glslang/hlsl/hlslParseHelper.cpp
John Kessenich ecba76fe73 Non-Functional: Whitespace, comments, replace accidentally deleted comment.
- fixed ParseHelper.cpp newlines (crlf -> lf)
- removed trailing white space in most source files
- fix some spelling issues
- extra blank lines
- tabs to spaces
- replace #include comment about no location
2017-01-06 11:24:14 -07:00

6287 lines
258 KiB
C++
Executable File

//
//Copyright (C) 2016 Google, Inc.
//Copyright (C) 2016 LunarG, Inc.
//
//All rights reserved.
//
//Redistribution and use in source and binary forms, with or without
//modification, are permitted provided that the following conditions
//are met:
//
// Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
//
// Neither the name of 3Dlabs Inc. Ltd. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
//THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
//"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
//LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
//FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
//COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
//INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
//BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
//LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
//CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
//LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
//ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
//POSSIBILITY OF SUCH DAMAGE.
//
#include "hlslParseHelper.h"
#include "hlslScanContext.h"
#include "hlslGrammar.h"
#include "hlslAttributes.h"
#include "../glslang/MachineIndependent/Scan.h"
#include "../glslang/MachineIndependent/preprocessor/PpContext.h"
#include "../glslang/OSDependent/osinclude.h"
#include <algorithm>
#include <functional>
#include <cctype>
#include <array>
namespace glslang {
HlslParseContext::HlslParseContext(TSymbolTable& symbolTable, TIntermediate& interm, bool parsingBuiltins,
int version, EProfile profile, const SpvVersion& spvVersion, EShLanguage language, TInfoSink& infoSink,
const TString sourceEntryPointName,
bool forwardCompatible, EShMessages messages) :
TParseContextBase(symbolTable, interm, parsingBuiltins, version, profile, spvVersion, language, infoSink, forwardCompatible, messages),
contextPragma(true, false),
loopNestingLevel(0), annotationNestingLevel(0), structNestingLevel(0), controlFlowNestingLevel(0),
postEntryPointReturn(false),
limits(resources.limits),
inEntryPoint(false),
entryPointOutput(nullptr),
nextInLocation(0), nextOutLocation(0),
sourceEntryPointName(sourceEntryPointName),
builtInIoIndex(nullptr),
builtInIoBase(nullptr)
{
globalUniformDefaults.clear();
globalUniformDefaults.layoutMatrix = ElmRowMajor;
globalUniformDefaults.layoutPacking = ElpStd140;
globalBufferDefaults.clear();
globalBufferDefaults.layoutMatrix = ElmRowMajor;
globalBufferDefaults.layoutPacking = ElpStd430;
globalInputDefaults.clear();
globalOutputDefaults.clear();
// "Shaders in the transform
// feedback capturing mode have an initial global default of
// layout(xfb_buffer = 0) out;"
if (language == EShLangVertex ||
language == EShLangTessControl ||
language == EShLangTessEvaluation ||
language == EShLangGeometry)
globalOutputDefaults.layoutXfbBuffer = 0;
if (language == EShLangGeometry)
globalOutputDefaults.layoutStream = 0;
if (spvVersion.spv == 0 || spvVersion.vulkan == 0)
infoSink.info << "ERROR: HLSL currently only supported when requesting SPIR-V for Vulkan.\n";
}
HlslParseContext::~HlslParseContext()
{
}
void HlslParseContext::initializeExtensionBehavior()
{
TParseContextBase::initializeExtensionBehavior();
// HLSL allows #line by default.
extensionBehavior[E_GL_GOOGLE_cpp_style_line_directive] = EBhEnable;
}
void HlslParseContext::setLimits(const TBuiltInResource& r)
{
resources = r;
intermediate.setLimits(resources);
}
//
// Parse an array of strings using the parser in HlslRules.
//
// Returns true for successful acceptance of the shader, false if any errors.
//
bool HlslParseContext::parseShaderStrings(TPpContext& ppContext, TInputScanner& input, bool versionWillBeError)
{
currentScanner = &input;
ppContext.setInput(input, versionWillBeError);
HlslScanContext scanContext(*this, ppContext);
HlslGrammar grammar(scanContext, *this);
if (!grammar.parse()) {
// Print a message formated such that if you click on the message it will take you right to
// the line through most UIs.
const glslang::TSourceLoc& sourceLoc = input.getSourceLoc();
infoSink.info << sourceLoc.name << "(" << sourceLoc.line << "): error at column " << sourceLoc.column << ", HLSL parsing failed.\n";
++numErrors;
return false;
}
finish();
return numErrors == 0;
}
//
// Return true if this l-value node should be converted in some manner.
// For instance: turning a load aggregate into a store in an l-value.
//
bool HlslParseContext::shouldConvertLValue(const TIntermNode* node) const
{
if (node == nullptr)
return false;
const TIntermAggregate* lhsAsAggregate = node->getAsAggregate();
const TIntermBinary* lhsAsBinary = node->getAsBinaryNode();
// If it's a swizzled/indexed aggregate, look at the left node instead.
if (lhsAsBinary != nullptr &&
(lhsAsBinary->getOp() == EOpVectorSwizzle || lhsAsBinary->getOp() == EOpIndexDirect))
lhsAsAggregate = lhsAsBinary->getLeft()->getAsAggregate();
if (lhsAsAggregate != nullptr && lhsAsAggregate->getOp() == EOpImageLoad)
return true;
return false;
}
//
// Return a TLayoutFormat corresponding to the given texture type.
//
TLayoutFormat HlslParseContext::getLayoutFromTxType(const TSourceLoc& loc, const TType& txType)
{
const int components = txType.getVectorSize();
const auto selectFormat = [this,&components](TLayoutFormat v1, TLayoutFormat v2, TLayoutFormat v4) -> TLayoutFormat {
if (intermediate.getNoStorageFormat())
return ElfNone;
return components == 1 ? v1 :
components == 2 ? v2 : v4;
};
switch (txType.getBasicType()) {
case EbtFloat: return selectFormat(ElfR32f, ElfRg32f, ElfRgba32f);
case EbtInt: return selectFormat(ElfR32i, ElfRg32i, ElfRgba32i);
case EbtUint: return selectFormat(ElfR32ui, ElfRg32ui, ElfRgba32ui);
default:
error(loc, "unknown basic type in image format", "", "");
return ElfNone;
}
}
//
// Both test and if necessary, spit out an error, to see if the node is really
// an l-value that can be operated on this way.
//
// Returns true if there was an error.
//
bool HlslParseContext::lValueErrorCheck(const TSourceLoc& loc, const char* op, TIntermTyped* node)
{
if (shouldConvertLValue(node)) {
// if we're writing to a texture, it must be an RW form.
TIntermAggregate* lhsAsAggregate = node->getAsAggregate();
TIntermTyped* object = lhsAsAggregate->getSequence()[0]->getAsTyped();
if (!object->getType().getSampler().isImage()) {
error(loc, "operator[] on a non-RW texture must be an r-value", "", "");
return true;
}
}
// Let the base class check errors
return TParseContextBase::lValueErrorCheck(loc, op, node);
}
//
// This function handles l-value conversions and verifications. It uses, but is not synonymous
// with lValueErrorCheck. That function accepts an l-value directly, while this one must be
// given the surrounding tree - e.g, with an assignment, so we can convert the assign into a
// series of other image operations.
