glslang/Test/hlsl.rw.vec2.bracket.frag
steve-lunarg 4f2da27aec HLSL: phase 3a: Add sub-vec4 rwtexture formats (qualifier.layoutFormat)
This PR sets the TQualifier layoutFormat according to the HLSL image type.
For instance:

  RWTexture1D <float2> g_tTex1df2;

becomes ElfRg32f.  Similar on Buffers, e.g, Buffer<float4> mybuffer;

The return type for image and buffer loads is now taken from the storage format.
Also, the qualifier for the return type is now (properly) a temp, not a global.
2016-10-14 18:44:32 -06:00

141 lines
2.9 KiB
GLSL

SamplerState g_sSamp : register(s0);
RWTexture1D <float2> g_tTex1df2;
RWTexture1D <int2> g_tTex1di2;
RWTexture1D <uint2> g_tTex1du2;
RWTexture2D <float2> g_tTex2df2;
RWTexture2D <int2> g_tTex2di2;
RWTexture2D <uint2> g_tTex2du2;
RWTexture3D <float2> g_tTex3df2;
RWTexture3D <int2> g_tTex3di2;
RWTexture3D <uint2> g_tTex3du2;
RWTexture1DArray <float2> g_tTex1df2a;
RWTexture1DArray <int2> g_tTex1di2a;
RWTexture1DArray <uint2> g_tTex1du2a;
RWTexture2DArray <float2> g_tTex2df2a;
RWTexture2DArray <int2> g_tTex2di2a;
RWTexture2DArray <uint2> g_tTex2du2a;
struct PS_OUTPUT
{
float4 Color : SV_Target0;
};
uniform int c1;
uniform int2 c2;
uniform int3 c3;
uniform int4 c4;
uniform int o1;
uniform int2 o2;
uniform int3 o3;
uniform int4 o4;
uniform float2 uf2;
uniform int2 ui2;
uniform uint2 uu2;
int2 Fn1(in int2 x) { return x; }
uint2 Fn1(in uint2 x) { return x; }
float2 Fn1(in float2 x) { return x; }
void Fn2(out int2 x) { x = int2(0,0); }
void Fn2(out uint2 x) { x = uint2(0,0); }
void Fn2(out float2 x) { x = float2(0,0); }
float2 SomeValue() { return c2; }
PS_OUTPUT main()
{
PS_OUTPUT psout;
// 1D
g_tTex1df2[c1];
float2 r00 = g_tTex1df2[c1];
int2 r01 = g_tTex1di2[c1];
uint2 r02 = g_tTex1du2[c1];
// 2D
float2 r10 = g_tTex2df2[c2];
int2 r11 = g_tTex2di2[c2];
uint2 r12 = g_tTex2du2[c2];
// 3D
float2 r20 = g_tTex3df2[c3];
int2 r21 = g_tTex3di2[c3];
uint2 r22 = g_tTex3du2[c3];
float2 lf2 = uf2;
// Test as L-values
// 1D
g_tTex1df2[c1] = SomeValue(); // complex R-value
g_tTex1df2[c1] = lf2;
g_tTex1di2[c1] = int2(2,2);
g_tTex1du2[c1] = uint2(3,2);
// Test some operator= things, which need to do both a load and a store.
float2 val1 = (g_tTex1df2[c1] *= 2.0);
g_tTex1df2[c1] -= 3.0;
g_tTex1df2[c1] += 4.0;
g_tTex1di2[c1] /= 2;
g_tTex1di2[c1] %= 2;
g_tTex1di2[c1] &= 0xffff;
g_tTex1di2[c1] |= 0xf0f0;
g_tTex1di2[c1] <<= 2;
g_tTex1di2[c1] >>= 2;
// 2D
g_tTex2df2[c2] = SomeValue(); // complex L-value
g_tTex2df2[c2] = lf2;
g_tTex2di2[c2] = int2(5,2);
g_tTex2du2[c2] = uint2(6,2);
// 3D
g_tTex3df2[c3] = SomeValue(); // complex L-value
g_tTex3df2[c3] = lf2;
g_tTex3di2[c3] = int2(8,6);
g_tTex3du2[c3] = uint2(9,2);
// Test function calling
Fn1(g_tTex1df2[c1]); // in
Fn1(g_tTex1di2[c1]); // in
Fn1(g_tTex1du2[c1]); // in
Fn2(g_tTex1df2[c1]); // out
Fn2(g_tTex1di2[c1]); // out
Fn2(g_tTex1du2[c1]); // out
// Test increment operators
// pre-ops
++g_tTex1df2[c1];
++g_tTex1di2[c1];
++g_tTex1du2[c1];
--g_tTex1df2[c1];
--g_tTex1di2[c1];
--g_tTex1du2[c1];
// post-ops
g_tTex1df2[c1]++;
g_tTex1du2[c1]--;
g_tTex1di2[c1]++;
g_tTex1df2[c1]--;
g_tTex1di2[c1]++;
g_tTex1du2[c1]--;
// read and write
g_tTex1df2[1] = g_tTex2df2[int2(2,3)];
psout.Color = 1.0;
return psout;
}