glslang/SPIRV/spvIR.h
John Kessenich 435dd8028b SPV: RelaxedPrecision: Generalize fix #2293 to cover more operations.
This simplifies and enforces use of precision in many more places,
to help avoid accidental loss of RelaxedPrecision through intermediate
operations. Known fixes are:
- ?:
- function return values with mis-matched precision
- precision of function return values when a copy was needed to fix types
2020-06-30 02:44:52 -06:00

508 lines
17 KiB
C++
Executable File

//
// Copyright (C) 2014 LunarG, Inc.
// Copyright (C) 2015-2018 Google, Inc.
//
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
//
// Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
//
// Neither the name of 3Dlabs Inc. Ltd. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
// FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
// COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
// BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
// LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
// LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
// ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
// SPIRV-IR
//
// Simple in-memory representation (IR) of SPIRV. Just for holding
// Each function's CFG of blocks. Has this hierarchy:
// - Module, which is a list of
// - Function, which is a list of
// - Block, which is a list of
// - Instruction
//
#pragma once
#ifndef spvIR_H
#define spvIR_H
#include "spirv.hpp"
#include <algorithm>
#include <cassert>
#include <functional>
#include <iostream>
#include <memory>
#include <vector>
#include <set>
namespace spv {
class Block;
class Function;
class Module;
const Id NoResult = 0;
const Id NoType = 0;
const Decoration NoPrecision = DecorationMax;
#ifdef __GNUC__
# define POTENTIALLY_UNUSED __attribute__((unused))
#else
# define POTENTIALLY_UNUSED
#endif
POTENTIALLY_UNUSED
const MemorySemanticsMask MemorySemanticsAllMemory =
(MemorySemanticsMask)(MemorySemanticsUniformMemoryMask |
MemorySemanticsWorkgroupMemoryMask |
MemorySemanticsAtomicCounterMemoryMask |
MemorySemanticsImageMemoryMask);
struct IdImmediate {
bool isId; // true if word is an Id, false if word is an immediate
unsigned word;
IdImmediate(bool i, unsigned w) : isId(i), word(w) {}
};
//
// SPIR-V IR instruction.
//
class Instruction {
public:
Instruction(Id resultId, Id typeId, Op opCode) : resultId(resultId), typeId(typeId), opCode(opCode), block(nullptr) { }
explicit Instruction(Op opCode) : resultId(NoResult), typeId(NoType), opCode(opCode), block(nullptr) { }
virtual ~Instruction() {}
void addIdOperand(Id id) {
operands.push_back(id);
idOperand.push_back(true);
}
void addImmediateOperand(unsigned int immediate) {
operands.push_back(immediate);
idOperand.push_back(false);
}
void setImmediateOperand(unsigned idx, unsigned int immediate) {
assert(!idOperand[idx]);
operands[idx] = immediate;
}
void addStringOperand(const char* str)
{
unsigned int word;
char* wordString = (char*)&word;
char* wordPtr = wordString;
int charCount = 0;
char c;
do {
c = *(str++);
*(wordPtr++) = c;
++charCount;
if (charCount == 4) {
addImmediateOperand(word);
wordPtr = wordString;
charCount = 0;
}
} while (c != 0);
// deal with partial last word
if (charCount > 0) {
// pad with 0s
for (; charCount < 4; ++charCount)
*(wordPtr++) = 0;
addImmediateOperand(word);
}
}
bool isIdOperand(int op) const { return idOperand[op]; }
void setBlock(Block* b) { block = b; }
Block* getBlock() const { return block; }
Op getOpCode() const { return opCode; }
int getNumOperands() const
{
assert(operands.size() == idOperand.size());
return (int)operands.size();
}
Id getResultId() const { return resultId; }
Id getTypeId() const { return typeId; }
Id getIdOperand(int op) const {
assert(idOperand[op]);
return operands[op];
}
unsigned int getImmediateOperand(int op) const {
assert(!idOperand[op]);
return operands[op];
}
// Write out the binary form.
void dump(std::vector<unsigned int>& out) const
{
// Compute the wordCount
unsigned int wordCount = 1;
if (typeId)
++wordCount;
if (resultId)
++wordCount;
wordCount += (unsigned int)operands.size();
// Write out the beginning of the instruction
out.push_back(((wordCount) << WordCountShift) | opCode);
if (typeId)
out.push_back(typeId);
if (resultId)
out.push_back(resultId);
// Write out the operands
for (int op = 0; op < (int)operands.size(); ++op)
out.push_back(operands[op]);
}
protected:
Instruction(const Instruction&);
Id resultId;
Id typeId;
Op opCode;
std::vector<Id> operands; // operands, both <id> and immediates (both are unsigned int)
std::vector<bool> idOperand; // true for operands that are <id>, false for immediates
Block* block;
};
//
// SPIR-V IR block.