//
// Most things are passed through unmodified, except for error checking.
//
TIntermTyped* HlslParseContext::handleLvalue(const TSourceLoc& loc, const char* op, TIntermTyped* node)
{
if (node == nullptr)
return nullptr;
TIntermBinary* nodeAsBinary = node->getAsBinaryNode();
TIntermUnary* nodeAsUnary = node->getAsUnaryNode();
TIntermAggregate* sequence = nullptr;
TIntermTyped* lhs = nodeAsUnary ? nodeAsUnary->getOperand() :
nodeAsBinary ? nodeAsBinary->getLeft() :
nullptr;
// Early bail out if there is no conversion to apply
if (!shouldConvertLValue(lhs)) {
if (lhs != nullptr)
if (lValueErrorCheck(loc, op, lhs))
return nullptr;
return node;
}
// *** If we get here, we're going to apply some conversion to an l-value.
// Helper to create a load.
const auto makeLoad = [&](TIntermSymbol* rhsTmp, TIntermTyped* object, TIntermTyped* coord, const TType& derefType) {
TIntermAggregate* loadOp = new TIntermAggregate(EOpImageLoad);
loadOp->setLoc(loc);
loadOp->getSequence().push_back(object);
loadOp->getSequence().push_back(intermediate.addSymbol(*coord->getAsSymbolNode()));
loadOp->setType(derefType);
sequence = intermediate.growAggregate(sequence,
intermediate.addAssign(EOpAssign, rhsTmp, loadOp, loc),
loc);
};
// Helper to create a store.
const auto makeStore = [&](TIntermTyped* object, TIntermTyped* coord, TIntermSymbol* rhsTmp) {
TIntermAggregate* storeOp = new TIntermAggregate(EOpImageStore);
storeOp->getSequence().push_back(object);
storeOp->getSequence().push_back(coord);
storeOp->getSequence().push_back(intermediate.addSymbol(*rhsTmp));
storeOp->setLoc(loc);
storeOp->setType(TType(EbtVoid));
sequence = intermediate.growAggregate(sequence, storeOp);
};
// Helper to create an assign.
const auto makeBinary = [&](TOperator op, TIntermTyped* lhs, TIntermTyped* rhs) {
sequence = intermediate.growAggregate(sequence,
intermediate.addBinaryNode(op, lhs, rhs, loc, lhs->getType()),
loc);
};
// Helper to complete sequence by adding trailing variable, so we evaluate to the right value.
const auto finishSequence = [&](TIntermSymbol* rhsTmp, const TType& derefType) -> TIntermAggregate* {
// Add a trailing use of the temp, so the sequence returns the proper value.
sequence = intermediate.growAggregate(sequence, intermediate.addSymbol(*rhsTmp));
sequence->setOperator(EOpSequence);
sequence->setLoc(loc);
sequence->setType(derefType);
return sequence;
};
// Helper to add unary op
const auto makeUnary = [&](TOperator op, TIntermSymbol* rhsTmp) {
sequence = intermediate.growAggregate(sequence,
intermediate.addUnaryNode(op, intermediate.addSymbol(*rhsTmp), loc,
rhsTmp->getType()),
loc);
};
// Return true if swizzle or index writes all components of the given variable.
const auto writesAllComponents = [&](TIntermSymbol* var, TIntermBinary* swizzle) -> bool {
if (swizzle == nullptr) // not a swizzle or index
return true;
// Track which components are being set.
std::array<bool, 4> compIsSet;
compIsSet.fill(false);
const TIntermConstantUnion* asConst = swizzle->getRight()->getAsConstantUnion();
const TIntermAggregate* asAggregate = swizzle->getRight()->getAsAggregate();
// This could be either a direct index, or a swizzle.
if (asConst) {
compIsSet[asConst->getConstArray()[0].getIConst()] = true;
} else if (asAggregate) {
const TIntermSequence& seq = asAggregate->getSequence();
for (int comp=0; comp<int(seq.size()); ++comp)
compIsSet[seq[comp]->getAsConstantUnion()->getConstArray()[0].getIConst()] = true;
} else {
assert(0);
}
// Return true if all components are being set by the index or swizzle
return std::all_of(compIsSet.begin(), compIsSet.begin() + var->getType().getVectorSize(),
[](bool isSet) { return isSet; } );
};
// helper to create a temporary variable
const auto addTmpVar = [&](const char* name, const TType& derefType) -> TIntermSymbol* {
TVariable* tmpVar = makeInternalVariable(name, derefType);
tmpVar->getWritableType().getQualifier().makeTemporary();
return intermediate.addSymbol(*tmpVar, loc);
};
// Create swizzle matching input swizzle
const auto addSwizzle = [&](TIntermSymbol* var, TIntermBinary* swizzle) -> TIntermTyped* {
if (swizzle)
return intermediate.addBinaryNode(swizzle->getOp(), var, swizzle->getRight(), loc, swizzle->getType());
else
return var;
};
TIntermBinary* lhsAsBinary = lhs->getAsBinaryNode();
TIntermAggregate* lhsAsAggregate = lhs->getAsAggregate();
bool lhsIsSwizzle = false;
// If it's a swizzled L-value, remember the swizzle, and use the LHS.
if (lhsAsBinary != nullptr && (lhsAsBinary->getOp() == EOpVectorSwizzle || lhsAsBinary->getOp() == EOpIndexDirect)) {
lhsAsAggregate = lhsAsBinary->getLeft()->getAsAggregate();
lhsIsSwizzle = true;
}
TIntermTyped* object = lhsAsAggregate->getSequence()[0]->getAsTyped();
TIntermTyped* coord = lhsAsAggregate->getSequence()[1]->getAsTyped();
const TSampler& texSampler = object->getType().getSampler();
const TType objDerefType(texSampler.type, EvqTemporary, texSampler.vectorSize);
if (nodeAsBinary) {
TIntermTyped* rhs = nodeAsBinary->getRight();
const TOperator assignOp = nodeAsBinary->getOp();
bool isModifyOp = false;
switch (assignOp) {
case EOpAddAssign:
case EOpSubAssign:
case EOpMulAssign:
case EOpVectorTimesMatrixAssign:
case EOpVectorTimesScalarAssign:
case EOpMatrixTimesScalarAssign:
case EOpMatrixTimesMatrixAssign:
case EOpDivAssign:
case EOpModAssign:
case EOpAndAssign:
case EOpInclusiveOrAssign:
case EOpExclusiveOrAssign:
case EOpLeftShiftAssign:
case EOpRightShiftAssign:
isModifyOp = true;
// fall through...
case EOpAssign:
{
// Since this is an lvalue, we'll convert an image load to a sequence like this (to still provide the value):
// OpSequence
// OpImageStore(object, lhs, rhs)
// rhs
// But if it's not a simple symbol RHS (say, a fn call), we don't want to duplicate the RHS, so we'll convert
// instead to this:
// OpSequence
// rhsTmp = rhs
// OpImageStore(object, coord, rhsTmp)
// rhsTmp
// If this is a read-modify-write op, like +=, we issue:
// OpSequence
// coordtmp = load's param1
// rhsTmp = OpImageLoad(object, coordTmp)
// rhsTmp op= rhs
// OpImageStore(object, coordTmp, rhsTmp)
// rhsTmp
//
// If the lvalue is swizzled, we apply that when writing the temp variable, like so:
// ...
