glslang/SPIRV/GlslangToSpv.cpp

3031 lines
114 KiB
C++
Executable File

//
//Copyright (C) 2014 LunarG, Inc.
//
//All rights reserved.
//
//Redistribution and use in source and binary forms, with or without
//modification, are permitted provided that the following conditions
//are met:
//
// Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
//
// Neither the name of 3Dlabs Inc. Ltd. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
//THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
//"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
//LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
//FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
//COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
//INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
//BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
//LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
//CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
//LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
//ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
//POSSIBILITY OF SUCH DAMAGE.
//
// Author: John Kessenich, LunarG
//
// Visit the nodes in the glslang intermediate tree representation to
// translate them to SPIR-V.
//
#include "spirv.hpp"
#include "GlslangToSpv.h"
#include "SpvBuilder.h"
namespace spv {
#include "GLSL.std.450.h"
}
// Glslang includes
#include "../glslang/MachineIndependent/localintermediate.h"
#include "../glslang/MachineIndependent/SymbolTable.h"
#include "../glslang/Include/Common.h"
#include <string>
#include <map>
#include <list>
#include <vector>
#include <stack>
#include <fstream>
namespace {
const int GlslangMagic = 0x51a;
//
// The main holder of information for translating glslang to SPIR-V.
//
// Derives from the AST walking base class.
//
class TGlslangToSpvTraverser : public glslang::TIntermTraverser {
public:
TGlslangToSpvTraverser(const glslang::TIntermediate*);
virtual ~TGlslangToSpvTraverser();
bool visitAggregate(glslang::TVisit, glslang::TIntermAggregate*);
bool visitBinary(glslang::TVisit, glslang::TIntermBinary*);
void visitConstantUnion(glslang::TIntermConstantUnion*);
bool visitSelection(glslang::TVisit, glslang::TIntermSelection*);
bool visitSwitch(glslang::TVisit, glslang::TIntermSwitch*);
void visitSymbol(glslang::TIntermSymbol* symbol);
bool visitUnary(glslang::TVisit, glslang::TIntermUnary*);
bool visitLoop(glslang::TVisit, glslang::TIntermLoop*);
bool visitBranch(glslang::TVisit visit, glslang::TIntermBranch*);
void dumpSpv(std::vector<unsigned int>& out) { builder.dump(out); }
protected:
spv::Id createSpvVariable(const glslang::TIntermSymbol*);
spv::Id getSampledType(const glslang::TSampler&);
spv::Id convertGlslangToSpvType(const glslang::TType& type);
spv::Id convertGlslangToSpvType(const glslang::TType& type, bool explicitLayout);
bool requiresExplicitLayout(const glslang::TType& type) const;
int getArrayStride(const glslang::TType& arrayType);
int getMatrixStride(const glslang::TType& matrixType);
void updateMemberOffset(const glslang::TType& structType, const glslang::TType& memberType, int& currentOffset, int& nextOffset);
bool isShaderEntrypoint(const glslang::TIntermAggregate* node);
void makeFunctions(const glslang::TIntermSequence&);
void makeGlobalInitializers(const glslang::TIntermSequence&);
void visitFunctions(const glslang::TIntermSequence&);
void handleFunctionEntry(const glslang::TIntermAggregate* node);
void translateArguments(const glslang::TIntermAggregate& node, std::vector<spv::Id>& arguments);
void translateArguments(glslang::TIntermUnary& node, std::vector<spv::Id>& arguments);
spv::Id createImageTextureFunctionCall(glslang::TIntermOperator* node);
spv::Id handleUserFunctionCall(const glslang::TIntermAggregate*);
spv::Id createBinaryOperation(glslang::TOperator op, spv::Decoration precision, spv::Id typeId, spv::Id left, spv::Id right, glslang::TBasicType typeProxy, bool reduceComparison = true);
spv::Id createUnaryOperation(glslang::TOperator op, spv::Decoration precision, spv::Id typeId, spv::Id operand,glslang::TBasicType typeProxy);
spv::Id createConversion(glslang::TOperator op, spv::Decoration precision, spv::Id destTypeId, spv::Id operand);
spv::Id makeSmearedConstant(spv::Id constant, int vectorSize);
spv::Id createAtomicOperation(glslang::TOperator op, spv::Decoration precision, spv::Id typeId, std::vector<spv::Id>& operands, glslang::TBasicType typeProxy);
spv::Id createMiscOperation(glslang::TOperator op, spv::Decoration precision, spv::Id typeId, std::vector<spv::Id>& operands, glslang::TBasicType typeProxy);
spv::Id createNoArgOperation(glslang::TOperator op);
spv::Id getSymbolId(const glslang::TIntermSymbol* node);
void addDecoration(spv::Id id, spv::Decoration dec);
void addMemberDecoration(spv::Id id, int member, spv::Decoration dec);
spv::Id createSpvConstant(const glslang::TType& type, const glslang::TConstUnionArray&, int& nextConst);
spv::Function* shaderEntry;
int sequenceDepth;
// There is a 1:1 mapping between a spv builder and a module; this is thread safe
spv::Builder builder;
bool inMain;
bool mainTerminated;
bool linkageOnly;
const glslang::TIntermediate* glslangIntermediate;
spv::Id stdBuiltins;
std::unordered_map<int, spv::Id> symbolValues;
std::unordered_set<int> constReadOnlyParameters; // set of formal function parameters that have glslang qualifier constReadOnly, so we know they are not local function "const" that are write-once
std::unordered_map<std::string, spv::Function*> functionMap;
std::unordered_map<const glslang::TTypeList*, spv::Id> structMap;
std::unordered_map<const glslang::TTypeList*, std::vector<int> > memberRemapper; // for mapping glslang block indices to spv indices (e.g., due to hidden members)
std::stack<bool> breakForLoop; // false means break for switch
std::stack<glslang::TIntermTyped*> loopTerminal; // code from the last part of a for loop: for(...; ...; terminal), needed for e.g., continue };
};
//
// Helper functions for translating glslang representations to SPIR-V enumerants.
//
// Translate glslang profile to SPIR-V source language.
spv::SourceLanguage TranslateSourceLanguage(EProfile profile)
{
switch (profile) {
case ENoProfile:
case ECoreProfile:
case ECompatibilityProfile:
return spv::SourceLanguageGLSL;
case EEsProfile:
return spv::SourceLanguageESSL;
default:
return spv::SourceLanguageUnknown;
}
}
// Translate glslang language (stage) to SPIR-V execution model.
spv::ExecutionModel TranslateExecutionModel(EShLanguage stage)
{
switch (stage) {
case EShLangVertex: return spv::ExecutionModelVertex;
case EShLangTessControl: return spv::ExecutionModelTessellationControl;
case EShLangTessEvaluation: return spv::ExecutionModelTessellationEvaluation;
case EShLangGeometry: return spv::ExecutionModelGeometry;
case EShLangFragment: return spv::ExecutionModelFragment;
case EShLangCompute: return spv::ExecutionModelGLCompute;
default:
spv::MissingFunctionality("GLSL stage");
return spv::ExecutionModelFragment;
}
}
// Translate glslang type to SPIR-V storage class.
spv::StorageClass TranslateStorageClass(const glslang::TType& type)
{
if (type.getQualifier().isPipeInput())
return spv::StorageClassInput;
else if (type.getQualifier().isPipeOutput())
return spv::StorageClassOutput;
else if (type.getQualifier().isUniformOrBuffer()) {
if (type.getBasicType() == glslang::EbtBlock)
return spv::StorageClassUniform;
else if (type.getBasicType() == glslang::EbtAtomicUint)
return spv::StorageClassAtomicCounter;
else
return spv::StorageClassUniformConstant;
// TODO: how are we distuingishing between default and non-default non-writable uniforms? Do default uniforms even exist?
} else {
switch (type.getQualifier().storage) {
case glslang::EvqShared: return spv::StorageClassWorkgroupLocal; break;
case glslang::EvqGlobal: return spv::StorageClassPrivateGlobal;
case glslang::EvqConstReadOnly: return spv::StorageClassFunction;
case glslang::EvqTemporary: return spv::StorageClassFunction;
default:
spv::MissingFunctionality("unknown glslang storage class");
return spv::StorageClassFunction;
}
}
}
// Translate glslang sampler type to SPIR-V dimensionality.
spv::Dim TranslateDimensionality(const glslang::TSampler& sampler)
{
switch (sampler.dim) {
case glslang::Esd1D: return spv::Dim1D;
case glslang::Esd2D: return spv::Dim2D;
case glslang::Esd3D: return spv::Dim3D;
case glslang::EsdCube: return spv::DimCube;
case glslang::EsdRect: return spv::DimRect;
case glslang::EsdBuffer: return spv::DimBuffer;
default:
spv::MissingFunctionality("unknown sampler dimension");
return spv::Dim2D;
}
}
// Translate glslang type to SPIR-V precision decorations.
spv::Decoration TranslatePrecisionDecoration(const glslang::TType& type)
{
switch (type.getQualifier().precision) {
case glslang::EpqLow: return spv::DecorationRelaxedPrecision; // TODO: Map instead to 16-bit types?
case glslang::EpqMedium: return spv::DecorationRelaxedPrecision;
case glslang::EpqHigh: return spv::NoPrecision;
default:
return spv::NoPrecision;
}
}
// Translate glslang type to SPIR-V block decorations.
spv::Decoration TranslateBlockDecoration(const glslang::TType& type)
{
if (type.getBasicType() == glslang::EbtBlock) {
switch (type.getQualifier().storage) {
case glslang::EvqUniform: return spv::DecorationBlock;
case glslang::EvqBuffer: return spv::DecorationBufferBlock;
case glslang::EvqVaryingIn: return spv::DecorationBlock;
case glslang::EvqVaryingOut: return spv::DecorationBlock;
default:
spv::MissingFunctionality("kind of block");
break;
}
}
return (spv::Decoration)spv::BadValue;
}
// Translate glslang type to SPIR-V layout decorations.
spv::Decoration TranslateLayoutDecoration(const glslang::TType& type)
{
if (type.isMatrix()) {
switch (type.getQualifier().layoutMatrix) {
case glslang::ElmRowMajor:
return spv::DecorationRowMajor;
default:
return spv::DecorationColMajor;
}
} else {
switch (type.getBasicType()) {
default:
return (spv::Decoration)spv::BadValue;
break;
case glslang::EbtBlock:
switch (type.getQualifier().storage) {
case glslang::EvqUniform:
case glslang::EvqBuffer:
switch (type.getQualifier().layoutPacking) {
case glslang::ElpShared: return spv::DecorationGLSLShared;
case glslang::ElpPacked: return spv::DecorationGLSLPacked;
default:
return (spv::Decoration)spv::BadValue;
}
case glslang::EvqVaryingIn:
case glslang::EvqVaryingOut:
if (type.getQualifier().layoutPacking != glslang::ElpNone)
spv::MissingFunctionality("in/out block layout");
return (spv::Decoration)spv::BadValue;
default:
spv::MissingFunctionality("block storage qualification");
return (spv::Decoration)spv::BadValue;
}
}
}
}
// Translate glslang type to SPIR-V interpolation decorations.
spv::Decoration TranslateInterpolationDecoration(const glslang::TType& type)
{
if (type.getQualifier().smooth)
return spv::DecorationSmooth;
if (type.getQualifier().nopersp)
return spv::DecorationNoperspective;
else if (type.getQualifier().patch)
return spv::DecorationPatch;
else if (type.getQualifier().flat)
return spv::DecorationFlat;
else if (type.getQualifier().centroid)
return spv::DecorationCentroid;
else if (type.getQualifier().sample)
return spv::DecorationSample;
else
return (spv::Decoration)spv::BadValue;
}
// If glslang type is invaraiant, return SPIR-V invariant decoration.
spv::Decoration TranslateInvariantDecoration(const glslang::TType& type)
{
if (type.getQualifier().invariant)
return spv::DecorationInvariant;
else
return (spv::Decoration)spv::BadValue;
}
// Translate glslang built-in variable to SPIR-V built in decoration.
spv::BuiltIn TranslateBuiltInDecoration(glslang::TBuiltInVariable builtIn)
{
switch (builtIn) {
case glslang::EbvPosition: return spv::BuiltInPosition;
case glslang::EbvPointSize: return spv::BuiltInPointSize;
case glslang::EbvClipDistance: return spv::BuiltInClipDistance;
case glslang::EbvCullDistance: return spv::BuiltInCullDistance;
case glslang::EbvVertexId: return spv::BuiltInVertexId;
case glslang::EbvInstanceId: return spv::BuiltInInstanceId;
case glslang::EbvPrimitiveId: return spv::BuiltInPrimitiveId;
case glslang::EbvInvocationId: return spv::BuiltInInvocationId;
case glslang::EbvLayer: return spv::BuiltInLayer;
case glslang::EbvViewportIndex: return spv::BuiltInViewportIndex;
case glslang::EbvTessLevelInner: return spv::BuiltInTessLevelInner;
case glslang::EbvTessLevelOuter: return spv::BuiltInTessLevelOuter;
case glslang::EbvTessCoord: return spv::BuiltInTessCoord;
case glslang::EbvPatchVertices: return spv::BuiltInPatchVertices;
case glslang::EbvFragCoord: return spv::BuiltInFragCoord;
case glslang::EbvPointCoord: return spv::BuiltInPointCoord;
case glslang::EbvFace: return spv::BuiltInFrontFacing;
case glslang::EbvSampleId: return spv::BuiltInSampleId;
case glslang::EbvSamplePosition: return spv::BuiltInSamplePosition;
case glslang::EbvSampleMask: return spv::BuiltInSampleMask;
case glslang::EbvFragColor: return spv::BuiltInFragColor;
case glslang::EbvFragData: return spv::BuiltInFragColor;
case glslang::EbvFragDepth: return spv::BuiltInFragDepth;
case glslang::EbvHelperInvocation: return spv::BuiltInHelperInvocation;
case glslang::EbvNumWorkGroups: return spv::BuiltInNumWorkgroups;
case glslang::EbvWorkGroupSize: return spv::BuiltInWorkgroupSize;
case glslang::EbvWorkGroupId: return spv::BuiltInWorkgroupId;
case glslang::EbvLocalInvocationId: return spv::BuiltInLocalInvocationId;
case glslang::EbvLocalInvocationIndex: return spv::BuiltInLocalInvocationIndex;
case glslang::EbvGlobalInvocationId: return spv::BuiltInGlobalInvocationId;
default: return (spv::BuiltIn)spv::BadValue;
}
}
// Translate glslang image layout format to SPIR-V image format.