//
class Block {
public:
Block(Id id, Function& parent);
virtual ~Block()
{
}
Id getId() { return instructions.front()->getResultId(); }
Function& getParent() const { return parent; }
void addInstruction(std::unique_ptr<Instruction> inst);
void addPredecessor(Block* pred) { predecessors.push_back(pred); pred->successors.push_back(this);}
void addLocalVariable(std::unique_ptr<Instruction> inst) { localVariables.push_back(std::move(inst)); }
const std::vector<Block*>& getPredecessors() const { return predecessors; }
const std::vector<Block*>& getSuccessors() const { return successors; }
const std::vector<std::unique_ptr<Instruction> >& getInstructions() const {
return instructions;
}
const std::vector<std::unique_ptr<Instruction> >& getLocalVariables() const { return localVariables; }
void setUnreachable() { unreachable = true; }
bool isUnreachable() const { return unreachable; }
// Returns the block's merge instruction, if one exists (otherwise null).
const Instruction* getMergeInstruction() const {
if (instructions.size() < 2) return nullptr;
const Instruction* nextToLast = (instructions.cend() - 2)->get();
switch (nextToLast->getOpCode()) {
case OpSelectionMerge:
case OpLoopMerge:
return nextToLast;
default:
return nullptr;
}
return nullptr;
}
// Change this block into a canonical dead merge block. Delete instructions
// as necessary. A canonical dead merge block has only an OpLabel and an
// OpUnreachable.
void rewriteAsCanonicalUnreachableMerge() {
assert(localVariables.empty());
// Delete all instructions except for the label.
assert(instructions.size() > 0);
instructions.resize(1);
successors.clear();
addInstruction(std::unique_ptr<Instruction>(new Instruction(OpUnreachable)));
}
// Change this block into a canonical dead continue target branching to the
// given header ID. Delete instructions as necessary. A canonical dead continue
// target has only an OpLabel and an unconditional branch back to the corresponding
// header.
void rewriteAsCanonicalUnreachableContinue(Block* header) {
assert(localVariables.empty());
// Delete all instructions except for the label.
assert(instructions.size() > 0);
instructions.resize(1);
successors.clear();
// Add OpBranch back to the header.
assert(header != nullptr);
Instruction* branch = new Instruction(OpBranch);
branch->addIdOperand(header->getId());
addInstruction(std::unique_ptr<Instruction>(branch));
successors.push_back(header);
}
bool isTerminated() const
{
switch (instructions.back()->getOpCode()) {
case OpBranch:
case OpBranchConditional:
case OpSwitch:
case OpKill:
case OpReturn:
case OpReturnValue:
case OpUnreachable:
return true;
default:
return false;
}
}
void dump(std::vector<unsigned int>& out) const
{
instructions[0]->dump(out);
for (int i = 0; i < (int)localVariables.size(); ++i)
localVariables[i]->dump(out);
for (int i = 1; i < (int)instructions.size(); ++i)
instructions[i]->dump(out);
}
protected:
Block(const Block&);
Block& operator=(Block&);
// To enforce keeping parent and ownership in sync:
friend Function;
std::vector<std::unique_ptr<Instruction> > instructions;
std::vector<Block*> predecessors, successors;
std::vector<std::unique_ptr<Instruction> > localVariables;
Function& parent;
// track whether this block is known to be uncreachable (not necessarily
// true for all unreachable blocks, but should be set at least
// for the extraneous ones introduced by the builder).
bool unreachable;
};
// The different reasons for reaching a block in the inReadableOrder traversal.
enum ReachReason {
// Reachable from the entry block via transfers of control, i.e. branches.
ReachViaControlFlow = 0,
// A continue target that is not reachable via control flow.
ReachDeadContinue,
// A merge block that is not reachable via control flow.
ReachDeadMerge
};
// Traverses the control-flow graph rooted at root in an order suited for
// readable code generation. Invokes callback at every node in the traversal
// order. The callback arguments are:
// - the block,
// - the reason we reached the block,
// - if the reason was that block is an unreachable continue or unreachable merge block
// then the last parameter is the corresponding header block.
void inReadableOrder(Block* root, std::function<void(Block*, ReachReason, Block* header)> callback);
//
// SPIR-V IR Function.
//
class Function {
public:
Function(Id id, Id resultType, Id functionType, Id firstParam, Module& parent);
virtual ~Function()
{
for (int i = 0; i < (int)parameterInstructions.size(); ++i)
delete parameterInstructions[i];
for (int i = 0; i < (int)blocks.size(); ++i)
delete blocks[i];
}
Id getId() const { return functionInstruction.getResultId(); }
Id getParamId(int p) const { return parameterInstructions[p]->getResultId(); }
Id getParamType(int p) const { return parameterInstructions[p]->getTypeId(); }
void addBlock(Block* block) { blocks.push_back(block); }
void removeBlock(Block* block)
{
auto found = find(blocks.begin(), blocks.end(), block);
assert(found != blocks.end());
blocks.erase(found);
delete block;
}
Module& getParent() const { return parent; }
Block* getEntryBlock() const { return blocks.front(); }
Block* getLastBlock() const { return blocks.back(); }
const std::vector<Block*>& getBlocks() const { return blocks; }
void addLocalVariable(std::unique_ptr<Instruction> inst);
Id getReturnType() const { return functionInstruction.getTypeId(); }
void setReturnPrecision(Decoration precision)
{
if (precision == DecorationRelaxedPrecision)
reducedPrecisionReturn = true;
}
Decoration getReturnPrecision() const
{ return reducedPrecisionReturn ? DecorationRelaxedPrecision : NoPrecision; }
void setImplicitThis() { implicitThis = true; }
bool hasImplicitThis() const { return implicitThis; }
void addParamPrecision(unsigned param, Decoration precision)
{
if (precision == DecorationRelaxedPrecision)
reducedPrecisionParams.insert(param);
}
Decoration getParamPrecision(unsigned param) const
{
return reducedPrecisionParams.find(param) != reducedPrecisionParams.end() ?