// rhsTmp.some_swizzle = ...
// For partial writes, an error is generated.
TIntermSymbol* rhsTmp = rhs->getAsSymbolNode();
TIntermTyped* coordTmp = coord;
if (rhsTmp == nullptr || isModifyOp || lhsIsSwizzle) {
rhsTmp = addTmpVar("storeTemp", objDerefType);
// Partial updates not yet supported
if (!writesAllComponents(rhsTmp, lhsAsBinary)) {
error(loc, "unimplemented: partial image updates", "", "");
}
// Assign storeTemp = rhs
if (isModifyOp) {
// We have to make a temp var for the coordinate, to avoid evaluating it twice.
coordTmp = addTmpVar("coordTemp", coord->getType());
makeBinary(EOpAssign, coordTmp, coord); // coordtmp = load[param1]
makeLoad(rhsTmp, object, coordTmp, objDerefType); // rhsTmp = OpImageLoad(object, coordTmp)
}
// rhsTmp op= rhs.
makeBinary(assignOp, addSwizzle(intermediate.addSymbol(*rhsTmp), lhsAsBinary), rhs);
}
makeStore(object, coordTmp, rhsTmp); // add a store
return finishSequence(rhsTmp, objDerefType); // return rhsTmp from sequence
}
default:
break;
}
}
if (nodeAsUnary) {
const TOperator assignOp = nodeAsUnary->getOp();
switch (assignOp) {
case EOpPreIncrement:
case EOpPreDecrement:
{
// We turn this into:
// OpSequence
// coordtmp = load's param1
// rhsTmp = OpImageLoad(object, coordTmp)
// rhsTmp op
// OpImageStore(object, coordTmp, rhsTmp)
// rhsTmp
TIntermSymbol* rhsTmp = addTmpVar("storeTemp", objDerefType);
TIntermTyped* coordTmp = addTmpVar("coordTemp", coord->getType());
makeBinary(EOpAssign, coordTmp, coord); // coordtmp = load[param1]
makeLoad(rhsTmp, object, coordTmp, objDerefType); // rhsTmp = OpImageLoad(object, coordTmp)
makeUnary(assignOp, rhsTmp); // op rhsTmp
makeStore(object, coordTmp, rhsTmp); // OpImageStore(object, coordTmp, rhsTmp)
return finishSequence(rhsTmp, objDerefType); // return rhsTmp from sequence
}
case EOpPostIncrement:
case EOpPostDecrement:
{
// We turn this into:
// OpSequence
// coordtmp = load's param1
// rhsTmp1 = OpImageLoad(object, coordTmp)
// rhsTmp2 = rhsTmp1
// rhsTmp2 op
// OpImageStore(object, coordTmp, rhsTmp2)
// rhsTmp1 (pre-op value)
TIntermSymbol* rhsTmp1 = addTmpVar("storeTempPre", objDerefType);
TIntermSymbol* rhsTmp2 = addTmpVar("storeTempPost", objDerefType);
TIntermTyped* coordTmp = addTmpVar("coordTemp", coord->getType());
makeBinary(EOpAssign, coordTmp, coord); // coordtmp = load[param1]
makeLoad(rhsTmp1, object, coordTmp, objDerefType); // rhsTmp1 = OpImageLoad(object, coordTmp)
makeBinary(EOpAssign, rhsTmp2, rhsTmp1); // rhsTmp2 = rhsTmp1
makeUnary(assignOp, rhsTmp2); // rhsTmp op
makeStore(object, coordTmp, rhsTmp2); // OpImageStore(object, coordTmp, rhsTmp2)
return finishSequence(rhsTmp1, objDerefType); // return rhsTmp from sequence
}
default:
break;
}
}
if (lhs)
if (lValueErrorCheck(loc, op, lhs))
return nullptr;
return node;
}
void HlslParseContext::handlePragma(const TSourceLoc& loc, const TVector<TString>& tokens)
{
if (pragmaCallback)
pragmaCallback(loc.line, tokens);
if (tokens.size() == 0)
return;
}
//
// Look at a '.' field selector string and change it into offsets
// for a vector or scalar
//
// Returns true if there is no error.
//
bool HlslParseContext::parseVectorFields(const TSourceLoc& loc, const TString& compString, int vecSize, TVectorFields& fields)
{
fields.num = (int)compString.size();
if (fields.num > 4) {
error(loc, "illegal vector field selection", compString.c_str(), "");
return false;
}
enum {
exyzw,
ergba,
estpq,
} fieldSet[4];
for (int i = 0; i < fields.num; ++i) {
switch (compString[i]) {
case 'x':
fields.offsets[i] = 0;
fieldSet[i] = exyzw;
break;
case 'r':
fields.offsets[i] = 0;
fieldSet[i] = ergba;
break;
case 's':
fields.offsets[i] = 0;
fieldSet[i] = estpq;
break;
case 'y':
fields.offsets[i] = 1;
fieldSet[i] = exyzw;
break;
case 'g':
fields.offsets[i] = 1;
fieldSet[i] = ergba;
break;
case 't':
fields.offsets[i] = 1;
fieldSet[i] = estpq;
break;
case 'z':
fields.offsets[i] = 2;
fieldSet[i] = exyzw;
break;
case 'b':
fields.offsets[i] = 2;
fieldSet[i] = ergba;
break;
case 'p':
fields.offsets[i] = 2;
fieldSet[i] = estpq;
break;
case 'w':
fields.offsets[i] = 3;
fieldSet[i] = exyzw;
break;
case 'a':
fields.offsets[i] = 3;
fieldSet[i] = ergba;
break;
case 'q':
fields.offsets[i] = 3;
fieldSet[i] = estpq;
break;
default:
error(loc, "illegal vector field selection", compString.c_str(), "");
return false;
}
}
for (int i = 0; i < fields.num; ++i) {
if (fields.offsets[i] >= vecSize) {
error(loc, "vector field selection out of range", compString.c_str(), "");
return false;
}
if (i > 0) {
if (fieldSet[i] != fieldSet[i - 1]) {
error(loc, "illegal - vector component fields not from the same set", compString.c_str(), "");
return false;
}
}
}
return true;
}
//
// Handle seeing a variable identifier in the grammar.
//
TIntermTyped* HlslParseContext::handleVariable(const TSourceLoc& loc, TSymbol* symbol, const TString* string)
{
if (symbol == nullptr)
symbol = symbolTable.find(*string);
if (symbol && symbol->getAsVariable() && symbol->getAsVariable()->isUserType()) {
error(loc, "expected symbol, not user-defined type", string->c_str(), "");
return nullptr;
}
// Error check for requiring specific extensions present.
if (symbol && symbol->getNumExtensions())
requireExtensions(loc, symbol->getNumExtensions(), symbol->getExtensions(), symbol->getName().c_str());
const TVariable* variable;
const TAnonMember* anon = symbol ? symbol->getAsAnonMember() : nullptr;
TIntermTyped* node = nullptr;
if (anon) {
// It was a member of an anonymous container.