spv::ImageFormat TranslateImageFormat(const glslang::TType& type)
{
assert(type.getBasicType() == glslang::EbtSampler);
switch (type.getQualifier().layoutFormat) {
case glslang::ElfNone: return spv::ImageFormatUnknown;
case glslang::ElfRgba32f: return spv::ImageFormatRgba32f;
case glslang::ElfRgba16f: return spv::ImageFormatRgba16f;
case glslang::ElfR32f: return spv::ImageFormatR32f;
case glslang::ElfRgba8: return spv::ImageFormatRgba8;
case glslang::ElfRgba8Snorm: return spv::ImageFormatRgba8Snorm;
case glslang::ElfRg32f: return spv::ImageFormatRg32f;
case glslang::ElfRg16f: return spv::ImageFormatRg16f;
case glslang::ElfR11fG11fB10f: return spv::ImageFormatR11fG11fB10f;
case glslang::ElfR16f: return spv::ImageFormatR16f;
case glslang::ElfRgba16: return spv::ImageFormatRgba16;
case glslang::ElfRgb10A2: return spv::ImageFormatRgb10A2;
case glslang::ElfRg16: return spv::ImageFormatRg16;
case glslang::ElfRg8: return spv::ImageFormatRg8;
case glslang::ElfR16: return spv::ImageFormatR16;
case glslang::ElfR8: return spv::ImageFormatR8;
case glslang::ElfRgba16Snorm: return spv::ImageFormatRgba16Snorm;
case glslang::ElfRg16Snorm: return spv::ImageFormatRg16Snorm;
case glslang::ElfRg8Snorm: return spv::ImageFormatRg8Snorm;
case glslang::ElfR16Snorm: return spv::ImageFormatR16Snorm;
case glslang::ElfR8Snorm: return spv::ImageFormatR8Snorm;
case glslang::ElfRgba32i: return spv::ImageFormatRgba32i;
case glslang::ElfRgba16i: return spv::ImageFormatRgba16i;
case glslang::ElfRgba8i: return spv::ImageFormatRgba8i;
case glslang::ElfR32i: return spv::ImageFormatR32i;
case glslang::ElfRg32i: return spv::ImageFormatRg32i;
case glslang::ElfRg16i: return spv::ImageFormatRg16i;
case glslang::ElfRg8i: return spv::ImageFormatRg8i;
case glslang::ElfR16i: return spv::ImageFormatR16i;
case glslang::ElfR8i: return spv::ImageFormatR8i;
case glslang::ElfRgba32ui: return spv::ImageFormatRgba32ui;
case glslang::ElfRgba16ui: return spv::ImageFormatRgba16ui;
case glslang::ElfRgba8ui: return spv::ImageFormatRgba8ui;
case glslang::ElfR32ui: return spv::ImageFormatR32ui;
case glslang::ElfRg32ui: return spv::ImageFormatRg32ui;
case glslang::ElfRg16ui: return spv::ImageFormatRg16ui;
case glslang::ElfRgb10a2ui: return spv::ImageFormatRgb10a2ui;
case glslang::ElfRg8ui: return spv::ImageFormatRg8ui;
case glslang::ElfR16ui: return spv::ImageFormatR16ui;
case glslang::ElfR8ui: return spv::ImageFormatR8ui;
default: return (spv::ImageFormat)spv::BadValue;
}
}
//
// Implement the TGlslangToSpvTraverser class.
//
TGlslangToSpvTraverser::TGlslangToSpvTraverser(const glslang::TIntermediate* glslangIntermediate)
: TIntermTraverser(true, false, true), shaderEntry(0), sequenceDepth(0),
builder(GlslangMagic),
inMain(false), mainTerminated(false), linkageOnly(false),
glslangIntermediate(glslangIntermediate)
{
spv::ExecutionModel executionModel = TranslateExecutionModel(glslangIntermediate->getStage());
builder.clearAccessChain();
builder.setSource(TranslateSourceLanguage(glslangIntermediate->getProfile()), glslangIntermediate->getVersion());
stdBuiltins = builder.import("GLSL.std.450");
builder.setMemoryModel(spv::AddressingModelLogical, spv::MemoryModelGLSL450);
shaderEntry = builder.makeMain();
builder.addEntryPoint(executionModel, shaderEntry, "main");
// Add the source extensions
const auto& sourceExtensions = glslangIntermediate->getRequestedExtensions();
for (auto it = sourceExtensions.begin(); it != sourceExtensions.end(); ++it)
builder.addSourceExtension(it->c_str());
// Add the top-level modes for this shader.
if (glslangIntermediate->getXfbMode())
builder.addExecutionMode(shaderEntry, spv::ExecutionModeXfb);
unsigned int mode;
switch (glslangIntermediate->getStage()) {
case EShLangVertex:
builder.addCapability(spv::CapabilityShader);
break;
case EShLangTessControl:
builder.addCapability(spv::CapabilityTessellation);
builder.addExecutionMode(shaderEntry, spv::ExecutionModeOutputVertices, glslangIntermediate->getVertices());
break;
case EShLangTessEvaluation:
builder.addCapability(spv::CapabilityTessellation);
switch (glslangIntermediate->getInputPrimitive()) {
case glslang::ElgTriangles: mode = spv::ExecutionModeInputTriangles; break;
case glslang::ElgQuads: mode = spv::ExecutionModeInputQuads; break;
case glslang::ElgIsolines: mode = spv::ExecutionModeInputIsolines; break;
default: mode = spv::BadValue; break;
}
if (mode != spv::BadValue)
builder.addExecutionMode(shaderEntry, (spv::ExecutionMode)mode);
// TODO
//builder.addExecutionMode(spv::VertexSpacingMdName, glslangIntermediate->getVertexSpacing());
//builder.addExecutionMode(spv::VertexOrderMdName, glslangIntermediate->getVertexOrder());
//builder.addExecutionMode(spv::PointModeMdName, glslangIntermediate->getPointMode());
break;
case EShLangGeometry:
builder.addCapability(spv::CapabilityGeometry);
switch (glslangIntermediate->getInputPrimitive()) {
case glslang::ElgPoints: mode = spv::ExecutionModeInputPoints; break;
case glslang::ElgLines: mode = spv::ExecutionModeInputLines; break;
case glslang::ElgLinesAdjacency: mode = spv::ExecutionModeInputLinesAdjacency; break;
case glslang::ElgTriangles: mode = spv::ExecutionModeInputTriangles; break;
case glslang::ElgTrianglesAdjacency: mode = spv::ExecutionModeInputTrianglesAdjacency; break;
default: mode = spv::BadValue; break;
}
if (mode != spv::BadValue)
builder.addExecutionMode(shaderEntry, (spv::ExecutionMode)mode);
builder.addExecutionMode(shaderEntry, spv::ExecutionModeInvocations, glslangIntermediate->getInvocations());
switch (glslangIntermediate->getOutputPrimitive()) {
case glslang::ElgPoints: mode = spv::ExecutionModeOutputPoints; break;
case glslang::ElgLineStrip: mode = spv::ExecutionModeOutputLineStrip; break;
case glslang::ElgTriangleStrip: mode = spv::ExecutionModeOutputTriangleStrip; break;
default: mode = spv::BadValue; break;
}
if (mode != spv::BadValue)
builder.addExecutionMode(shaderEntry, (spv::ExecutionMode)mode);
builder.addExecutionMode(shaderEntry, spv::ExecutionModeOutputVertices, glslangIntermediate->getVertices());
break;
case EShLangFragment:
builder.addCapability(spv::CapabilityShader);
if (glslangIntermediate->getPixelCenterInteger())
builder.addExecutionMode(shaderEntry, spv::ExecutionModePixelCenterInteger);
if (glslangIntermediate->getOriginUpperLeft())
builder.addExecutionMode(shaderEntry, spv::ExecutionModeOriginUpperLeft);
else
builder.addExecutionMode(shaderEntry, spv::ExecutionModeOriginLowerLeft);
break;
case EShLangCompute:
builder.addCapability(spv::CapabilityShader);
break;
default:
break;
}
}
TGlslangToSpvTraverser::~TGlslangToSpvTraverser()
{
if (! mainTerminated) {
spv::Block* lastMainBlock = shaderEntry->getLastBlock();
builder.setBuildPoint(lastMainBlock);
builder.leaveFunction(true);
}
}
//
// Implement the traversal functions.
//
// Return true from interior nodes to have the external traversal
// continue on to children. Return false if children were
// already processed.
//
//
// Symbols can turn into
// - uniform/input reads
// - output writes
// - complex lvalue base setups: foo.bar[3].... , where we see foo and start up an access chain
// - something simple that degenerates into the last bullet
//
void TGlslangToSpvTraverser::visitSymbol(glslang::TIntermSymbol* symbol)
{
// getSymbolId() will set up all the IO decorations on the first call.
// Formal function parameters were mapped during makeFunctions().
spv::Id id = getSymbolId(symbol);
if (! linkageOnly) {
// Prepare to generate code for the access
// L-value chains will be computed left to right. We're on the symbol now,
// which is the left-most part of the access chain, so now is "clear" time,
// followed by setting the base.
builder.clearAccessChain();
// For now, we consider all user variables as being in memory, so they are pointers,
// except for "const in" arguments to a function, which are an intermediate object.
// See comments in handleUserFunctionCall().
glslang::TStorageQualifier qualifier = symbol->getQualifier().storage;
if (qualifier == glslang::EvqConstReadOnly && constReadOnlyParameters.find(symbol->getId()) != constReadOnlyParameters.end())
builder.setAccessChainRValue(id);
else
builder.setAccessChainLValue(id);
}
}
bool TGlslangToSpvTraverser::visitBinary(glslang::TVisit /* visit */, glslang::TIntermBinary* node)
{
// First, handle special cases
switch (node->getOp()) {
case glslang::EOpAssign:
case glslang::EOpAddAssign:
case glslang::EOpSubAssign:
case glslang::EOpMulAssign:
case glslang::EOpVectorTimesMatrixAssign:
case glslang::EOpVectorTimesScalarAssign:
case glslang::EOpMatrixTimesScalarAssign:
case glslang::EOpMatrixTimesMatrixAssign:
case glslang::EOpDivAssign:
case glslang::EOpModAssign:
case glslang::EOpAndAssign:
case glslang::EOpInclusiveOrAssign:
case glslang::EOpExclusiveOrAssign:
case glslang::EOpLeftShiftAssign:
case glslang::EOpRightShiftAssign:
// A bin-op assign "a += b" means the same thing as "a = a + b"
// where a is evaluated before b. For a simple assignment, GLSL
// says to evaluate the left before the right. So, always, left
// node then right node.
{
// get the left l-value, save it away
builder.clearAccessChain();
node->getLeft()->traverse(this);
spv::Builder::AccessChain lValue = builder.getAccessChain();
// evaluate the right
builder.clearAccessChain();
node->getRight()->traverse(this);
spv::Id rValue = builder.accessChainLoad(convertGlslangToSpvType(node->getRight()->getType()));
if (node->getOp() != glslang::EOpAssign) {
// the left is also an r-value
builder.setAccessChain(lValue);
spv::Id leftRValue = builder.accessChainLoad(convertGlslangToSpvType(node->getLeft()->getType()));
// do the operation
rValue = createBinaryOperation(node->getOp(), TranslatePrecisionDecoration(node->getType()),
convertGlslangToSpvType(node->getType()), leftRValue, rValue,
node->getType().getBasicType());
// these all need their counterparts in createBinaryOperation()
if (rValue == 0)
spv::MissingFunctionality("createBinaryOperation");
}
// store the result
builder.setAccessChain(lValue);
builder.accessChainStore(rValue);
// assignments are expressions having an rValue after they are evaluated...
builder.clearAccessChain();
builder.setAccessChainRValue(rValue);
}
return false;
case glslang::EOpIndexDirect:
case glslang::EOpIndexDirectStruct:
{
// Get the left part of the access chain.
node->getLeft()->traverse(this);
// Add the next element in the chain
int index = 0;
if (node->getRight()->getAsConstantUnion() == 0)
spv::MissingFunctionality("direct index without a constant node");
else
index = node->getRight()->getAsConstantUnion()->getConstArray()[0].getIConst();
if (node->getLeft()->getBasicType() == glslang::EbtBlock && node->getOp() == glslang::EOpIndexDirectStruct) {
// This may be, e.g., an anonymous block-member selection, which generally need
// index remapping due to hidden members in anonymous blocks.
std::vector<int>& remapper = memberRemapper[node->getLeft()->getType().getStruct()];
if (remapper.size() == 0)
spv::MissingFunctionality("block without member remapping");
else
index = remapper[index];
}
if (! node->getLeft()->getType().isArray() &&
node->getLeft()->getType().isVector() &&
node->getOp() == glslang::EOpIndexDirect) {
// This is essentially a hard-coded vector swizzle of size 1,
// so short circuit the access-chain stuff with a swizzle.
std::vector<unsigned> swizzle;
swizzle.push_back(node->getRight()->getAsConstantUnion()->getConstArray()[0].getIConst());
builder.accessChainPushSwizzle(swizzle, convertGlslangToSpvType(node->getLeft()->getType()));
} else {
// normal case for indexing array or structure or block
builder.accessChainPush(builder.makeIntConstant(index));
}
}
return false;
case glslang::EOpIndexIndirect:
{
// Structure or array or vector indirection.