DecorationRelaxedPrecision : NoPrecision;
}
void dump(std::vector<unsigned int>& out) const
{
// OpFunction
functionInstruction.dump(out);
// OpFunctionParameter
for (int p = 0; p < (int)parameterInstructions.size(); ++p)
parameterInstructions[p]->dump(out);
// Blocks
inReadableOrder(blocks[0], [&out](const Block* b, ReachReason, Block*) { b->dump(out); });
Instruction end(0, 0, OpFunctionEnd);
end.dump(out);
}
protected:
Function(const Function&);
Function& operator=(Function&);
Module& parent;
Instruction functionInstruction;
std::vector<Instruction*> parameterInstructions;
std::vector<Block*> blocks;
bool implicitThis; // true if this is a member function expecting to be passed a 'this' as the first argument
bool reducedPrecisionReturn;
std::set<int> reducedPrecisionParams; // list of parameter indexes that need a relaxed precision arg
};
//
// SPIR-V IR Module.
//
class Module {
public:
Module() {}
virtual ~Module()
{
// TODO delete things
}
void addFunction(Function *fun) { functions.push_back(fun); }
void mapInstruction(Instruction *instruction)
{
spv::Id resultId = instruction->getResultId();
// map the instruction's result id
if (resultId >= idToInstruction.size())
idToInstruction.resize(resultId + 16);
idToInstruction[resultId] = instruction;
}
Instruction* getInstruction(Id id) const { return idToInstruction[id]; }
const std::vector<Function*>& getFunctions() const { return functions; }
spv::Id getTypeId(Id resultId) const {
return idToInstruction[resultId] == nullptr ? NoType : idToInstruction[resultId]->getTypeId();
}
StorageClass getStorageClass(Id typeId) const
{
assert(idToInstruction[typeId]->getOpCode() == spv::OpTypePointer);
return (StorageClass)idToInstruction[typeId]->getImmediateOperand(0);
}
void dump(std::vector<unsigned int>& out) const
{
for (int f = 0; f < (int)functions.size(); ++f)
functions[f]->dump(out);
}
protected:
Module(const Module&);
std::vector<Function*> functions;
// map from result id to instruction having that result id
std::vector<Instruction*> idToInstruction;
// map from a result id to its type id
};
//
// Implementation (it's here due to circular type definitions).
//
// Add both
// - the OpFunction instruction
// - all the OpFunctionParameter instructions
__inline Function::Function(Id id, Id resultType, Id functionType, Id firstParamId, Module& parent)
: parent(parent), functionInstruction(id, resultType, OpFunction), implicitThis(false),
reducedPrecisionReturn(false)
{
// OpFunction
functionInstruction.addImmediateOperand(FunctionControlMaskNone);
functionInstruction.addIdOperand(functionType);
parent.mapInstruction(&functionInstruction);
parent.addFunction(this);
// OpFunctionParameter
Instruction* typeInst = parent.getInstruction(functionType);
int numParams = typeInst->getNumOperands() - 1;
for (int p = 0; p < numParams; ++p) {
Instruction* param = new Instruction(firstParamId + p, typeInst->getIdOperand(p + 1), OpFunctionParameter);
parent.mapInstruction(param);
parameterInstructions.push_back(param);
}
}
__inline void Function::addLocalVariable(std::unique_ptr<Instruction> inst)
{
Instruction* raw_instruction = inst.get();
blocks[0]->addLocalVariable(std::move(inst));
parent.mapInstruction(raw_instruction);
}
__inline Block::Block(Id id, Function& parent) : parent(parent), unreachable(false)
{
instructions.push_back(std::unique_ptr<Instruction>(new Instruction(id, NoType, OpLabel)));
instructions.back()->setBlock(this);
parent.getParent().mapInstruction(instructions.back().get());
}
__inline void Block::addInstruction(std::unique_ptr<Instruction> inst)
{
Instruction* raw_instruction = inst.get();
instructions.push_back(std::move(inst));
raw_instruction->setBlock(this);
if (raw_instruction->getResultId())
parent.getParent().mapInstruction(raw_instruction);
}
} // end spv namespace
#endif // spvIR_H