// Create a subtree for its dereference.
variable = anon->getAnonContainer().getAsVariable();
TIntermTyped* container = intermediate.addSymbol(*variable, loc);
TIntermTyped* constNode = intermediate.addConstantUnion(anon->getMemberNumber(), loc);
node = intermediate.addIndex(EOpIndexDirectStruct, container, constNode, loc);
node->setType(*(*variable->getType().getStruct())[anon->getMemberNumber()].type);
if (node->getType().hiddenMember())
error(loc, "member of nameless block was not redeclared", string->c_str(), "");
} else {
// Not a member of an anonymous container.
// The symbol table search was done in the lexical phase.
// See if it was a variable.
variable = symbol ? symbol->getAsVariable() : nullptr;
if (variable) {
if ((variable->getType().getBasicType() == EbtBlock ||
variable->getType().getBasicType() == EbtStruct) && variable->getType().getStruct() == nullptr) {
error(loc, "cannot be used (maybe an instance name is needed)", string->c_str(), "");
variable = nullptr;
}
} else {
if (symbol)
error(loc, "variable name expected", string->c_str(), "");
}
// Recovery, if it wasn't found or was not a variable.
if (! variable) {
error(loc, "unknown variable", string->c_str(), "");
variable = new TVariable(string, TType(EbtVoid));
}
if (variable->getType().getQualifier().isFrontEndConstant())
node = intermediate.addConstantUnion(variable->getConstArray(), variable->getType(), loc);
else
node = intermediate.addSymbol(*variable, loc);
}
if (variable->getType().getQualifier().isIo())
intermediate.addIoAccessed(*string);
return node;
}
//
// Handle operator[] on any objects it applies to. Currently:
// Textures
// Buffers
//
TIntermTyped* HlslParseContext::handleBracketOperator(const TSourceLoc& loc, TIntermTyped* base, TIntermTyped* index)
{
// handle r-value operator[] on textures and images. l-values will be processed later.
if (base->getType().getBasicType() == EbtSampler && !base->isArray()) {
const TSampler& sampler = base->getType().getSampler();
if (sampler.isImage() || sampler.isTexture()) {
TIntermAggregate* load = new TIntermAggregate(sampler.isImage() ? EOpImageLoad : EOpTextureFetch);
load->setType(TType(sampler.type, EvqTemporary, sampler.vectorSize));
load->setLoc(loc);
load->getSequence().push_back(base);
load->getSequence().push_back(index);
// Textures need a MIP. First indirection is always to mip 0. If there's another, we'll add it
// later.
if (sampler.isTexture())
load->getSequence().push_back(intermediate.addConstantUnion(0, loc, true));
return load;
}
}
return nullptr;
}
//
// Handle seeing a base[index] dereference in the grammar.
//
TIntermTyped* HlslParseContext::handleBracketDereference(const TSourceLoc& loc, TIntermTyped* base, TIntermTyped* index)
{
TIntermTyped* result = handleBracketOperator(loc, base, index);
if (result != nullptr)
return result; // it was handled as an operator[]
bool flattened = false;
int indexValue = 0;
if (index->getQualifier().storage == EvqConst) {
indexValue = index->getAsConstantUnion()->getConstArray()[0].getIConst();
checkIndex(loc, base->getType(), indexValue);
}
variableCheck(base);
if (! base->isArray() && ! base->isMatrix() && ! base->isVector()) {
if (base->getAsSymbolNode())
error(loc, " left of '[' is not of type array, matrix, or vector ", base->getAsSymbolNode()->getName().c_str(), "");
else
error(loc, " left of '[' is not of type array, matrix, or vector ", "expression", "");
} else if (base->getType().getQualifier().storage == EvqConst && index->getQualifier().storage == EvqConst)
return intermediate.foldDereference(base, indexValue, loc);
else {
// at least one of base and index is variable...
if (base->getAsSymbolNode() && (wasFlattened(base) || shouldFlatten(base->getType()))) {
if (index->getQualifier().storage != EvqConst)
error(loc, "Invalid variable index to flattened array", base->getAsSymbolNode()->getName().c_str(), "");
result = flattenAccess(base, indexValue);
flattened = (result != base);
} else {
splitAccessArray(loc, base, index);
if (index->getQualifier().storage == EvqConst) {
if (base->getType().isImplicitlySizedArray())
updateImplicitArraySize(loc, base, indexValue);
result = intermediate.addIndex(EOpIndexDirect, base, index, loc);
} else {
result = intermediate.addIndex(EOpIndexIndirect, base, index, loc);
}
}
}
if (result == nullptr) {
// Insert dummy error-recovery result
result = intermediate.addConstantUnion(0.0, EbtFloat, loc);
} else {
// If the array reference was flattened, it has the correct type. E.g, if it was
// a uniform array, it was flattened INTO a set of scalar uniforms, not scalar temps.
// In that case, we preserve the qualifiers.
if (!flattened) {
// Insert valid dereferenced result
TType newType(base->getType(), 0); // dereferenced type
if (base->getType().getQualifier().storage == EvqConst && index->getQualifier().storage == EvqConst)
newType.getQualifier().storage = EvqConst;
else
newType.getQualifier().storage = EvqTemporary;
result->setType(newType);
}
}
return result;
}
void HlslParseContext::checkIndex(const TSourceLoc& /*loc*/, const TType& /*type*/, int& /*index*/)
{
// HLSL todo: any rules for index fixups?
}
// Handle seeing a binary node with a math operation.
TIntermTyped* HlslParseContext::handleBinaryMath(const TSourceLoc& loc, const char* str, TOperator op, TIntermTyped* left, TIntermTyped* right)
{
TIntermTyped* result = intermediate.addBinaryMath(op, left, right, loc);
if (! result)
binaryOpError(loc, str, left->getCompleteString(), right->getCompleteString());
return result;
}
// Handle seeing a unary node with a math operation.
TIntermTyped* HlslParseContext::handleUnaryMath(const TSourceLoc& loc, const char* str, TOperator op, TIntermTyped* childNode)
{
TIntermTyped* result = intermediate.addUnaryMath(op, childNode, loc);
if (result)
return result;
else
unaryOpError(loc, str, childNode->getCompleteString());
return childNode;
}
//
// Handle seeing a base.field dereference in the grammar.
//
TIntermTyped* HlslParseContext::handleDotDereference(const TSourceLoc& loc, TIntermTyped* base, const TString& field)
{
variableCheck(base);
//
// methods can't be resolved until we later see the function-calling syntax.
// Save away the name in the AST for now. Processing is completed in
// handleLengthMethod(), etc.
//
if (field == "length") {
return intermediate.addMethod(base, TType(EbtInt), &field, loc);
} else if (field == "CalculateLevelOfDetail" ||
field == "CalculateLevelOfDetailUnclamped" ||
field == "Gather" ||
field == "GatherRed" ||
field == "GatherGreen" ||
field == "GatherBlue" ||
field == "GatherAlpha" ||
field == "GatherCmp" ||
field == "GatherCmpRed" ||
field == "GatherCmpGreen" ||
field == "GatherCmpBlue" ||
field == "GatherCmpAlpha" ||
field == "GetDimensions" ||
field == "GetSamplePosition" ||
field == "Load" ||
field == "Sample" ||
field == "SampleBias" ||
field == "SampleCmp" ||
field == "SampleCmpLevelZero" ||
field == "SampleGrad" ||
field == "SampleLevel") {
// If it's not a method on a sampler object, we fall through in case it is a struct member.
if (base->getType().getBasicType() == EbtSampler) {
const TSampler& sampler = base->getType().getSampler();
if (! sampler.isPureSampler()) {
const int vecSize = sampler.isShadow() ? 1 : 4; // TODO: handle arbitrary sample return sizes
return intermediate.addMethod(base, TType(sampler.type, EvqTemporary, vecSize), &field, loc);
}
}
} else if (field == "Append" ||
field == "RestartStrip") {
// We cannot check the type here: it may be sanitized if we're not compiling a geometry shader, but
// the code is around in the shader source.
return intermediate.addMethod(base, TType(EbtVoid), &field, loc);
}
// It's not .length() if we get to here.
if (base->isArray()) {
error(loc, "cannot apply to an array:", ".", field.c_str());
return base;
}
// It's neither an array nor .length() if we get here,
// leaving swizzles and struct/block dereferences.