// Will use native SPIR-V access-chain for struct and array indirection;
// matrices are arrays of vectors, so will also work for a matrix.
// Will use the access chain's 'component' for variable index into a vector.
// This adapter is building access chains left to right.
// Set up the access chain to the left.
node->getLeft()->traverse(this);
// save it so that computing the right side doesn't trash it
spv::Builder::AccessChain partial = builder.getAccessChain();
// compute the next index in the chain
builder.clearAccessChain();
node->getRight()->traverse(this);
spv::Id index = builder.accessChainLoad(convertGlslangToSpvType(node->getRight()->getType()));
// restore the saved access chain
builder.setAccessChain(partial);
if (! node->getLeft()->getType().isArray() && node->getLeft()->getType().isVector())
builder.accessChainPushComponent(index, convertGlslangToSpvType(node->getLeft()->getType()));
else
builder.accessChainPush(index);
}
return false;
case glslang::EOpVectorSwizzle:
{
node->getLeft()->traverse(this);
glslang::TIntermSequence& swizzleSequence = node->getRight()->getAsAggregate()->getSequence();
std::vector<unsigned> swizzle;
for (int i = 0; i < (int)swizzleSequence.size(); ++i)
swizzle.push_back(swizzleSequence[i]->getAsConstantUnion()->getConstArray()[0].getIConst());
builder.accessChainPushSwizzle(swizzle, convertGlslangToSpvType(node->getLeft()->getType()));
}
return false;
default:
break;
}
// Assume generic binary op...
// Get the operands
builder.clearAccessChain();
node->getLeft()->traverse(this);
spv::Id left = builder.accessChainLoad(convertGlslangToSpvType(node->getLeft()->getType()));
builder.clearAccessChain();
node->getRight()->traverse(this);
spv::Id right = builder.accessChainLoad(convertGlslangToSpvType(node->getRight()->getType()));
spv::Id result;
spv::Decoration precision = TranslatePrecisionDecoration(node->getType());
result = createBinaryOperation(node->getOp(), precision,
convertGlslangToSpvType(node->getType()), left, right,
node->getLeft()->getType().getBasicType());
if (! result) {
spv::MissingFunctionality("glslang binary operation");
} else {
builder.clearAccessChain();
builder.setAccessChainRValue(result);
return false;
}
return true;
}
bool TGlslangToSpvTraverser::visitUnary(glslang::TVisit /* visit */, glslang::TIntermUnary* node)
{
spv::Id result = spv::NoResult;
// try texturing first
result = createImageTextureFunctionCall(node);
if (result != spv::NoResult) {
builder.clearAccessChain();
builder.setAccessChainRValue(result);
return false; // done with this node
}
// Non-texturing.
if (node->getOp() == glslang::EOpArrayLength) {
// Quite special; won't want to evaluate the operand.
// Normal .length() would have been constant folded by the front-end.
// So, this has to be block.lastMember.length().
// SPV wants "block" as the operand, go get it.
assert(node->getOperand()->getType().isRuntimeSizedArray());
glslang::TIntermTyped* block = node->getOperand()->getAsBinaryNode()->getLeft();
block->traverse(this);
spv::Id length = builder.createUnaryOp(spv::OpArrayLength, builder.makeIntType(32), builder.accessChainGetLValue());
builder.clearAccessChain();
builder.setAccessChainRValue(length);
return false;
}
// Start by evaluating the operand
builder.clearAccessChain();
node->getOperand()->traverse(this);
spv::Id operand = spv::NoResult;
if (node->getOp() == glslang::EOpAtomicCounterIncrement ||
node->getOp() == glslang::EOpAtomicCounterDecrement ||
node->getOp() == glslang::EOpAtomicCounter)
operand = builder.accessChainGetLValue(); // Special case l-value operands
else
operand = builder.accessChainLoad(convertGlslangToSpvType(node->getOperand()->getType()));
spv::Decoration precision = TranslatePrecisionDecoration(node->getType());
// it could be a conversion
if (! result)
result = createConversion(node->getOp(), precision, convertGlslangToSpvType(node->getType()), operand);
// if not, then possibly an operation
if (! result)
result = createUnaryOperation(node->getOp(), precision, convertGlslangToSpvType(node->getType()), operand, node->getBasicType());
if (result) {
builder.clearAccessChain();
builder.setAccessChainRValue(result);
return false; // done with this node
}
// it must be a special case, check...
switch (node->getOp()) {
case glslang::EOpPostIncrement:
case glslang::EOpPostDecrement:
case glslang::EOpPreIncrement:
case glslang::EOpPreDecrement:
{
// we need the integer value "1" or the floating point "1.0" to add/subtract
spv::Id one = node->getBasicType() == glslang::EbtFloat ?
builder.makeFloatConstant(1.0F) :
builder.makeIntConstant(1);
glslang::TOperator op;
if (node->getOp() == glslang::EOpPreIncrement ||
node->getOp() == glslang::EOpPostIncrement)
op = glslang::EOpAdd;
else
op = glslang::EOpSub;
spv::Id result = createBinaryOperation(op, TranslatePrecisionDecoration(node->getType()),
convertGlslangToSpvType(node->getType()), operand, one,
node->getType().getBasicType());
if (result == 0)
spv::MissingFunctionality("createBinaryOperation for unary");
// The result of operation is always stored, but conditionally the
// consumed result. The consumed result is always an r-value.
builder.accessChainStore(result);
builder.clearAccessChain();
if (node->getOp() == glslang::EOpPreIncrement ||
node->getOp() == glslang::EOpPreDecrement)
builder.setAccessChainRValue(result);
else
builder.setAccessChainRValue(operand);
}
return false;
case glslang::EOpEmitStreamVertex:
builder.createNoResultOp(spv::OpEmitStreamVertex, operand);
return false;
case glslang::EOpEndStreamPrimitive:
builder.createNoResultOp(spv::OpEndStreamPrimitive, operand);
return false;
default:
spv::MissingFunctionality("glslang unary");
break;
}
return true;
}
bool TGlslangToSpvTraverser::visitAggregate(glslang::TVisit visit, glslang::TIntermAggregate* node)
{
spv::Id result = spv::NoResult;
// try texturing
result = createImageTextureFunctionCall(node);
if (result != spv::NoResult) {
builder.clearAccessChain();
builder.setAccessChainRValue(result);
return false;
}
else if (node->getOp() == glslang::EOpImageStore)
{
// "imageStore" is a special case, which has no result
return false;
}
glslang::TOperator binOp = glslang::EOpNull;
bool reduceComparison = true;
bool isMatrix = false;
bool noReturnValue = false;
bool atomic = false;
assert(node->getOp());
spv::Decoration precision = TranslatePrecisionDecoration(node->getType());
switch (node->getOp()) {
case glslang::EOpSequence:
{
if (preVisit)
++sequenceDepth;
else
--sequenceDepth;
if (sequenceDepth == 1) {
// If this is the parent node of all the functions, we want to see them
// early, so all call points have actual SPIR-V functions to reference.
// In all cases, still let the traverser visit the children for us.
makeFunctions(node->getAsAggregate()->getSequence());
// Also, we want all globals initializers to go into the entry of main(), before
// anything else gets there, so visit out of order, doing them all now.
makeGlobalInitializers(node->getAsAggregate()->getSequence());
// Initializers are done, don't want to visit again, but functions link objects need to be processed,
// so do them manually.
visitFunctions(node->getAsAggregate()->getSequence());
return false;
}
return true;
}
case glslang::EOpLinkerObjects:
{
if (visit == glslang::EvPreVisit)
linkageOnly = true;
else
linkageOnly = false;
return true;
}
case glslang::EOpComma:
{
// processing from left to right naturally leaves the right-most
// lying around in the access chain
glslang::TIntermSequence& glslangOperands = node->getSequence();
for (int i = 0; i < (int)glslangOperands.size(); ++i)
glslangOperands[i]->traverse(this);
return false;
}
case glslang::EOpFunction:
if (visit == glslang::EvPreVisit) {
if (isShaderEntrypoint(node)) {
inMain = true;
builder.setBuildPoint(shaderEntry->getLastBlock());
} else {
handleFunctionEntry(node);
}
} else {
if (inMain)
mainTerminated = true;
builder.leaveFunction(inMain);
inMain = false;
}
return true;
case glslang::EOpParameters:
// Parameters will have been consumed by EOpFunction processing, but not
// the body, so we still visited the function node's children, making this
// child redundant.
return false;
case glslang::EOpFunctionCall:
{
if (node->isUserDefined())
result = handleUserFunctionCall(node);
if (! result) {
spv::MissingFunctionality("glslang function call");
glslang::TConstUnionArray emptyConsts;
int nextConst = 0;
result = createSpvConstant(node->getType(), emptyConsts, nextConst);
}
builder.clearAccessChain();
builder.setAccessChainRValue(result);
return false;
}
case glslang::EOpConstructMat2x2:
case glslang::EOpConstructMat2x3:
case glslang::EOpConstructMat2x4:
case glslang::EOpConstructMat3x2:
case glslang::EOpConstructMat3x3:
case glslang::EOpConstructMat3x4:
case glslang::EOpConstructMat4x2:
case glslang::EOpConstructMat4x3:
case glslang::EOpConstructMat4x4:
case glslang::EOpConstructDMat2x2:
case glslang::EOpConstructDMat2x3:
case glslang::EOpConstructDMat2x4:
case glslang::EOpConstructDMat3x2:
case glslang::EOpConstructDMat3x3:
case glslang::EOpConstructDMat3x4:
case glslang::EOpConstructDMat4x2:
case glslang::EOpConstructDMat4x3:
case glslang::EOpConstructDMat4x4:
isMatrix = true;
// fall through
case glslang::EOpConstructFloat:
case glslang::EOpConstructVec2:
case glslang::EOpConstructVec3:
case glslang::EOpConstructVec4:
case glslang::EOpConstructDouble:
case glslang::EOpConstructDVec2:
case glslang::EOpConstructDVec3:
case glslang::EOpConstructDVec4:
case glslang::EOpConstructBool:
case glslang::EOpConstructBVec2:
case glslang::EOpConstructBVec3:
case glslang::EOpConstructBVec4:
case glslang::EOpConstructInt:
case glslang::EOpConstructIVec2:
case glslang::EOpConstructIVec3:
case glslang::EOpConstructIVec4:
case glslang::EOpConstructUint:
case glslang::EOpConstructUVec2:
case glslang::EOpConstructUVec3:
case glslang::EOpConstructUVec4:
case glslang::EOpConstructStruct:
{
std::vector<spv::Id> arguments;
translateArguments(*node, arguments);
spv::Id resultTypeId = convertGlslangToSpvType(node->getType());
spv::Id constructed;
if (node->getOp() == glslang::EOpConstructStruct || node->getType().isArray()) {
std::vector<spv::Id> constituents;
for (int c = 0; c < (int)arguments.size(); ++c)
constituents.push_back(arguments[c]);
constructed = builder.createCompositeConstruct(resultTypeId, constituents);
} else {
if (isMatrix)
constructed = builder.createMatrixConstructor(precision, arguments, resultTypeId);
else
constructed = builder.createConstructor(precision, arguments, resultTypeId);
}
builder.clearAccessChain();
builder.setAccessChainRValue(constructed);
return false;
}
// These six are component-wise compares with component-wise results.
// Forward on to createBinaryOperation(), requesting a vector result.
case glslang::EOpLessThan:
case glslang::EOpGreaterThan:
case glslang::EOpLessThanEqual:
case glslang::EOpGreaterThanEqual:
case glslang::EOpVectorEqual:
case glslang::EOpVectorNotEqual:
{
// Map the operation to a binary
binOp = node->getOp();
reduceComparison = false;
switch (node->getOp()) {
case glslang::EOpVectorEqual: binOp = glslang::EOpVectorEqual; break;
case glslang::EOpVectorNotEqual: binOp = glslang::EOpVectorNotEqual; break;
default: binOp = node->getOp(); break;
}
break;
}
case glslang::EOpMul:
// compontent-wise matrix multiply
binOp = glslang::EOpMul;
break;
case glslang::EOpOuterProduct:
// two vectors multiplied to make a matrix
binOp = glslang::EOpOuterProduct;
break;
case glslang::EOpDot:
{
// for scalar dot product, use multiply
glslang::TIntermSequence& glslangOperands = node->getSequence();
if (! glslangOperands[0]->getAsTyped()->isVector())
binOp = glslang::EOpMul;
break;
}
case glslang::EOpMod:
// when an aggregate, this is the floating-point mod built-in function,
// which can be emitted by the one in createBinaryOperation()
binOp = glslang::EOpMod;
break;
case glslang::EOpEmitVertex:
case glslang::EOpEndPrimitive:
case glslang::EOpBarrier:
case glslang::EOpMemoryBarrier:
case glslang::EOpMemoryBarrierAtomicCounter:
case glslang::EOpMemoryBarrierBuffer:
case glslang::EOpMemoryBarrierImage:
case glslang::EOpMemoryBarrierShared:
case glslang::EOpGroupMemoryBarrier:
noReturnValue = true;
// These all have 0 operands and will naturally finish up in the code below for 0 operands
break;
case glslang::EOpAtomicAdd:
case glslang::EOpAtomicMin:
case glslang::EOpAtomicMax:
case glslang::EOpAtomicAnd:
case glslang::EOpAtomicOr:
case glslang::EOpAtomicXor:
case glslang::EOpAtomicExchange:
case glslang::EOpAtomicCompSwap:
atomic = true;
break;
case glslang::EOpAddCarry:
case glslang::EOpSubBorrow:
case glslang::EOpUMulExtended:
case glslang::EOpIMulExtended:
case glslang::EOpBitfieldExtract:
case glslang::EOpBitfieldInsert:
spv::MissingFunctionality("integer aggregate");
break;
case glslang::EOpFma:
case glslang::EOpFrexp:
case glslang::EOpLdexp:
spv::MissingFunctionality("fma/frexp/ldexp aggregate");
break;
default:
break;
}
//
// See if it maps to a regular operation.
