Function& operator=(Function&);
Module& parent;
std::unique_ptr<Instruction> lineInstruction;
Instruction functionInstruction;
std::vector<Instruction*> parameterInstructions;
std::vector<Block*> blocks;
bool implicitThis; // true if this is a member function expecting to be passed a 'this' as the first argument
bool reducedPrecisionReturn;
std::set<int> reducedPrecisionParams; // list of parameter indexes that need a relaxed precision arg
LinkageType linkType;
std::string exportName;
};
//
// SPIR-V IR Module.
//
class Module {
public:
Module() {}
virtual ~Module()
{
// TODO delete things
}
void addFunction(Function *fun) { functions.push_back(fun); }
void mapInstruction(Instruction *instruction)
{
spv::Id resultId = instruction->getResultId();
// map the instruction's result id
if (resultId >= idToInstruction.size())
idToInstruction.resize(resultId + 16);
idToInstruction[resultId] = instruction;
}
Instruction* getInstruction(Id id) const { return idToInstruction[id]; }
const std::vector<Function*>& getFunctions() const { return functions; }
spv::Id getTypeId(Id resultId) const {
return idToInstruction[resultId] == nullptr ? NoType : idToInstruction[resultId]->getTypeId();
}
StorageClass getStorageClass(Id typeId) const
{
assert(idToInstruction[typeId]->getOpCode() == spv::OpTypePointer);
return (StorageClass)idToInstruction[typeId]->getImmediateOperand(0);
}
void dump(std::vector<unsigned int>& out) const
{
for (int f = 0; f < (int)functions.size(); ++f)
functions[f]->dump(out);
}
protected:
Module(const Module&);
std::vector<Function*> functions;
// map from result id to instruction having that result id
std::vector<Instruction*> idToInstruction;
// map from a result id to its type id
};
//
// Implementation (it's here due to circular type definitions).
//
// Add both
// - the OpFunction instruction
// - all the OpFunctionParameter instructions
__inline Function::Function(Id id, Id resultType, Id functionType, Id firstParamId, LinkageType linkage, const std::string& name, Module& parent)
: parent(parent), lineInstruction(nullptr),
functionInstruction(id, resultType, OpFunction), implicitThis(false),
reducedPrecisionReturn(false),
linkType(linkage)
{
// OpFunction
functionInstruction.reserveOperands(2);
functionInstruction.addImmediateOperand(FunctionControlMaskNone);
functionInstruction.addIdOperand(functionType);
parent.mapInstruction(&functionInstruction);
parent.addFunction(this);
// OpFunctionParameter
Instruction* typeInst = parent.getInstruction(functionType);
int numParams = typeInst->getNumOperands() - 1;
for (int p = 0; p < numParams; ++p) {
Instruction* param = new Instruction(firstParamId + p, typeInst->getIdOperand(p + 1), OpFunctionParameter);
parent.mapInstruction(param);
parameterInstructions.push_back(param);
}
// If importing/exporting, save the function name (without the mangled parameters) for the linkage decoration
if (linkType != LinkageTypeMax) {
exportName = name.substr(0, name.find_first_of('('));
}
}
__inline void Function::addLocalVariable(std::unique_ptr<Instruction> inst)
{
Instruction* raw_instruction = inst.get();
blocks[0]->addLocalVariable(std::move(inst));
parent.mapInstruction(raw_instruction);
}
__inline Block::Block(Id id, Function& parent) : parent(parent), unreachable(false)
{
instructions.push_back(std::unique_ptr<Instruction>(new Instruction(id, NoType, OpLabel)));
instructions.back()->setBlock(this);
parent.getParent().mapInstruction(instructions.back().get());
}
__inline void Block::addInstruction(std::unique_ptr<Instruction> inst)
{
Instruction* raw_instruction = inst.get();
instructions.push_back(std::move(inst));
raw_instruction->setBlock(this);
if (raw_instruction->getResultId())
parent.getParent().mapInstruction(raw_instruction);
}
} // end spv namespace
#endif // spvIR_H