TIntermTyped* result = base;
if (base->isVector() || base->isScalar()) {
TVectorFields fields;
if (! parseVectorFields(loc, field, base->getVectorSize(), fields)) {
fields.num = 1;
fields.offsets[0] = 0;
}
if (base->isScalar()) {
if (fields.num == 1)
return result;
else {
TType type(base->getBasicType(), EvqTemporary, fields.num);
return addConstructor(loc, base, type);
}
}
if (base->getVectorSize() == 1) {
TType scalarType(base->getBasicType(), EvqTemporary, 1);
if (fields.num == 1)
return addConstructor(loc, base, scalarType);
else {
TType vectorType(base->getBasicType(), EvqTemporary, fields.num);
return addConstructor(loc, addConstructor(loc, base, scalarType), vectorType);
}
}
if (base->getType().getQualifier().isFrontEndConstant())
result = intermediate.foldSwizzle(base, fields, loc);
else {
if (fields.num == 1) {
TIntermTyped* index = intermediate.addConstantUnion(fields.offsets[0], loc);
result = intermediate.addIndex(EOpIndexDirect, base, index, loc);
result->setType(TType(base->getBasicType(), EvqTemporary));
} else {
TString vectorString = field;
TIntermTyped* index = intermediate.addSwizzle(fields, loc);
result = intermediate.addIndex(EOpVectorSwizzle, base, index, loc);
result->setType(TType(base->getBasicType(), EvqTemporary, base->getType().getQualifier().precision, (int)vectorString.size()));
}
}
} else if (base->getBasicType() == EbtStruct || base->getBasicType() == EbtBlock) {
const TTypeList* fields = base->getType().getStruct();
bool fieldFound = false;
int member;
for (member = 0; member < (int)fields->size(); ++member) {
if ((*fields)[member].type->getFieldName() == field) {
fieldFound = true;
break;
}
}
if (fieldFound) {
if (base->getAsSymbolNode() && (wasFlattened(base) || shouldFlatten(base->getType()))) {
result = flattenAccess(base, member);
} else {
// Update the base and member to access if this was a split structure.
result = splitAccessStruct(loc, base, member);
fields = base->getType().getStruct();
if (result == nullptr) {
if (base->getType().getQualifier().storage == EvqConst)
result = intermediate.foldDereference(base, member, loc);
else {
TIntermTyped* index = intermediate.addConstantUnion(member, loc);
result = intermediate.addIndex(EOpIndexDirectStruct, base, index, loc);
result->setType(*(*fields)[member].type);
}
}
}
} else
error(loc, "no such field in structure", field.c_str(), "");
} else
error(loc, "does not apply to this type:", field.c_str(), base->getType().getCompleteString().c_str());
return result;
}
// Determine whether we should split this type
bool HlslParseContext::shouldSplit(const TType& type)
{
if (! inEntryPoint)
return false;
const TStorageQualifier qualifier = type.getQualifier().storage;
// If it contains interstage IO, but not ONLY interstage IO, split the struct.
return type.isStruct() && type.containsBuiltInInterstageIO() &&
(qualifier == EvqVaryingIn || qualifier == EvqVaryingOut);
}
// Split the type of the given node into two structs:
// 1. interstage IO
// 2. everything else
// IO members are put into the ioStruct. The type is modified to remove them.
void HlslParseContext::split(TIntermTyped* node)
{
if (node == nullptr)
return;
TIntermSymbol* symNode = node->getAsSymbolNode();
if (symNode == nullptr)
return;
// Create a new variable:
TType& splitType = split(*symNode->getType().clone(), symNode->getName());
splitIoVars[symNode->getId()] = makeInternalVariable(symNode->getName(), splitType);
}
// Split the type of the given variable into two structs:
void HlslParseContext::split(const TVariable& variable)
{
const TType& type = variable.getType();
TString name = (&variable == entryPointOutput) ? "" : variable.getName();
// Create a new variable:
TType& splitType = split(*type.clone(), name);
splitIoVars[variable.getUniqueId()] = makeInternalVariable(variable.getName(), splitType);
}
// Recursive implementation of split(const TVariable& variable).
// Returns reference to the modified type.
TType& HlslParseContext::split(TType& type, TString name, const TType* outerStructType)
{
const TArraySizes* arraySizes = nullptr;
// At the outer-most scope, remember the struct type so we can examine its storage class
// at deeper levels.
if (outerStructType == nullptr)
outerStructType = &type;
if (type.isArray())
arraySizes = &type.getArraySizes();
// We can ignore arrayness: it's uninvolved.
if (type.isStruct()) {
TTypeList* userStructure = type.getWritableStruct();
// Get iterator to (now at end) set of builtin iterstage IO members
const auto firstIo = std::stable_partition(userStructure->begin(), userStructure->end(),
[](const TTypeLoc& t) {return !t.type->isBuiltInInterstageIO();});
// Move those to the builtin IO. However, we also propagate arrayness (just one level is handled
// now) to this variable.
for (auto ioType = firstIo; ioType != userStructure->end(); ++ioType) {
const TType& memberType = *ioType->type;
TVariable* ioVar = makeInternalVariable(name + (name.empty() ? "" : ".") + memberType.getFieldName(), memberType);
if (arraySizes)
ioVar->getWritableType().newArraySizes(*arraySizes);
interstageBuiltInIo[tInterstageIoData(memberType, *outerStructType)] = ioVar;
// Merge qualifier from the user structure
mergeQualifiers(ioVar->getWritableType().getQualifier(), outerStructType->getQualifier());
}
// Erase the IO vars from the user structure.
userStructure->erase(firstIo, userStructure->end());
// Recurse further into the members.
for (unsigned int i = 0; i < userStructure->size(); ++i)
split(*(*userStructure)[i].type,
name + (name.empty() ? "" : ".") + (*userStructure)[i].type->getFieldName(),
outerStructType);
}
return type;
}
// Determine whether we should flatten an arbitrary type.
bool HlslParseContext::shouldFlatten(const TType& type) const
{
return shouldFlattenIO(type) || shouldFlattenUniform(type);
}
// Is this an IO variable that can't be passed down the stack?