//
if (binOp != glslang::EOpNull) {
glslang::TIntermTyped* left = node->getSequence()[0]->getAsTyped();
glslang::TIntermTyped* right = node->getSequence()[1]->getAsTyped();
assert(left && right);
builder.clearAccessChain();
left->traverse(this);
spv::Id leftId = builder.accessChainLoad(convertGlslangToSpvType(left->getType()));
builder.clearAccessChain();
right->traverse(this);
spv::Id rightId = builder.accessChainLoad(convertGlslangToSpvType(right->getType()));
result = createBinaryOperation(binOp, precision,
convertGlslangToSpvType(node->getType()), leftId, rightId,
left->getType().getBasicType(), reduceComparison);
// code above should only make binOp that exists in createBinaryOperation
if (result == 0)
spv::MissingFunctionality("createBinaryOperation for aggregate");
builder.clearAccessChain();
builder.setAccessChainRValue(result);
return false;
}
//
// Create the list of operands.
//
glslang::TIntermSequence& glslangOperands = node->getSequence();
std::vector<spv::Id> operands;
for (int arg = 0; arg < (int)glslangOperands.size(); ++arg) {
builder.clearAccessChain();
glslangOperands[arg]->traverse(this);
// special case l-value operands; there are just a few
bool lvalue = false;
switch (node->getOp()) {
//case glslang::EOpFrexp:
case glslang::EOpModf:
if (arg == 1)
lvalue = true;
break;
case glslang::EOpAtomicAdd:
case glslang::EOpAtomicMin:
case glslang::EOpAtomicMax:
case glslang::EOpAtomicAnd:
case glslang::EOpAtomicOr:
case glslang::EOpAtomicXor:
case glslang::EOpAtomicExchange:
case glslang::EOpAtomicCompSwap:
if (arg == 0)
lvalue = true;
break;
//case glslang::EOpUAddCarry:
//case glslang::EOpUSubBorrow:
//case glslang::EOpUMulExtended:
default:
break;
}
if (lvalue)
operands.push_back(builder.accessChainGetLValue());
else
operands.push_back(builder.accessChainLoad(convertGlslangToSpvType(glslangOperands[arg]->getAsTyped()->getType())));
}
if (atomic) {
// Handle all atomics
result = createAtomicOperation(node->getOp(), precision, convertGlslangToSpvType(node->getType()), operands, node->getBasicType());
} else {
// Pass through to generic operations.
switch (glslangOperands.size()) {
case 0:
result = createNoArgOperation(node->getOp());
break;
case 1:
result = createUnaryOperation(node->getOp(), precision, convertGlslangToSpvType(node->getType()), operands.front(), node->getType().getBasicType());
break;
default:
result = createMiscOperation(node->getOp(), precision, convertGlslangToSpvType(node->getType()), operands, node->getBasicType());
break;
}
}
if (noReturnValue)
return false;
if (! result) {
spv::MissingFunctionality("glslang aggregate");
return true;
} else {
builder.clearAccessChain();
builder.setAccessChainRValue(result);
return false;
}
}
bool TGlslangToSpvTraverser::visitSelection(glslang::TVisit /* visit */, glslang::TIntermSelection* node)
{
// This path handles both if-then-else and ?:
// The if-then-else has a node type of void, while
// ?: has a non-void node type
spv::Id result = 0;
if (node->getBasicType() != glslang::EbtVoid) {
// don't handle this as just on-the-fly temporaries, because there will be two names
// and better to leave SSA to later passes
result = builder.createVariable(spv::StorageClassFunction, convertGlslangToSpvType(node->getType()));
}
// emit the condition before doing anything with selection
node->getCondition()->traverse(this);
// make an "if" based on the value created by the condition
spv::Builder::If ifBuilder(builder.accessChainLoad(convertGlslangToSpvType(node->getCondition()->getType())), builder);
if (node->getTrueBlock()) {
// emit the "then" statement
node->getTrueBlock()->traverse(this);
if (result)
builder.createStore(builder.accessChainLoad(convertGlslangToSpvType(node->getTrueBlock()->getAsTyped()->getType())), result);
}
if (node->getFalseBlock()) {
ifBuilder.makeBeginElse();
// emit the "else" statement
node->getFalseBlock()->traverse(this);
if (result)
builder.createStore(builder.accessChainLoad(convertGlslangToSpvType(node->getFalseBlock()->getAsTyped()->getType())), result);
}
ifBuilder.makeEndIf();
if (result) {
// GLSL only has r-values as the result of a :?, but
// if we have an l-value, that can be more efficient if it will
// become the base of a complex r-value expression, because the
// next layer copies r-values into memory to use the access-chain mechanism
builder.clearAccessChain();
builder.setAccessChainLValue(result);
}
return false;
}
bool TGlslangToSpvTraverser::visitSwitch(glslang::TVisit /* visit */, glslang::TIntermSwitch* node)
{
// emit and get the condition before doing anything with switch
node->getCondition()->traverse(this);
spv::Id selector = builder.accessChainLoad(convertGlslangToSpvType(node->getCondition()->getAsTyped()->getType()));
// browse the children to sort out code segments
int defaultSegment = -1;
std::vector<TIntermNode*> codeSegments;
glslang::TIntermSequence& sequence = node->getBody()->getSequence();
std::vector<int> caseValues;
std::vector<int> valueIndexToSegment(sequence.size()); // note: probably not all are used, it is an overestimate
for (glslang::TIntermSequence::iterator c = sequence.begin(); c != sequence.end(); ++c) {
TIntermNode* child = *c;
if (child->getAsBranchNode() && child->getAsBranchNode()->getFlowOp() == glslang::EOpDefault)
defaultSegment = (int)codeSegments.size();
else if (child->getAsBranchNode() && child->getAsBranchNode()->getFlowOp() == glslang::EOpCase) {
valueIndexToSegment[caseValues.size()] = (int)codeSegments.size();
caseValues.push_back(child->getAsBranchNode()->getExpression()->getAsConstantUnion()->getConstArray()[0].getIConst());
} else
codeSegments.push_back(child);
}
// handle the case where the last code segment is missing, due to no code
// statements between the last case and the end of the switch statement
if ((caseValues.size() && (int)codeSegments.size() == valueIndexToSegment[caseValues.size() - 1]) ||
(int)codeSegments.size() == defaultSegment)
codeSegments.push_back(nullptr);
// make the switch statement
std::vector<spv::Block*> segmentBlocks; // returned, as the blocks allocated in the call
builder.makeSwitch(selector, (int)codeSegments.size(), caseValues, valueIndexToSegment, defaultSegment, segmentBlocks);
// emit all the code in the segments
breakForLoop.push(false);
for (unsigned int s = 0; s < codeSegments.size(); ++s) {
builder.nextSwitchSegment(segmentBlocks, s);
if (codeSegments[s])
codeSegments[s]->traverse(this);
else
builder.addSwitchBreak();
}
breakForLoop.pop();
builder.endSwitch(segmentBlocks);
return false;
}
void TGlslangToSpvTraverser::visitConstantUnion(glslang::TIntermConstantUnion* node)
{
int nextConst = 0;
spv::Id constant = createSpvConstant(node->getType(), node->getConstArray(), nextConst);
builder.clearAccessChain();
builder.setAccessChainRValue(constant);
}
bool TGlslangToSpvTraverser::visitLoop(glslang::TVisit /* visit */, glslang::TIntermLoop* node)
{
// body emission needs to know what the for-loop terminal is when it sees a "continue"
loopTerminal.push(node->getTerminal());
builder.makeNewLoop(node->testFirst());
if (node->getTest()) {
node->getTest()->traverse(this);
// the AST only contained the test computation, not the branch, we have to add it
spv::Id condition = builder.accessChainLoad(convertGlslangToSpvType(node->getTest()->getType()));
builder.createLoopTestBranch(condition);
} else {
builder.createBranchToBody();
}
if (node->getBody()) {
breakForLoop.push(true);
node->getBody()->traverse(this);
breakForLoop.pop();
}
if (loopTerminal.top())
loopTerminal.top()->traverse(this);
builder.closeLoop();
loopTerminal.pop();
return false;
}
bool TGlslangToSpvTraverser::visitBranch(glslang::TVisit /* visit */, glslang::TIntermBranch* node)
{
if (node->getExpression())
node->getExpression()->traverse(this);
switch (node->getFlowOp()) {
case glslang::EOpKill:
builder.makeDiscard();
break;
case glslang::EOpBreak:
if (breakForLoop.top())
builder.createLoopExit();
else
builder.addSwitchBreak();
break;
case glslang::EOpContinue:
if (loopTerminal.top())
loopTerminal.top()->traverse(this);
builder.createLoopContinue();
break;
case glslang::EOpReturn:
if (inMain)
builder.makeMainReturn();
else if (node->getExpression())
builder.makeReturn(false, builder.accessChainLoad(convertGlslangToSpvType(node->getExpression()->getType())));
else
builder.makeReturn();
builder.clearAccessChain();
break;
default:
spv::MissingFunctionality("branch type");
break;
}
return false;
}
spv::Id TGlslangToSpvTraverser::createSpvVariable(const glslang::TIntermSymbol* node)
{
// First, steer off constants, which are not SPIR-V variables, but
// can still have a mapping to a SPIR-V Id.
if (node->getQualifier().storage == glslang::EvqConst) {
int nextConst = 0;
return createSpvConstant(node->getType(), node->getConstArray(), nextConst);
}
// Now, handle actual variables
spv::StorageClass storageClass = TranslateStorageClass(node->getType());
spv::Id spvType = convertGlslangToSpvType(node->getType());
const char* name = node->getName().c_str();
if (glslang::IsAnonymous(name))
name = "";
return builder.createVariable(storageClass, spvType, name);
}
// Return type Id of the sampled type.
spv::Id TGlslangToSpvTraverser::getSampledType(const glslang::TSampler& sampler)
{
switch (sampler.type) {
case glslang::EbtFloat: return builder.makeFloatType(32);
case glslang::EbtInt: return builder.makeIntType(32);
case glslang::EbtUint: return builder.makeUintType(32);
default:
spv::MissingFunctionality("sampled type");
return builder.makeFloatType(32);
}
}
// Convert from a glslang type to an SPV type, by calling into
// recursive version of this function.
spv::Id TGlslangToSpvTraverser::convertGlslangToSpvType(const glslang::TType& type)
{
return convertGlslangToSpvType(type, requiresExplicitLayout(type));
}
// Do full recursive conversion of an arbitrary glslang type to a SPIR-V Id.
// explicitLayout can be kept the same throughout the heirarchical recursive walk.
spv::Id TGlslangToSpvTraverser::convertGlslangToSpvType(const glslang::TType& type, bool explicitLayout)
{
spv::Id spvType = 0;
switch (type.getBasicType()) {
case glslang::EbtVoid:
spvType = builder.makeVoidType();
if (type.isArray())
spv::MissingFunctionality("array of void");
break;
case glslang::EbtFloat:
spvType = builder.makeFloatType(32);
break;
case glslang::EbtDouble:
spvType = builder.makeFloatType(64);
break;
case glslang::EbtBool:
spvType = builder.makeBoolType();
break;
case glslang::EbtInt:
spvType = builder.makeIntType(32);
break;
case glslang::EbtUint:
spvType = builder.makeUintType(32);
break;
case glslang::EbtAtomicUint:
spv::TbdFunctionality("Is atomic_uint an opaque handle in the uniform storage class, or an addresses in the atomic storage class?");
spvType = builder.makeUintType(32);
break;
case glslang::EbtSampler:
{
const glslang::TSampler& sampler = type.getSampler();
spvType = builder.makeImageType(getSampledType(sampler), TranslateDimensionality(sampler), sampler.shadow, sampler.arrayed, sampler.ms,
sampler.image ? 2 : 1, TranslateImageFormat(type));
// OpenGL "textures" need to be combined with a sampler
if (! sampler.image)
spvType = builder.makeSampledImageType(spvType);
}
break;
case glslang::EbtStruct:
case glslang::EbtBlock:
{
// If we've seen this struct type, return it
const glslang::TTypeList* glslangStruct = type.getStruct();
std::vector<spv::Id> structFields;
spvType = structMap[glslangStruct];
if (spvType)
break;
// else, we haven't seen it...