// E.g., pipeline inputs to the vertex stage and outputs from the fragment stage.
bool HlslParseContext::shouldFlattenIO(const TType& type) const
{
if (! inEntryPoint)
return false;
const TStorageQualifier qualifier = type.getQualifier().storage;
if (!type.isStruct())
return false;
return ((language == EShLangVertex && qualifier == EvqVaryingIn) ||
(language == EShLangFragment && qualifier == EvqVaryingOut));
}
// Is this a uniform array which should be flattened?
bool HlslParseContext::shouldFlattenUniform(const TType& type) const
{
const TStorageQualifier qualifier = type.getQualifier().storage;
return ((type.isArray() && intermediate.getFlattenUniformArrays()) || type.isStruct()) &&
qualifier == EvqUniform &&
type.containsOpaque();
}
// Top level variable flattening: construct data
void HlslParseContext::flatten(const TSourceLoc& loc, const TVariable& variable)
{
const TType& type = variable.getType();
// emplace gives back a pair whose .first is an iterator to the item...
auto entry = flattenMap.emplace(variable.getUniqueId(),
TFlattenData(type.getQualifier().layoutBinding));
// ... and the item is a map pair, so first->second is the TFlattenData itself.
flatten(loc, variable, type, entry.first->second, "");
}
// Recursively flatten the given variable at the provided type, building the flattenData as we go.
//
// This is mutually recursive with flattenStruct and flattenArray.
// We are going to flatten an arbitrarily nested composite structure into a linear sequence of
// members, and later on, we want to turn a path through the tree structure into a final
// location in this linear sequence.
//
// If the tree was N-ary, that can be directly calculated. However, we are dealing with
// arbitrary numbers - perhaps a struct of 7 members containing an array of 3. Thus, we must
// build a data structure to allow the sequence of bracket and dot operators on arrays and
// structs to arrive at the proper member.
//
// To avoid storing a tree with pointers, we are going to flatten the tree into a vector of integers.
// The leaves are the indexes into the flattened member array.
// Each level will have the next location for the Nth item stored sequentially, so for instance:
//
// struct { float2 a[2]; int b; float4 c[3] };
//
// This will produce the following flattened tree:
// Pos: 0 1 2 3 4 5 6 7 8 9 10 11 12 13
// (3, 7, 8, 5, 6, 0, 1, 2, 11, 12, 13, 3, 4, 5}
//
// Given a reference to mystruct.c[1], the access chain is (2,1), so we traverse:
// (0+2) = 8 --> (8+1) = 12 --> 12 = 4
//
// so the 4th flattened member in traversal order is ours.
//
int HlslParseContext::flatten(const TSourceLoc& loc, const TVariable& variable, const TType& type,
TFlattenData& flattenData, TString name)
{
// If something is an arrayed struct, the array flattener will recursively call flatten()
// to then flatten the struct, so this is an "if else": we don't do both.
if (type.isArray())
return flattenArray(loc, variable, type, flattenData, name);
else if (type.isStruct())
return flattenStruct(loc, variable, type, flattenData, name);
else {
assert(0); // should never happen
return -1;
}
}
// Add a single flattened member to the flattened data being tracked for the composite
// Returns true for the final flattening level.
int HlslParseContext::addFlattenedMember(const TSourceLoc& loc,
const TVariable& variable, const TType& type, TFlattenData& flattenData,
const TString& memberName, bool track)
{
if (isFinalFlattening(type)) {
// This is as far as we flatten. Insert the variable.
TVariable* memberVariable = makeInternalVariable(memberName, type);
mergeQualifiers(memberVariable->getWritableType().getQualifier(), variable.getType().getQualifier());
if (flattenData.nextBinding != TQualifier::layoutBindingEnd)
memberVariable->getWritableType().getQualifier().layoutBinding = flattenData.nextBinding++;
flattenData.offsets.push_back(static_cast<int>(flattenData.members.size()));
flattenData.members.push_back(memberVariable);
if (track)
trackLinkageDeferred(*memberVariable);
return static_cast<int>(flattenData.offsets.size())-1; // location of the member reference
} else {
// Further recursion required
return flatten(loc, variable, type, flattenData, memberName);
}
}
// Figure out the mapping between an aggregate's top members and an
// equivalent set of individual variables.
//
// N.B. Erases memory of I/O-related annotations in the original type's member,
// effecting a transfer of this information to the flattened variable form.
//
// Assumes shouldFlatten() or equivalent was called first.
int HlslParseContext::flattenStruct(const TSourceLoc& loc, const TVariable& variable, const TType& type,
TFlattenData& flattenData, TString name)
{
assert(type.isStruct());
auto members = *type.getStruct();
// Reserve space for this tree level.
int start = static_cast<int>(flattenData.offsets.size());
int pos = start;
flattenData.offsets.resize(int(pos + members.size()), -1);
for (int member = 0; member < (int)members.size(); ++member) {
TType& dereferencedType = *members[member].type;
const TString memberName = name + (name.empty() ? "" : ".") + dereferencedType.getFieldName();
const int mpos = addFlattenedMember(loc, variable, dereferencedType, flattenData, memberName, false);
flattenData.offsets[pos++] = mpos;
// N.B. Erase I/O-related annotations from the source-type member.
dereferencedType.getQualifier().makeTemporary();
}
return start;
}
// Figure out mapping between an array's members and an
// equivalent set of individual variables.
//
// Assumes shouldFlatten() or equivalent was called first.
int HlslParseContext::flattenArray(const TSourceLoc& loc, const TVariable& variable, const TType& type,
TFlattenData& flattenData, TString name)
{
assert(type.isArray());
if (type.isImplicitlySizedArray())
error(loc, "cannot flatten implicitly sized array", variable.getName().c_str(), "");
const int size = type.getOuterArraySize();
const TType dereferencedType(type, 0);
if (name.empty())
name = variable.getName();
// Reserve space for this tree level.
int start = static_cast<int>(flattenData.offsets.size());
int pos = start;
flattenData.offsets.resize(int(pos + size), -1);
for (int element=0; element < size; ++element) {
char elementNumBuf[20]; // sufficient for MAXINT
snprintf(elementNumBuf, sizeof(elementNumBuf)-1, "[%d]", element);
const int mpos = addFlattenedMember(loc, variable, dereferencedType, flattenData,
name + elementNumBuf, true);
flattenData.offsets[pos++] = mpos;
}
return start;
}
// Return true if we have flattened this node.
bool HlslParseContext::wasFlattened(const TIntermTyped* node) const
{
return node != nullptr && node->getAsSymbolNode() != nullptr &&
wasFlattened(node->getAsSymbolNode()->getId());
}
// Return true if we have split this structure
bool HlslParseContext::wasSplit(const TIntermTyped* node) const
{
return node != nullptr && node->getAsSymbolNode() != nullptr &&
wasSplit(node->getAsSymbolNode()->getId());
}
// Turn an access into an aggregate that was flattened to instead be
// an access to the individual variable the member was flattened to.
// Assumes shouldFlatten() or equivalent was called first.
TIntermTyped* HlslParseContext::flattenAccess(TIntermTyped* base, int member)
{
const TType dereferencedType(base->getType(), member); // dereferenced type
const TIntermSymbol& symbolNode = *base->getAsSymbolNode();
const auto flattenData = flattenMap.find(symbolNode.getId());
if (flattenData == flattenMap.end())
return base;
// Calculate new cumulative offset from the packed tree
flattenOffset.back() = flattenData->second.offsets[flattenOffset.back() + member];
if (isFinalFlattening(dereferencedType)) {
// Finished flattening: create symbol for variable
member = flattenData->second.offsets[flattenOffset.back()];
const TVariable* memberVariable = flattenData->second.members[member];
return intermediate.addSymbol(*memberVariable);
} else {
// If this is not the final flattening, accumulate the position and return
// an object of the partially dereferenced type.
return new TIntermSymbol(symbolNode.getId(), "flattenShadow", dereferencedType);
}
}
// Find and return the split IO TVariable for id, or nullptr if none.