// Create a vector of struct types for SPIR-V to consume
int memberDelta = 0; // how much the member's index changes from glslang to SPIR-V, normally 0, except sometimes for blocks
if (type.getBasicType() == glslang::EbtBlock)
memberRemapper[glslangStruct].resize(glslangStruct->size());
for (int i = 0; i < (int)glslangStruct->size(); i++) {
glslang::TType& glslangType = *(*glslangStruct)[i].type;
if (glslangType.hiddenMember()) {
++memberDelta;
if (type.getBasicType() == glslang::EbtBlock)
memberRemapper[glslangStruct][i] = -1;
} else {
if (type.getBasicType() == glslang::EbtBlock)
memberRemapper[glslangStruct][i] = i - memberDelta;
structFields.push_back(convertGlslangToSpvType(glslangType, explicitLayout));
}
}
// Make the SPIR-V type
spvType = builder.makeStructType(structFields, type.getTypeName().c_str());
structMap[glslangStruct] = spvType;
// Name and decorate the non-hidden members
int offset = -1;
for (int i = 0; i < (int)glslangStruct->size(); i++) {
glslang::TType& glslangType = *(*glslangStruct)[i].type;
int member = i;
if (type.getBasicType() == glslang::EbtBlock)
member = memberRemapper[glslangStruct][i];
// using -1 above to indicate a hidden member
if (member >= 0) {
builder.addMemberName(spvType, member, glslangType.getFieldName().c_str());
addMemberDecoration(spvType, member, TranslateLayoutDecoration(glslangType));
addMemberDecoration(spvType, member, TranslatePrecisionDecoration(glslangType));
addMemberDecoration(spvType, member, TranslateInterpolationDecoration(glslangType));
addMemberDecoration(spvType, member, TranslateInvariantDecoration(glslangType));
if (glslangType.getQualifier().hasLocation())
builder.addMemberDecoration(spvType, member, spv::DecorationLocation, glslangType.getQualifier().layoutLocation);
if (glslangType.getQualifier().hasComponent())
builder.addMemberDecoration(spvType, member, spv::DecorationComponent, glslangType.getQualifier().layoutComponent);
if (glslangType.getQualifier().hasXfbOffset())
builder.addMemberDecoration(spvType, member, spv::DecorationOffset, glslangType.getQualifier().layoutXfbOffset);
else if (explicitLayout) {
// figure out what to do with offset, which is accumulating
int nextOffset;
updateMemberOffset(type, glslangType, offset, nextOffset);
if (offset >= 0)
builder.addMemberDecoration(spvType, member, spv::DecorationOffset, offset);
offset = nextOffset;
}
if (glslangType.isMatrix() && explicitLayout) {
builder.addMemberDecoration(spvType, member, spv::DecorationMatrixStride, getMatrixStride(glslangType));
}
// built-in variable decorations
spv::BuiltIn builtIn = TranslateBuiltInDecoration(glslangType.getQualifier().builtIn);
if (builtIn != spv::BadValue)
builder.addMemberDecoration(spvType, member, spv::DecorationBuiltIn, (int)builtIn);
}
}
// Decorate the structure
addDecoration(spvType, TranslateLayoutDecoration(type));
addDecoration(spvType, TranslateBlockDecoration(type));
if (type.getQualifier().hasStream())
builder.addDecoration(spvType, spv::DecorationStream, type.getQualifier().layoutStream);
if (glslangIntermediate->getXfbMode()) {
if (type.getQualifier().hasXfbStride())
builder.addDecoration(spvType, spv::DecorationXfbStride, type.getQualifier().layoutXfbStride);
if (type.getQualifier().hasXfbBuffer())
builder.addDecoration(spvType, spv::DecorationXfbBuffer, type.getQualifier().layoutXfbBuffer);
}
}
break;
default:
spv::MissingFunctionality("basic type");
break;
}
if (type.isMatrix())
spvType = builder.makeMatrixType(spvType, type.getMatrixCols(), type.getMatrixRows());
else {
// If this variable has a vector element count greater than 1, create a SPIR-V vector
if (type.getVectorSize() > 1)
spvType = builder.makeVectorType(spvType, type.getVectorSize());
}
if (type.isArray()) {
// Do all but the outer dimension
for (int dim = type.getArraySizes()->getNumDims() - 1; dim > 0; --dim) {
assert(type.getArraySizes()->getDimSize(dim) > 0);
spvType = builder.makeArrayType(spvType, type.getArraySizes()->getDimSize(dim));
}
// Do the outer dimension, which might not be known for a runtime-sized array
if (type.isRuntimeSizedArray()) {
spvType = builder.makeRuntimeArray(spvType);
} else {
assert(type.getOuterArraySize() > 0);
spvType = builder.makeArrayType(spvType, type.getOuterArraySize());
}
// TODO: layout still needs to be done hierarchically for arrays of arrays, which
// may still require additional "link time" support from the front-end
// for arrays of arrays
if (explicitLayout)
builder.addDecoration(spvType, spv::DecorationArrayStride, getArrayStride(type));
}
return spvType;
}
bool TGlslangToSpvTraverser::requiresExplicitLayout(const glslang::TType& type) const
{
return type.getBasicType() == glslang::EbtBlock &&
type.getQualifier().layoutPacking != glslang::ElpShared &&
type.getQualifier().layoutPacking != glslang::ElpPacked &&
(type.getQualifier().storage == glslang::EvqUniform ||
type.getQualifier().storage == glslang::EvqBuffer);
}
// Given an array type, returns the integer stride required for that array
int TGlslangToSpvTraverser::getArrayStride(const glslang::TType& arrayType)
{
glslang::TType derefType(arrayType, 0);
int size;
glslangIntermediate->getBaseAlignment(derefType, size, true);
return size;
}
// Given a matrix type, returns the integer stride required for that matrix
// when used as a member of an interface block
int TGlslangToSpvTraverser::getMatrixStride(const glslang::TType& matrixType)
{
int size;
return glslangIntermediate->getBaseAlignment(matrixType, size, true);
}
// Given a member type of a struct, realign the current offset for it, and compute
// the next (not yet aligned) offset for the next member, which will get aligned
// on the next call.
// 'currentOffset' should be passed in already initialized, ready to modify, and reflecting
// the migration of data from nextOffset -> currentOffset. It should be -1 on the first call.
// -1 means a non-forced member offset (no decoration needed).
void TGlslangToSpvTraverser::updateMemberOffset(const glslang::TType& structType, const glslang::TType& memberType, int& currentOffset, int& nextOffset)
{
// this will get a positive value when deemed necessary
nextOffset = -1;
bool forceOffset = structType.getQualifier().layoutPacking == glslang::ElpStd140 ||
structType.getQualifier().layoutPacking == glslang::ElpStd430;
// override anything in currentOffset with user-set offset
if (memberType.getQualifier().hasOffset())
currentOffset = memberType.getQualifier().layoutOffset;
// It could be that current linker usage in glslang updated all the layoutOffset,
// in which case the following code does not matter. But, that's not quite right
// once cross-compilation unit GLSL validation is done, as the original user
// settings are needed in layoutOffset, and then the following will come into play.
if (! forceOffset) {
if (! memberType.getQualifier().hasOffset())
currentOffset = -1;
return;
}
// Getting this far means we are forcing offsets
if (currentOffset < 0)
currentOffset = 0;
// Now, currentOffset is valid (either 0, or from a previous nextOffset),
// but possibly not yet correctly aligned.
int memberSize;
int memberAlignment = glslangIntermediate->getBaseAlignment(memberType, memberSize, memberType.getQualifier().layoutPacking == glslang::ElpStd140);
glslang::RoundToPow2(currentOffset, memberAlignment);
nextOffset = currentOffset + memberSize;
}
bool TGlslangToSpvTraverser::isShaderEntrypoint(const glslang::TIntermAggregate* node)
{
return node->getName() == "main(";
}
// Make all the functions, skeletally, without actually visiting their bodies.
void TGlslangToSpvTraverser::makeFunctions(const glslang::TIntermSequence& glslFunctions)
{
for (int f = 0; f < (int)glslFunctions.size(); ++f) {
glslang::TIntermAggregate* glslFunction = glslFunctions[f]->getAsAggregate();
if (! glslFunction || glslFunction->getOp() != glslang::EOpFunction || isShaderEntrypoint(glslFunction))
continue;
// We're on a user function. Set up the basic interface for the function now,
// so that it's available to call.
// Translating the body will happen later.
//
// Typically (except for a "const in" parameter), an address will be passed to the
// function. What it is an address of varies:
//
// - "in" parameters not marked as "const" can be written to without modifying the argument,
// so that write needs to be to a copy, hence the address of a copy works.
//
// - "const in" parameters can just be the r-value, as no writes need occur.
//
// - "out" and "inout" arguments can't be done as direct pointers, because GLSL has
// copy-in/copy-out semantics. They can be handled though with a pointer to a copy.
std::vector<spv::Id> paramTypes;
glslang::TIntermSequence& parameters = glslFunction->getSequence()[0]->getAsAggregate()->getSequence();
for (int p = 0; p < (int)parameters.size(); ++p) {
const glslang::TType& paramType = parameters[p]->getAsTyped()->getType();
spv::Id typeId = convertGlslangToSpvType(paramType);
if (paramType.getQualifier().storage != glslang::EvqConstReadOnly)
typeId = builder.makePointer(spv::StorageClassFunction, typeId);
else
constReadOnlyParameters.insert(parameters[p]->getAsSymbolNode()->getId());
paramTypes.push_back(typeId);
}
spv::Block* functionBlock;
spv::Function *function = builder.makeFunctionEntry(convertGlslangToSpvType(glslFunction->getType()), glslFunction->getName().c_str(),
paramTypes, &functionBlock);
// Track function to emit/call later
functionMap[glslFunction->getName().c_str()] = function;
// Set the parameter id's
for (int p = 0; p < (int)parameters.size(); ++p) {
symbolValues[parameters[p]->getAsSymbolNode()->getId()] = function->getParamId(p);
// give a name too
builder.addName(function->getParamId(p), parameters[p]->getAsSymbolNode()->getName().c_str());
}
}
}
// Process all the initializers, while skipping the functions and link objects
void TGlslangToSpvTraverser::makeGlobalInitializers(const glslang::TIntermSequence& initializers)
{
builder.setBuildPoint(shaderEntry->getLastBlock());
for (int i = 0; i < (int)initializers.size(); ++i) {
glslang::TIntermAggregate* initializer = initializers[i]->getAsAggregate();
if (initializer && initializer->getOp() != glslang::EOpFunction && initializer->getOp() != glslang::EOpLinkerObjects) {
// We're on a top-level node that's not a function. Treat as an initializer, whose
// code goes into the beginning of main.
initializer->traverse(this);
}
}
}
// Process all the functions, while skipping initializers.
void TGlslangToSpvTraverser::visitFunctions(const glslang::TIntermSequence& glslFunctions)
{
for (int f = 0; f < (int)glslFunctions.size(); ++f) {
glslang::TIntermAggregate* node = glslFunctions[f]->getAsAggregate();
if (node && (node->getOp() == glslang::EOpFunction || node->getOp() == glslang ::EOpLinkerObjects))
node->traverse(this);
}
}
void TGlslangToSpvTraverser::handleFunctionEntry(const glslang::TIntermAggregate* node)
{
// SPIR-V functions should already be in the functionMap from the prepass
// that called makeFunctions().
spv::Function* function = functionMap[node->getName().c_str()];
spv::Block* functionBlock = function->getEntryBlock();
builder.setBuildPoint(functionBlock);
}
void TGlslangToSpvTraverser::translateArguments(const glslang::TIntermAggregate& node, std::vector<spv::Id>& arguments)
{
const glslang::TIntermSequence& glslangArguments = node.getSequence();
for (int i = 0; i < (int)glslangArguments.size(); ++i) {
builder.clearAccessChain();
glslangArguments[i]->traverse(this);
// Special case l-value operands
bool lvalue = false;
switch (node.getOp()) {
case glslang::EOpImageAtomicAdd:
case glslang::EOpImageAtomicMin:
case glslang::EOpImageAtomicMax:
case glslang::EOpImageAtomicAnd:
case glslang::EOpImageAtomicOr:
case glslang::EOpImageAtomicXor:
case glslang::EOpImageAtomicExchange:
case glslang::EOpImageAtomicCompSwap:
if (i == 0)
lvalue = true;
break;
default:
break;
}
if (lvalue) {
arguments.push_back(builder.accessChainGetLValue());
} else {
arguments.push_back(builder.accessChainLoad(convertGlslangToSpvType(glslangArguments[i]->getAsTyped()->getType())));
}
}
}
void TGlslangToSpvTraverser::translateArguments(glslang::TIntermUnary& node, std::vector<spv::Id>& arguments)
{
builder.clearAccessChain();
node.getOperand()->traverse(this);
arguments.push_back(builder.accessChainLoad(convertGlslangToSpvType(node.getOperand()->getType())));
}
spv::Id TGlslangToSpvTraverser::createImageTextureFunctionCall(glslang::TIntermOperator* node)
{
if (! node->isImage() && ! node->isTexture()) {
return spv::NoResult;
}
// Process a GLSL texturing op (will be SPV image)
const glslang::TSampler sampler = node->getAsAggregate() ? node->getAsAggregate()->getSequence()[0]->getAsTyped()->getType().getSampler()
: node->getAsUnaryNode()->getOperand()->getAsTyped()->getType().getSampler();
std::vector<spv::Id> arguments;
if (node->getAsAggregate())
translateArguments(*node->getAsAggregate(), arguments);
else
translateArguments(*node->getAsUnaryNode(), arguments);
spv::Decoration precision = TranslatePrecisionDecoration(node->getType());
spv::Builder::TextureParameters params = { };
params.sampler = arguments[0];
glslang::TCrackedTextureOp cracked;
node->crackTexture(sampler, cracked);
// Check for queries
if (cracked.query) {
switch (node->getOp()) {
case glslang::EOpImageQuerySize:
case glslang::EOpTextureQuerySize:
if (arguments.size() > 1) {
params.lod = arguments[1];
return builder.createTextureQueryCall(spv::OpImageQuerySizeLod, params);
} else
return builder.createTextureQueryCall(spv::OpImageQuerySize, params);
case glslang::EOpImageQuerySamples:
case glslang::EOpTextureQuerySamples:
return builder.createTextureQueryCall(spv::OpImageQuerySamples, params);
case glslang::EOpTextureQueryLod:
params.coords = arguments[1];
return builder.createTextureQueryCall(spv::OpImageQueryLod, params);
case glslang::EOpTextureQueryLevels:
return builder.createTextureQueryCall(spv::OpImageQueryLevels, params);
default:
assert(0);
break;
}
}
// Check for image functions other than queries
if (node->isImage()) {
if (node->getOp() == glslang::EOpImageLoad) {
return builder.createOp(spv::OpImageRead, convertGlslangToSpvType(node->getType()), arguments);
}
else if (node->getOp() == glslang::EOpImageStore) {
builder.createNoResultOp(spv::OpImageWrite, arguments);
return spv::NoResult;
}
else {
// Process image atomic operations. GLSL "IMAGE_PARAMS" will involve in constructing an image texel
// pointer and this pointer, as the first source operand, is required by SPIR-V atomic operations.
std::vector<spv::Id> imageParams;
auto opIt = arguments.begin();
imageParams.push_back(*(opIt++));
imageParams.push_back(*(opIt++));
imageParams.push_back(sampler.ms ? *(opIt++) : 0); // For non-MS, the value should be 0
spv::Id resultTypeId = builder.makePointer(spv::StorageClassImage, convertGlslangToSpvType(node->getType()));
spv::Id pointer = builder.createOp(spv::OpImageTexelPointer, resultTypeId, imageParams);
std::vector<spv::Id> operands;
operands.push_back(pointer);
for (; opIt != arguments.end(); ++opIt)
operands.push_back(*opIt);
return createAtomicOperation(node->getOp(), precision, convertGlslangToSpvType(node->getType()), operands, node->getBasicType());
}
}
// Check for texture functions other than queries
if (cracked.gather)
spv::MissingFunctionality("texture gather");
// check for bias argument
bool bias = false;
if (! cracked.lod && ! cracked.gather && ! cracked.grad && ! cracked.fetch) {
int nonBiasArgCount = 2;
if (cracked.offset)
++nonBiasArgCount;
if (cracked.grad)
nonBiasArgCount += 2;
if ((int)arguments.size() > nonBiasArgCount)
bias = true;
}
bool cubeCompare = sampler.dim == glslang::EsdCube && sampler.arrayed && sampler.shadow;
// set the rest of the arguments
params.coords = arguments[1];
int extraArgs = 0;
if (cubeCompare)
params.Dref = arguments[2];
else if (sampler.shadow) {
std::vector<spv::Id> indexes;
int comp;
if (cracked.proj)
comp = 3;
else
comp = builder.getNumComponents(params.coords) - 1;
indexes.push_back(comp);
params.Dref = builder.createCompositeExtract(params.coords, builder.getScalarTypeId(builder.getTypeId(params.coords)), indexes);
}
if (cracked.lod) {
params.lod = arguments[2];
++extraArgs;
} else if (cracked.sample) {
params.sample = arguments[2]; // For MS, sample should be specified
++extraArgs;
}
if (cracked.grad) {
params.gradX = arguments[2 + extraArgs];
params.gradY = arguments[3 + extraArgs];
extraArgs += 2;
}
//if (gather && compare) {
// params.compare = arguments[2 + extraArgs];
// ++extraArgs;
//}
if (cracked.offset || cracked.offsets) {
params.offset = arguments[2 + extraArgs];
++extraArgs;
}
if (bias) {
params.bias = arguments[2 + extraArgs];
++extraArgs;
}
return builder.createTextureCall(precision, convertGlslangToSpvType(node->getType()), cracked.fetch, cracked.proj, params);
}
spv::Id TGlslangToSpvTraverser::handleUserFunctionCall(const glslang::TIntermAggregate* node)
{
// Grab the function's pointer from the previously created function
spv::Function* function = functionMap[node->getName().c_str()];
if (! function)
return 0;
const glslang::TIntermSequence& glslangArgs = node->getSequence();
const glslang::TQualifierList& qualifiers = node->getQualifierList();
// See comments in makeFunctions() for details about the semantics for parameter passing.
//
// These imply we need a four step process:
// 1. Evaluate the arguments
// 2. Allocate and make copies of in, out, and inout arguments
// 3. Make the call
// 4. Copy back the results
// 1. Evaluate the arguments
std::vector<spv::Builder::AccessChain> lValues;
std::vector<spv::Id> rValues;
std::vector<spv::Id> argTypes;
for (int a = 0; a < (int)glslangArgs.size(); ++a) {
// build l-value
builder.clearAccessChain();
glslangArgs[a]->traverse(this);
argTypes.push_back(convertGlslangToSpvType(glslangArgs[a]->getAsTyped()->getType()));
// keep outputs as l-values, evaluate input-only as r-values
if (qualifiers[a] != glslang::EvqConstReadOnly) {
// save l-value
lValues.push_back(builder.getAccessChain());
} else {
// process r-value
rValues.push_back(builder.accessChainLoad(argTypes.back()));
}
}
// 2. Allocate space for anything needing a copy, and if it's "in" or "inout"
// copy the original into that space.
//
// Also, build up the list of actual arguments to pass in for the call
int lValueCount = 0;
int rValueCount = 0;
std::vector<spv::Id> spvArgs;
for (int a = 0; a < (int)glslangArgs.size(); ++a) {
spv::Id arg;
if (qualifiers[a] != glslang::EvqConstReadOnly) {
// need space to hold the copy
const glslang::TType& paramType = glslangArgs[a]->getAsTyped()->getType();
arg = builder.createVariable(spv::StorageClassFunction, convertGlslangToSpvType(paramType), "param");
if (qualifiers[a] == glslang::EvqIn || qualifiers[a] == glslang::EvqInOut) {
// need to copy the input into output space
builder.setAccessChain(lValues[lValueCount]);
spv::Id copy = builder.accessChainLoad(argTypes[a]);
builder.createStore(copy, arg);
}
++lValueCount;
} else {
arg = rValues[rValueCount];
++rValueCount;
}
spvArgs.push_back(arg);
}
// 3. Make the call.
spv::Id result = builder.createFunctionCall(function, spvArgs);
// 4. Copy back out an "out" arguments.
lValueCount = 0;
for (int a = 0; a < (int)glslangArgs.size(); ++a) {
if (qualifiers[a] != glslang::EvqConstReadOnly) {
if (qualifiers[a] == glslang::EvqOut || qualifiers[a] == glslang::EvqInOut) {
spv::Id copy = builder.createLoad(spvArgs[a]);
builder.setAccessChain(lValues[lValueCount]);
builder.accessChainStore(copy);
}
++lValueCount;
}
}
return result;
}
// Translate AST operation to SPV operation, already having SPV-based operands/types.
spv::Id TGlslangToSpvTraverser::createBinaryOperation(glslang::TOperator op, spv::Decoration precision,
spv::Id typeId, spv::Id left, spv::Id right,
glslang::TBasicType typeProxy, bool reduceComparison)
{
bool isUnsigned = typeProxy == glslang::EbtUint;
bool isFloat = typeProxy == glslang::EbtFloat || typeProxy == glslang::EbtDouble;
spv::Op binOp = spv::OpNop;
bool needMatchingVectors = true; // for non-matrix ops, would a scalar need to smear to match a vector?
bool comparison = false;
switch (op) {
case glslang::EOpAdd:
case glslang::EOpAddAssign:
if (isFloat)
binOp = spv::OpFAdd;
else
binOp = spv::OpIAdd;
break;
case glslang::EOpSub:
case glslang::EOpSubAssign:
if (isFloat)
binOp = spv::OpFSub;
else
binOp = spv::OpISub;
break;
case glslang::EOpMul:
case glslang::EOpMulAssign:
if (isFloat)
binOp = spv::OpFMul;
else
binOp = spv::OpIMul;
break;
case glslang::EOpVectorTimesScalar:
case glslang::EOpVectorTimesScalarAssign:
if (isFloat) {
if (builder.isVector(right))
std::swap(left, right);
assert(builder.isScalar(right));
needMatchingVectors = false;
binOp = spv::OpVectorTimesScalar;
} else
binOp = spv::OpIMul;
break;
case glslang::EOpVectorTimesMatrix:
case glslang::EOpVectorTimesMatrixAssign:
assert(builder.isVector(left));
assert(builder.isMatrix(right));
binOp = spv::OpVectorTimesMatrix;
break;
case glslang::EOpMatrixTimesVector:
assert(builder.isMatrix(left));
assert(builder.isVector(right));
binOp = spv::OpMatrixTimesVector;
break;
case glslang::EOpMatrixTimesScalar:
case glslang::EOpMatrixTimesScalarAssign:
if (builder.isMatrix(right))
std::swap(left, right);
assert(builder.isScalar(right));
binOp = spv::OpMatrixTimesScalar;
break;
case glslang::EOpMatrixTimesMatrix:
case glslang::EOpMatrixTimesMatrixAssign:
assert(builder.isMatrix(left));
assert(builder.isMatrix(right));
binOp = spv::OpMatrixTimesMatrix;
break;
case glslang::EOpOuterProduct:
binOp = spv::OpOuterProduct;
needMatchingVectors = false;
break;
case glslang::EOpDiv:
case glslang::EOpDivAssign:
if (isFloat)
binOp = spv::OpFDiv;
else if (isUnsigned)
binOp = spv::OpUDiv;
else
binOp = spv::OpSDiv;
break;
case glslang::EOpMod:
case glslang::EOpModAssign:
if (isFloat)
binOp = spv::OpFMod;
else if (isUnsigned)
binOp = spv::OpUMod;
else
binOp = spv::OpSMod;
break;
case glslang::EOpRightShift:
case glslang::EOpRightShiftAssign:
if (isUnsigned)
binOp = spv::OpShiftRightLogical;
else
binOp = spv::OpShiftRightArithmetic;
break;
case glslang::EOpLeftShift:
case glslang::EOpLeftShiftAssign:
binOp = spv::OpShiftLeftLogical;
break;
case glslang::EOpAnd:
case glslang::EOpAndAssign:
binOp = spv::OpBitwiseAnd;
break;
case glslang::EOpLogicalAnd:
needMatchingVectors = false;
binOp = spv::OpLogicalAnd;
break;
case glslang::EOpInclusiveOr:
case glslang::EOpInclusiveOrAssign:
binOp = spv::OpBitwiseOr;
break;
case glslang::EOpLogicalOr:
needMatchingVectors = false;
binOp = spv::OpLogicalOr;
break;
case glslang::EOpExclusiveOr:
case glslang::EOpExclusiveOrAssign:
binOp = spv::OpBitwiseXor;
break;
case glslang::EOpLogicalXor:
needMatchingVectors = false;
binOp = spv::OpLogicalNotEqual;
break;
case glslang::EOpLessThan:
case glslang::EOpGreaterThan:
case glslang::EOpLessThanEqual:
case glslang::EOpGreaterThanEqual:
case glslang::EOpEqual:
case glslang::EOpNotEqual:
case glslang::EOpVectorEqual:
case glslang::EOpVectorNotEqual:
comparison = true;
break;
default:
break;
}
if (binOp != spv::OpNop) {
if (builder.isMatrix(left) || builder.isMatrix(right)) {
switch (binOp) {
case spv::OpMatrixTimesScalar:
case spv::OpVectorTimesMatrix:
case spv::OpMatrixTimesVector:
case spv::OpMatrixTimesMatrix:
break;
case spv::OpFDiv:
// turn it into a multiply...