TVariable* HlslParseContext::getSplitIoVar(int id) const
{
const auto splitIoVar = splitIoVars.find(id);
if (splitIoVar == splitIoVars.end())
return nullptr;
return splitIoVar->second;
}
// Find and return the split IO TVariable for variable, or nullptr if none.
TVariable* HlslParseContext::getSplitIoVar(const TVariable* var) const
{
if (var == nullptr)
return nullptr;
return getSplitIoVar(var->getUniqueId());
}
// Find and return the split IO TVariable for symbol in this node, or nullptr if none.
TVariable* HlslParseContext::getSplitIoVar(const TIntermTyped* node) const
{
if (node == nullptr)
return nullptr;
const TIntermSymbol* symbolNode = node->getAsSymbolNode();
if (symbolNode == nullptr)
return nullptr;
return getSplitIoVar(symbolNode->getId());
}
// Remember the index used to dereference into this structure, in case it has to be moved to a
// split-off builtin IO member.
void HlslParseContext::splitAccessArray(const TSourceLoc& loc, TIntermTyped* base, TIntermTyped* index)
{
const TVariable* splitIoVar = getSplitIoVar(base);
// Not a split structure
if (splitIoVar == nullptr)
return;
if (builtInIoBase) {
error(loc, "only one array dimension supported for builtIn IO variable", "", "");
return;
}
builtInIoBase = base;
builtInIoIndex = index;
}
// Turn an access into an struct that was split to instead be an
// access to either the modified structure, or a direct reference to
// one of the split member variables.
TIntermTyped* HlslParseContext::splitAccessStruct(const TSourceLoc& loc, TIntermTyped*& base, int& member)
{
// nothing to do
if (base == nullptr)
return nullptr;
// We have a pending bracket reference to an outer struct that we may want to move to an inner member.
if (builtInIoBase)
base = builtInIoBase;
const TVariable* splitIoVar = getSplitIoVar(base);
if (splitIoVar == nullptr)
return nullptr;
const TTypeList& members = *base->getType().getStruct();
const TType& memberType = *members[member].type;
if (memberType.isBuiltInInterstageIO()) {
// It's one of the interstage IO variables we split off.
TIntermTyped* builtIn = intermediate.addSymbol(*interstageBuiltInIo[tInterstageIoData(memberType, base->getType())], loc);
// If there's an array reference to an outer split struct, we re-apply it here.
if (builtInIoIndex != nullptr) {
if (builtInIoIndex->getQualifier().storage == EvqConst)
builtIn = intermediate.addIndex(EOpIndexDirect, builtIn, builtInIoIndex, loc);
else
builtIn = intermediate.addIndex(EOpIndexIndirect, builtIn, builtInIoIndex, loc);
builtIn->setType(memberType);
builtInIoIndex = nullptr;
builtInIoBase = nullptr;
}
return builtIn;
} else {
// It's not an IO variable. Find the equivalent index into the new variable.
base = intermediate.addSymbol(*splitIoVar, loc);
int newMember = 0;
for (int m=0; m<member; ++m)
if (!members[m].type->isBuiltInInterstageIO())
++newMember;
member = newMember;
return nullptr;
}
}
// Variables that correspond to the user-interface in and out of a stage
// (not the built-in interface) are assigned locations and
// registered as a linkage node (part of the stage's external interface).
//
// Assumes it is called in the order in which locations should be assigned.
void HlslParseContext::assignLocations(TVariable& variable)
{
const auto assignLocation = [&](TVariable& variable) {
const TQualifier& qualifier = variable.getType().getQualifier();
if (qualifier.storage == EvqVaryingIn || qualifier.storage == EvqVaryingOut) {
if (qualifier.builtIn == EbvNone) {
if (qualifier.storage == EvqVaryingIn) {
variable.getWritableType().getQualifier().layoutLocation = nextInLocation;
nextInLocation += intermediate.computeTypeLocationSize(variable.getType());
} else {
variable.getWritableType().getQualifier().layoutLocation = nextOutLocation;
nextOutLocation += intermediate.computeTypeLocationSize(variable.getType());
}
}
trackLinkage(variable);
}
};
if (wasFlattened(variable.getUniqueId())) {
auto& memberList = flattenMap[variable.getUniqueId()].members;
for (auto member = memberList.begin(); member != memberList.end(); ++member)
assignLocation(**member);
} else if (wasSplit(variable.getUniqueId())) {
TVariable* splitIoVar = getSplitIoVar(&variable);
const TTypeList* structure = splitIoVar->getType().getStruct();
// Struct splitting can produce empty structures if the only members of the
// struct were builtin interstage IO types. Only assign locations if it
// isn't a struct, or is a non-empty struct.
if (structure == nullptr || !structure->empty())
assignLocation(*splitIoVar);
} else {
assignLocation(variable);
}
}
//
// Handle seeing a function declarator in the grammar. This is the precursor
// to recognizing a function prototype or function definition.
//
TFunction& HlslParseContext::handleFunctionDeclarator(const TSourceLoc& loc, TFunction& function, bool prototype)
{
//
// Multiple declarations of the same function name are allowed.
//
// If this is a definition, the definition production code will check for redefinitions
// (we don't know at this point if it's a definition or not).
//
bool builtIn;
TSymbol* symbol = symbolTable.find(function.getMangledName(), &builtIn);
const TFunction* prevDec = symbol ? symbol->getAsFunction() : 0;
if (prototype) {
// All built-in functions are defined, even though they don't have a body.
// Count their prototype as a definition instead.
if (symbolTable.atBuiltInLevel())
function.setDefined();
else {
if (prevDec && ! builtIn)
symbol->getAsFunction()->setPrototyped(); // need a writable one, but like having prevDec as a const
function.setPrototyped();
}
}
// This insert won't actually insert it if it's a duplicate signature, but it will still check for
// other forms of name collisions.
if (! symbolTable.insert(function))
error(loc, "function name is redeclaration of existing name", function.getName().c_str(), "");
//
// If this is a redeclaration, it could also be a definition,
// in which case, we need to use the parameter names from this one, and not the one that's
// being redeclared. So, pass back this declaration, not the one in the symbol table.
//
return function;
}
// Add interstage IO variables to the linkage in canonical order.
void HlslParseContext::addInterstageIoToLinkage()
{
std::vector<tInterstageIoData> io;
io.reserve(interstageBuiltInIo.size());
for (auto ioVar = interstageBuiltInIo.begin(); ioVar != interstageBuiltInIo.end(); ++ioVar)
io.push_back(ioVar->first);
// Our canonical order is the TBuiltInVariable numeric order.
std::sort(io.begin(), io.end());
for (int idx = 0; idx < int(io.size()); ++idx)
trackLinkageDeferred(*interstageBuiltInIo[io[idx]]);
}
//
// Handle seeing the function prototype in front of a function definition in the grammar.
// The body is handled after this function returns.