assert(builder.isMatrix(left) && builder.isScalar(right));
right = builder.createBinOp(spv::OpFDiv, builder.getTypeId(right), builder.makeFloatConstant(1.0F), right);
binOp = spv::OpFMul;
break;
default:
spv::MissingFunctionality("binary operation on matrix");
break;
}
spv::Id id = builder.createBinOp(binOp, typeId, left, right);
builder.setPrecision(id, precision);
return id;
}
// No matrix involved; make both operands be the same number of components, if needed
if (needMatchingVectors)
builder.promoteScalar(precision, left, right);
spv::Id id = builder.createBinOp(binOp, typeId, left, right);
builder.setPrecision(id, precision);
return id;
}
if (! comparison)
return 0;
// Comparison instructions
if (reduceComparison && (builder.isVector(left) || builder.isMatrix(left) || builder.isAggregate(left))) {
assert(op == glslang::EOpEqual || op == glslang::EOpNotEqual);
return builder.createCompare(precision, left, right, op == glslang::EOpEqual);
}
switch (op) {
case glslang::EOpLessThan:
if (isFloat)
binOp = spv::OpFOrdLessThan;
else if (isUnsigned)
binOp = spv::OpULessThan;
else
binOp = spv::OpSLessThan;
break;
case glslang::EOpGreaterThan:
if (isFloat)
binOp = spv::OpFOrdGreaterThan;
else if (isUnsigned)
binOp = spv::OpUGreaterThan;
else
binOp = spv::OpSGreaterThan;
break;
case glslang::EOpLessThanEqual:
if (isFloat)
binOp = spv::OpFOrdLessThanEqual;
else if (isUnsigned)
binOp = spv::OpULessThanEqual;
else
binOp = spv::OpSLessThanEqual;
break;
case glslang::EOpGreaterThanEqual:
if (isFloat)
binOp = spv::OpFOrdGreaterThanEqual;
else if (isUnsigned)
binOp = spv::OpUGreaterThanEqual;
else
binOp = spv::OpSGreaterThanEqual;
break;
case glslang::EOpEqual:
case glslang::EOpVectorEqual:
if (isFloat)
binOp = spv::OpFOrdEqual;
else
binOp = spv::OpIEqual;
break;
case glslang::EOpNotEqual:
case glslang::EOpVectorNotEqual:
if (isFloat)
binOp = spv::OpFOrdNotEqual;
else
binOp = spv::OpINotEqual;
break;
default:
break;
}
if (binOp != spv::OpNop) {
spv::Id id = builder.createBinOp(binOp, typeId, left, right);
builder.setPrecision(id, precision);
return id;
}
return 0;
}
spv::Id TGlslangToSpvTraverser::createUnaryOperation(glslang::TOperator op, spv::Decoration precision, spv::Id typeId, spv::Id operand, glslang::TBasicType typeProxy)
{
spv::Op unaryOp = spv::OpNop;
int libCall = -1;
bool isFloat = typeProxy == glslang::EbtFloat || typeProxy == glslang::EbtDouble;
switch (op) {
case glslang::EOpNegative:
if (isFloat)
unaryOp = spv::OpFNegate;
else
unaryOp = spv::OpSNegate;
break;
case glslang::EOpLogicalNot:
case glslang::EOpVectorLogicalNot:
unaryOp = spv::OpLogicalNot;
break;
case glslang::EOpBitwiseNot:
unaryOp = spv::OpNot;
break;
case glslang::EOpDeterminant:
libCall = spv::GLSLstd450Determinant;
break;
case glslang::EOpMatrixInverse:
libCall = spv::GLSLstd450MatrixInverse;
break;
case glslang::EOpTranspose:
unaryOp = spv::OpTranspose;
break;
case glslang::EOpRadians:
libCall = spv::GLSLstd450Radians;
break;
case glslang::EOpDegrees:
libCall = spv::GLSLstd450Degrees;
break;
case glslang::EOpSin:
libCall = spv::GLSLstd450Sin;
break;
case glslang::EOpCos:
libCall = spv::GLSLstd450Cos;
break;
case glslang::EOpTan:
libCall = spv::GLSLstd450Tan;
break;
case glslang::EOpAcos:
libCall = spv::GLSLstd450Acos;
break;
case glslang::EOpAsin:
libCall = spv::GLSLstd450Asin;
break;
case glslang::EOpAtan:
libCall = spv::GLSLstd450Atan;
break;
case glslang::EOpAcosh:
libCall = spv::GLSLstd450Acosh;
break;
case glslang::EOpAsinh:
libCall = spv::GLSLstd450Asinh;
break;
case glslang::EOpAtanh:
libCall = spv::GLSLstd450Atanh;
break;
case glslang::EOpTanh:
libCall = spv::GLSLstd450Tanh;
break;
case glslang::EOpCosh:
libCall = spv::GLSLstd450Cosh;
break;
case glslang::EOpSinh:
libCall = spv::GLSLstd450Sinh;
break;
case glslang::EOpLength:
libCall = spv::GLSLstd450Length;
break;
case glslang::EOpNormalize:
libCall = spv::GLSLstd450Normalize;
break;
case glslang::EOpExp:
libCall = spv::GLSLstd450Exp;
break;
case glslang::EOpLog:
libCall = spv::GLSLstd450Log;
break;
case glslang::EOpExp2:
libCall = spv::GLSLstd450Exp2;
break;
case glslang::EOpLog2:
libCall = spv::GLSLstd450Log2;
break;
case glslang::EOpSqrt:
libCall = spv::GLSLstd450Sqrt;
break;
case glslang::EOpInverseSqrt:
libCall = spv::GLSLstd450InverseSqrt;
break;
case glslang::EOpFloor:
libCall = spv::GLSLstd450Floor;
break;
case glslang::EOpTrunc:
libCall = spv::GLSLstd450Trunc;
break;
case glslang::EOpRound:
libCall = spv::GLSLstd450Round;
break;
case glslang::EOpRoundEven:
libCall = spv::GLSLstd450RoundEven;
break;
case glslang::EOpCeil:
libCall = spv::GLSLstd450Ceil;
break;
case glslang::EOpFract:
libCall = spv::GLSLstd450Fract;
break;
case glslang::EOpIsNan:
unaryOp = spv::OpIsNan;
break;
case glslang::EOpIsInf:
unaryOp = spv::OpIsInf;
break;
case glslang::EOpPackSnorm2x16:
libCall = spv::GLSLstd450PackSnorm2x16;
break;
case glslang::EOpUnpackSnorm2x16:
libCall = spv::GLSLstd450UnpackSnorm2x16;
break;
case glslang::EOpPackUnorm2x16:
libCall = spv::GLSLstd450PackUnorm2x16;
break;
case glslang::EOpUnpackUnorm2x16:
libCall = spv::GLSLstd450UnpackUnorm2x16;
break;
case glslang::EOpPackHalf2x16:
libCall = spv::GLSLstd450PackHalf2x16;
break;
case glslang::EOpUnpackHalf2x16:
libCall = spv::GLSLstd450UnpackHalf2x16;
break;
case glslang::EOpPackSnorm4x8:
libCall = spv::GLSLstd450PackSnorm4x8;
break;
case glslang::EOpUnpackSnorm4x8:
libCall = spv::GLSLstd450UnpackSnorm4x8;
break;
case glslang::EOpPackUnorm4x8:
libCall = spv::GLSLstd450PackUnorm4x8;
break;
case glslang::EOpUnpackUnorm4x8:
libCall = spv::GLSLstd450UnpackUnorm4x8;
break;
case glslang::EOpPackDouble2x32:
libCall = spv::GLSLstd450PackDouble2x32;
break;
case glslang::EOpUnpackDouble2x32:
libCall = spv::GLSLstd450UnpackDouble2x32;
break;
case glslang::EOpDPdx:
unaryOp = spv::OpDPdx;
break;
case glslang::EOpDPdy:
unaryOp = spv::OpDPdy;
break;
case glslang::EOpFwidth:
unaryOp = spv::OpFwidth;
break;
case glslang::EOpDPdxFine:
unaryOp = spv::OpDPdxFine;
break;
case glslang::EOpDPdyFine:
unaryOp = spv::OpDPdyFine;
break;
case glslang::EOpFwidthFine:
unaryOp = spv::OpFwidthFine;
break;
case glslang::EOpDPdxCoarse:
unaryOp = spv::OpDPdxCoarse;
break;
case glslang::EOpDPdyCoarse:
unaryOp = spv::OpDPdyCoarse;
break;
case glslang::EOpFwidthCoarse:
unaryOp = spv::OpFwidthCoarse;
break;
case glslang::EOpAny:
unaryOp = spv::OpAny;
break;
case glslang::EOpAll:
unaryOp = spv::OpAll;
break;
case glslang::EOpAbs:
if (isFloat)
libCall = spv::GLSLstd450FAbs;
else
libCall = spv::GLSLstd450SAbs;
break;
case glslang::EOpSign:
if (isFloat)
libCall = spv::GLSLstd450FSign;
else
libCall = spv::GLSLstd450SSign;
break;
case glslang::EOpAtomicCounterIncrement:
case glslang::EOpAtomicCounterDecrement:
case glslang::EOpAtomicCounter:
{
// Handle all of the atomics in one place, in createAtomicOperation()
std::vector<spv::Id> operands;
operands.push_back(operand);
return createAtomicOperation(op, precision, typeId, operands, typeProxy);
}
case glslang::EOpImageLoad:
unaryOp = spv::OpImageRead;
break;
case glslang::EOpBitFieldReverse:
unaryOp = spv::OpBitReverse;
break;
case glslang::EOpBitCount:
unaryOp = spv::OpBitCount;
break;
case glslang::EOpFindLSB:
libCall = spv::GLSLstd450FindILSB;
break;
case glslang::EOpFindMSB:
spv::MissingFunctionality("signed vs. unsigned FindMSB");
libCall = spv::GLSLstd450FindSMSB;
break;
default:
return 0;
}
spv::Id id;
if (libCall >= 0) {
std::vector<spv::Id> args;
args.push_back(operand);
id = builder.createBuiltinCall(precision, typeId, stdBuiltins, libCall, args);
} else
id = builder.createUnaryOp(unaryOp, typeId, operand);
builder.setPrecision(id, precision);
return id;
}
spv::Id TGlslangToSpvTraverser::createConversion(glslang::TOperator op, spv::Decoration precision, spv::Id destType, spv::Id operand)
{
spv::Op convOp = spv::OpNop;
spv::Id zero = 0;
spv::Id one = 0;
int vectorSize = builder.isVectorType(destType) ? builder.getNumTypeComponents(destType) : 0;
switch (op) {
case glslang::EOpConvIntToBool:
case glslang::EOpConvUintToBool:
zero = builder.makeUintConstant(0);
zero = makeSmearedConstant(zero, vectorSize);
return builder.createBinOp(spv::OpINotEqual, destType, operand, zero);
case glslang::EOpConvFloatToBool:
zero = builder.makeFloatConstant(0.0F);
zero = makeSmearedConstant(zero, vectorSize);
return builder.createBinOp(spv::OpFOrdNotEqual, destType, operand, zero);
case glslang::EOpConvDoubleToBool:
zero = builder.makeDoubleConstant(0.0);
zero = makeSmearedConstant(zero, vectorSize);
return builder.createBinOp(spv::OpFOrdNotEqual, destType, operand, zero);
case glslang::EOpConvBoolToFloat:
convOp = spv::OpSelect;
zero = builder.makeFloatConstant(0.0);
one = builder.makeFloatConstant(1.0);
break;
case glslang::EOpConvBoolToDouble:
convOp = spv::OpSelect;
zero = builder.makeDoubleConstant(0.0);
one = builder.makeDoubleConstant(1.0);
break;
case glslang::EOpConvBoolToInt:
zero = builder.makeIntConstant(0);
one = builder.makeIntConstant(1);
convOp = spv::OpSelect;
break;
case glslang::EOpConvBoolToUint:
zero = builder.makeUintConstant(0);
one = builder.makeUintConstant(1);
convOp = spv::OpSelect;
break;
case glslang::EOpConvIntToFloat:
case glslang::EOpConvIntToDouble:
convOp = spv::OpConvertSToF;
break;
case glslang::EOpConvUintToFloat:
case glslang::EOpConvUintToDouble:
convOp = spv::OpConvertUToF;
break;
case glslang::EOpConvDoubleToFloat:
case glslang::EOpConvFloatToDouble:
convOp = spv::OpFConvert;
break;
case glslang::EOpConvFloatToInt:
case glslang::EOpConvDoubleToInt:
convOp = spv::OpConvertFToS;
break;
case glslang::EOpConvUintToInt:
case glslang::EOpConvIntToUint:
convOp = spv::OpBitcast;
break;
case glslang::EOpConvFloatToUint:
case glslang::EOpConvDoubleToUint:
convOp = spv::OpConvertFToU;
break;
default:
break;
}
spv::Id result = 0;
if (convOp == spv::OpNop)
return result;
if (convOp == spv::OpSelect) {
zero = makeSmearedConstant(zero, vectorSize);
one = makeSmearedConstant(one, vectorSize);
result = builder.createTriOp(convOp, destType, operand, one, zero);
} else
result = builder.createUnaryOp(convOp, destType, operand);
builder.setPrecision(result, precision);
return result;
}
spv::Id TGlslangToSpvTraverser::makeSmearedConstant(spv::Id constant, int vectorSize)
{
if (vectorSize == 0)
return constant;
spv::Id vectorTypeId = builder.makeVectorType(builder.getTypeId(constant), vectorSize);
std::vector<spv::Id> components;
for (int c = 0; c < vectorSize; ++c)
components.push_back(constant);
return builder.makeCompositeConstant(vectorTypeId, components);
}
// For glslang ops that map to SPV atomic opCodes
spv::Id TGlslangToSpvTraverser::createAtomicOperation(glslang::TOperator op, spv::Decoration precision, spv::Id typeId, std::vector<spv::Id>& operands, glslang::TBasicType typeProxy)
{
spv::Op opCode = spv::OpNop;
switch (op) {
case glslang::EOpAtomicAdd:
case glslang::EOpImageAtomicAdd:
opCode = spv::OpAtomicIAdd;
break;
case glslang::EOpAtomicMin:
case glslang::EOpImageAtomicMin:
opCode = typeProxy == glslang::EbtUint ? spv::OpAtomicUMin : spv::OpAtomicSMin;
break;
case glslang::EOpAtomicMax:
case glslang::EOpImageAtomicMax:
opCode = typeProxy == glslang::EbtUint ? spv::OpAtomicUMax : spv::OpAtomicSMax;
break;
case glslang::EOpAtomicAnd:
case glslang::EOpImageAtomicAnd:
opCode = spv::OpAtomicAnd;
break;
case glslang::EOpAtomicOr:
case glslang::EOpImageAtomicOr:
opCode = spv::OpAtomicOr;
break;
case glslang::EOpAtomicXor:
case glslang::EOpImageAtomicXor:
opCode = spv::OpAtomicXor;
break;
case glslang::EOpAtomicExchange:
case glslang::EOpImageAtomicExchange:
opCode = spv::OpAtomicExchange;
break;
case glslang::EOpAtomicCompSwap:
case glslang::EOpImageAtomicCompSwap:
opCode = spv::OpAtomicCompareExchange;
break;
case glslang::EOpAtomicCounterIncrement:
opCode = spv::OpAtomicIIncrement;
break;
case glslang::EOpAtomicCounterDecrement:
opCode = spv::OpAtomicIDecrement;
break;
case glslang::EOpAtomicCounter:
opCode = spv::OpAtomicLoad;
break;
default:
spv::MissingFunctionality("missing nested atomic");
break;
}
// Sort out the operands
// - mapping from glslang -> SPV
// - there are extra SPV operands with no glslang source
std::vector<spv::Id> spvAtomicOperands; // hold the spv operands
auto opIt = operands.begin(); // walk the glslang operands
spvAtomicOperands.push_back(*(opIt++));
// Add scope and memory semantics
spvAtomicOperands.push_back(builder.makeUintConstant(spv::ScopeDevice)); // TBD: what is the correct scope?
spvAtomicOperands.push_back(builder.makeUintConstant(spv::MemorySemanticsMaskNone)); // TBD: what are the correct memory semantics?
if (opCode == spv::OpAtomicCompareExchange) {
// There are 2 memory semantics for compare-exchange
spvAtomicOperands.push_back(builder.makeUintConstant(spv::MemorySemanticsMaskNone));
}
// Add the rest of the operands, skipping the first one, which was dealt with above.
// For some ops, there are none, for some 1, for compare-exchange, 2.
for (; opIt != operands.end(); ++opIt)
spvAtomicOperands.push_back(*opIt);
return builder.createOp(opCode, typeId, spvAtomicOperands);
}
spv::Id TGlslangToSpvTraverser::createMiscOperation(glslang::TOperator op, spv::Decoration precision, spv::Id typeId, std::vector<spv::Id>& operands, glslang::TBasicType typeProxy)
{
bool isUnsigned = typeProxy == glslang::EbtUint;
bool isFloat = typeProxy == glslang::EbtFloat || typeProxy == glslang::EbtDouble;
spv::Op opCode = spv::OpNop;
int libCall = -1;
switch (op) {
case glslang::EOpMin:
if (isFloat)
libCall = spv::GLSLstd450FMin;
else if (isUnsigned)
libCall = spv::GLSLstd450UMin;
else
libCall = spv::GLSLstd450SMin;
break;
case glslang::EOpModf:
libCall = spv::GLSLstd450Modf;
break;
case glslang::EOpMax:
if (isFloat)
libCall = spv::GLSLstd450FMax;
else if (isUnsigned)
libCall = spv::GLSLstd450UMax;
else
libCall = spv::GLSLstd450SMax;
break;
case glslang::EOpPow:
libCall = spv::GLSLstd450Pow;
break;
case glslang::EOpDot:
opCode = spv::OpDot;
break;
case glslang::EOpAtan:
libCall = spv::GLSLstd450Atan2;
break;
case glslang::EOpClamp:
if (isFloat)
libCall = spv::GLSLstd450FClamp;
else if (isUnsigned)
libCall = spv::GLSLstd450UClamp;
else
libCall = spv::GLSLstd450SClamp;
break;
case glslang::EOpMix:
libCall = spv::GLSLstd450Mix;
break;
case glslang::EOpStep:
libCall = spv::GLSLstd450Step;
break;
case glslang::EOpSmoothStep:
libCall = spv::GLSLstd450SmoothStep;
break;
case glslang::EOpDistance:
libCall = spv::GLSLstd450Distance;
break;
case glslang::EOpCross:
libCall = spv::GLSLstd450Cross;
break;
case glslang::EOpFaceForward:
libCall = spv::GLSLstd450FaceForward;
break;
case glslang::EOpReflect:
libCall = spv::GLSLstd450Reflect;
break;
case glslang::EOpRefract:
libCall = spv::GLSLstd450Refract;
break;
default:
return 0;
}
spv::Id id = 0;
if (libCall >= 0)
id = builder.createBuiltinCall(precision, typeId, stdBuiltins, libCall, operands);
else {
switch (operands.size()) {
case 0:
// should all be handled by visitAggregate and createNoArgOperation
assert(0);
return 0;
case 1:
// should all be handled by createUnaryOperation
assert(0);
return 0;
case 2:
id = builder.createBinOp(opCode, typeId, operands[0], operands[1]);
break;
case 3:
id = builder.createTriOp(opCode, typeId, operands[0], operands[1], operands[2]);
break;
default:
// These do not exist yet
assert(0 && "operation with more than 3 operands");
break;
}
}
builder.setPrecision(id, precision);
return id;
}
// Intrinsics with no arguments, no return value, and no precision.
spv::Id TGlslangToSpvTraverser::createNoArgOperation(glslang::TOperator op)
{
// TODO: get the barrier operands correct
switch (op) {
case glslang::EOpEmitVertex:
builder.createNoResultOp(spv::OpEmitVertex);
return 0;
case glslang::EOpEndPrimitive:
builder.createNoResultOp(spv::OpEndPrimitive);
return 0;
case glslang::EOpBarrier:
builder.createMemoryBarrier(spv::ScopeDevice, spv::MemorySemanticsAllMemory);
builder.createControlBarrier(spv::ScopeDevice, spv::ScopeDevice, spv::MemorySemanticsMaskNone);
return 0;
case glslang::EOpMemoryBarrier:
builder.createMemoryBarrier(spv::ScopeDevice, spv::MemorySemanticsAllMemory);
return 0;
case glslang::EOpMemoryBarrierAtomicCounter:
builder.createMemoryBarrier(spv::ScopeDevice, spv::MemorySemanticsAtomicCounterMemoryMask);
return 0;
case glslang::EOpMemoryBarrierBuffer:
builder.createMemoryBarrier(spv::ScopeDevice, spv::MemorySemanticsUniformMemoryMask);
return 0;
case glslang::EOpMemoryBarrierImage:
builder.createMemoryBarrier(spv::ScopeDevice, spv::MemorySemanticsImageMemoryMask);
return 0;
case glslang::EOpMemoryBarrierShared:
builder.createMemoryBarrier(spv::ScopeDevice, spv::MemorySemanticsWorkgroupLocalMemoryMask);
return 0;
case glslang::EOpGroupMemoryBarrier:
builder.createMemoryBarrier(spv::ScopeDevice, spv::MemorySemanticsWorkgroupGlobalMemoryMask);
return 0;
default:
spv::MissingFunctionality("operation with no arguments");
return 0;
}
}
spv::Id TGlslangToSpvTraverser::getSymbolId(const glslang::TIntermSymbol* symbol)
{
auto iter = symbolValues.find(symbol->getId());
spv::Id id;
if (symbolValues.end() != iter) {
id = iter->second;
return id;
}
// it was not found, create it
id = createSpvVariable(symbol);
symbolValues[symbol->getId()] = id;
if (! symbol->getType().isStruct()) {
addDecoration(id, TranslatePrecisionDecoration(symbol->getType()));
addDecoration(id, TranslateInterpolationDecoration(symbol->getType()));
if (symbol->getQualifier().hasLocation())
builder.addDecoration(id, spv::DecorationLocation, symbol->getQualifier().layoutLocation);
if (symbol->getQualifier().hasIndex())
builder.addDecoration(id, spv::DecorationIndex, symbol->getQualifier().layoutIndex);
if (symbol->getQualifier().hasComponent())
builder.addDecoration(id, spv::DecorationComponent, symbol->getQualifier().layoutComponent);
if (glslangIntermediate->getXfbMode()) {
if (symbol->getQualifier().hasXfbStride())
builder.addDecoration(id, spv::DecorationXfbStride, symbol->getQualifier().layoutXfbStride);
if (symbol->getQualifier().hasXfbBuffer())
builder.addDecoration(id, spv::DecorationXfbBuffer, symbol->getQualifier().layoutXfbBuffer);
if (symbol->getQualifier().hasXfbOffset())
builder.addDecoration(id, spv::DecorationOffset, symbol->getQualifier().layoutXfbOffset);
}
}
addDecoration(id, TranslateInvariantDecoration(symbol->getType()));
if (symbol->getQualifier().hasStream())
builder.addDecoration(id, spv::DecorationStream, symbol->getQualifier().layoutStream);
if (symbol->getQualifier().hasSet())
builder.addDecoration(id, spv::DecorationDescriptorSet, symbol->getQualifier().layoutSet);
if (symbol->getQualifier().hasBinding())
builder.addDecoration(id, spv::DecorationBinding, symbol->getQualifier().layoutBinding);
if (glslangIntermediate->getXfbMode()) {
if (symbol->getQualifier().hasXfbStride())
builder.addDecoration(id, spv::DecorationXfbStride, symbol->getQualifier().layoutXfbStride);
if (symbol->getQualifier().hasXfbBuffer())
builder.addDecoration(id, spv::DecorationXfbBuffer, symbol->getQualifier().layoutXfbBuffer);
}
// built-in variable decorations
spv::BuiltIn builtIn = TranslateBuiltInDecoration(symbol->getQualifier().builtIn);
if (builtIn != spv::BadValue)
builder.addDecoration(id, spv::DecorationBuiltIn, (int)builtIn);
if (linkageOnly)
builder.addDecoration(id, spv::DecorationNoStaticUse);
return id;
}
void TGlslangToSpvTraverser::addDecoration(spv::Id id, spv::Decoration dec)
{
if (dec != spv::BadValue)
builder.addDecoration(id, dec);
}
void TGlslangToSpvTraverser::addMemberDecoration(spv::Id id, int member, spv::Decoration dec)
{
if (dec != spv::BadValue)
builder.addMemberDecoration(id, (unsigned)member, dec);
}
// Use 'consts' as the flattened glslang source of scalar constants to recursively
// build the aggregate SPIR-V constant.
//
// If there are not enough elements present in 'consts', 0 will be substituted;
// an empty 'consts' can be used to create a fully zeroed SPIR-V constant.
//
spv::Id TGlslangToSpvTraverser::createSpvConstant(const glslang::TType& glslangType, const glslang::TConstUnionArray& consts, int& nextConst)
{
// vector of constants for SPIR-V
std::vector<spv::Id> spvConsts;
// Type is used for struct and array constants
spv::Id typeId = convertGlslangToSpvType(glslangType);
if (glslangType.isArray()) {
glslang::TType elementType(glslangType, 0);
for (int i = 0; i < glslangType.getOuterArraySize(); ++i)
spvConsts.push_back(createSpvConstant(elementType, consts, nextConst));
} else if (glslangType.isMatrix()) {
glslang::TType vectorType(glslangType, 0);
for (int col = 0; col < glslangType.getMatrixCols(); ++col)
spvConsts.push_back(createSpvConstant(vectorType, consts, nextConst));
} else if (glslangType.getStruct()) {
glslang::TVector<glslang::TTypeLoc>::const_iterator iter;
for (iter = glslangType.getStruct()->begin(); iter != glslangType.getStruct()->end(); ++iter)
spvConsts.push_back(createSpvConstant(*iter->type, consts, nextConst));
} else if (glslangType.isVector()) {
for (unsigned int i = 0; i < (unsigned int)glslangType.getVectorSize(); ++i) {
bool zero = nextConst >= consts.size();
switch (glslangType.getBasicType()) {
case glslang::EbtInt:
spvConsts.push_back(builder.makeIntConstant(zero ? 0 : consts[nextConst].getIConst()));
break;
case glslang::EbtUint:
spvConsts.push_back(builder.makeUintConstant(zero ? 0 : consts[nextConst].getUConst()));
break;
case glslang::EbtFloat:
spvConsts.push_back(builder.makeFloatConstant(zero ? 0.0F : (float)consts[nextConst].getDConst()));
break;
case glslang::EbtDouble:
spvConsts.push_back(builder.makeDoubleConstant(zero ? 0.0 : consts[nextConst].getDConst()));
break;
case glslang::EbtBool:
spvConsts.push_back(builder.makeBoolConstant(zero ? false : consts[nextConst].getBConst()));
break;
default:
spv::MissingFunctionality("constant vector type");
break;
}
++nextConst;
}
} else {
// we have a non-aggregate (scalar) constant
bool zero = nextConst >= consts.size();
spv::Id scalar = 0;
switch (glslangType.getBasicType()) {
case glslang::EbtInt:
scalar = builder.makeIntConstant(zero ? 0 : consts[nextConst].getIConst());
break;
case glslang::EbtUint:
scalar = builder.makeUintConstant(zero ? 0 : consts[nextConst].getUConst());
break;
case glslang::EbtFloat:
scalar = builder.makeFloatConstant(zero ? 0.0F : (float)consts[nextConst].getDConst());
break;
case glslang::EbtDouble:
scalar = builder.makeDoubleConstant(zero ? 0.0 : consts[nextConst].getDConst());
break;
case glslang::EbtBool:
scalar = builder.makeBoolConstant(zero ? false : consts[nextConst].getBConst());
break;
default:
spv::MissingFunctionality("constant scalar type");
break;
}
++nextConst;
return scalar;
}
return builder.makeCompositeConstant(typeId, spvConsts);
}
}; // end anonymous namespace
namespace glslang {
void GetSpirvVersion(std::string& version)
{
const int bufSize = 100;
char buf[bufSize];
snprintf(buf, bufSize, "%d, Revision %d", spv::Version, spv::Revision);
version = buf;
}
// Write SPIR-V out to a binary file
void OutputSpv(const std::vector<unsigned int>& spirv, const char* baseName)
{
std::ofstream out;
out.open(baseName, std::ios::binary | std::ios::out);
for (int i = 0; i < (int)spirv.size(); ++i) {
unsigned int word = spirv[i];
out.write((const char*)&word, 4);
}
out.close();
}
//
// Set up the glslang traversal
//
void GlslangToSpv(const glslang::TIntermediate& intermediate, std::vector<unsigned int>& spirv)
{
TIntermNode* root = intermediate.getTreeRoot();
if (root == 0)
return;
glslang::GetThreadPoolAllocator().push();
TGlslangToSpvTraverser it(&intermediate);
root->traverse(&it);
it.dumpSpv(spirv);
glslang::GetThreadPoolAllocator().pop();
}
}; // end namespace glslang