//
TIntermAggregate* HlslParseContext::handleFunctionDefinition(const TSourceLoc& loc, TFunction& function,
const TAttributeMap& attributes)
{
currentCaller = function.getMangledName();
TSymbol* symbol = symbolTable.find(function.getMangledName());
TFunction* prevDec = symbol ? symbol->getAsFunction() : nullptr;
if (! prevDec)
error(loc, "can't find function", function.getName().c_str(), "");
// Note: 'prevDec' could be 'function' if this is the first time we've seen function
// as it would have just been put in the symbol table. Otherwise, we're looking up
// an earlier occurrence.
if (prevDec && prevDec->isDefined()) {
// Then this function already has a body.
error(loc, "function already has a body", function.getName().c_str(), "");
}
if (prevDec && ! prevDec->isDefined()) {
prevDec->setDefined();
// Remember the return type for later checking for RETURN statements.
currentFunctionType = &(prevDec->getType());
} else
currentFunctionType = new TType(EbtVoid);
functionReturnsValue = false;
inEntryPoint = function.getName().compare(intermediate.getEntryPointName().c_str()) == 0;
if (inEntryPoint) {
intermediate.setEntryPointMangledName(function.getMangledName().c_str());
intermediate.incrementEntryPointCount();
remapEntryPointIO(function);
if (entryPointOutput) {
if (shouldFlatten(entryPointOutput->getType()))
flatten(loc, *entryPointOutput);
if (shouldSplit(entryPointOutput->getType()))
split(*entryPointOutput);
assignLocations(*entryPointOutput);
}
} else
remapNonEntryPointIO(function);
// Insert the $Global constant buffer.
// TODO: this design fails if new members are declared between function definitions.
if (! insertGlobalUniformBlock())
error(loc, "failed to insert the global constant buffer", "uniform", "");
//
// New symbol table scope for body of function plus its arguments
//
pushScope();
//
// Insert parameters into the symbol table.
// If the parameter has no name, it's not an error, just don't insert it
// (could be used for unused args).
//
// Also, accumulate the list of parameters into the AST, so lower level code
// knows where to find parameters.
//
TIntermAggregate* paramNodes = new TIntermAggregate;
for (int i = 0; i < function.getParamCount(); i++) {
TParameter& param = function[i];
if (param.name != nullptr) {
TType* sanitizedType;
// If we're not in the entry point, parameters are sanitized types.
if (inEntryPoint)
sanitizedType = param.type;
else
sanitizedType = sanitizeType(param.type);
TVariable *variable = new TVariable(param.name, *sanitizedType);
// Insert the parameters with name in the symbol table.
if (! symbolTable.insert(*variable))
error(loc, "redefinition", variable->getName().c_str(), "");
else {
// get IO straightened out
if (inEntryPoint) {
if (shouldFlatten(*param.type))
flatten(loc, *variable);
if (shouldSplit(*param.type))
split(*variable);
assignLocations(*variable);
}
// Transfer ownership of name pointer to symbol table.
param.name = nullptr;
// Add the parameter to the AST
paramNodes = intermediate.growAggregate(paramNodes,
intermediate.addSymbol(*variable, loc),
loc);
}
} else
paramNodes = intermediate.growAggregate(paramNodes, intermediate.addSymbol(*param.type, loc), loc);
}
intermediate.setAggregateOperator(paramNodes, EOpParameters, TType(EbtVoid), loc);
loopNestingLevel = 0;
controlFlowNestingLevel = 0;
postEntryPointReturn = false;
// Handle function attributes
if (inEntryPoint) {
const TIntermAggregate* numThreads = attributes[EatNumThreads];
if (numThreads != nullptr) {
const TIntermSequence& sequence = numThreads->getSequence();
for (int lid = 0; lid < int(sequence.size()); ++lid)
intermediate.setLocalSize(lid, sequence[lid]->getAsConstantUnion()->getConstArray()[0].getIConst());
}
const TIntermAggregate* maxVertexCount = attributes[EatMaxVertexCount];
if (maxVertexCount != nullptr) {
intermediate.setVertices(maxVertexCount->getSequence()[0]->getAsConstantUnion()->getConstArray()[0].getIConst());
}
}
return paramNodes;
}
void HlslParseContext::handleFunctionBody(const TSourceLoc& loc, TFunction& function, TIntermNode* functionBody, TIntermNode*& node)
{
node = intermediate.growAggregate(node, functionBody);
intermediate.setAggregateOperator(node, EOpFunction, function.getType(), loc);
node->getAsAggregate()->setName(function.getMangledName().c_str());
popScope();
if (function.getType().getBasicType() != EbtVoid && ! functionReturnsValue)
error(loc, "function does not return a value:", "", function.getName().c_str());
}
// AST I/O is done through shader globals declared in the 'in' or 'out'
// storage class. An HLSL entry point has a return value, input parameters
// and output parameters. These need to get remapped to the AST I/O.
void HlslParseContext::remapEntryPointIO(TFunction& function)
{
// Will auto-assign locations here to the inputs/outputs defined by the entry point
const auto remapType = [&](TType& type) {
const auto remapBuiltInType = [&](TType& type) {
switch (type.getQualifier().builtIn) {
case EbvFragDepthGreater:
intermediate.setDepth(EldGreater);
type.getQualifier().builtIn = EbvFragDepth;
break;
case EbvFragDepthLesser:
intermediate.setDepth(EldLess);
type.getQualifier().builtIn = EbvFragDepth;
break;
default:
break;
}
};
remapBuiltInType(type);
if (type.isStruct()) {
auto members = *type.getStruct();
for (auto member = members.begin(); member != members.end(); ++member)
remapBuiltInType(*member->type);
}
};
// return value is actually a shader-scoped output (out)
if (function.getType().getBasicType() != EbtVoid) {
entryPointOutput = makeInternalVariable("@entryPointOutput", function.getType());
entryPointOutput->getWritableType().getQualifier().storage = EvqVaryingOut;
remapType(function.getWritableType());
}
// parameters are actually shader-scoped inputs and outputs (in or out)
for (int i = 0; i < function.getParamCount(); i++) {
TType& paramType = *function[i].type;
paramType.getQualifier().storage = paramType.getQualifier().isParamInput() ? EvqVaryingIn : EvqVaryingOut;
remapType(paramType);
}
}
// An HLSL function that looks like an entry point, but is not,
// declares entry point IO built-ins, but these have to be undone.
void HlslParseContext::remapNonEntryPointIO(TFunction& function)
{
const auto remapBuiltInType = [&](TType& type) { type.getQualifier().builtIn = EbvNone; };
// return value
if (function.getType().getBasicType() != EbtVoid)
remapBuiltInType(function.getWritableType());
// parameters
for (int i = 0; i < function.getParamCount(); i++)
remapBuiltInType(*function[i].type);
}
// Handle function returns, including type conversions to the function return type
// if necessary.
TIntermNode* HlslParseContext::handleReturnValue(const TSourceLoc& loc, TIntermTyped* value)
{
functionReturnsValue = true;
if (currentFunctionType->getBasicType() == EbtVoid) {
error(loc, "void function cannot return a value", "return", "");
return intermediate.addBranch(EOpReturn, loc);
} else if (*currentFunctionType != value->getType()) {
value = intermediate.addConversion(EOpReturn, *currentFunctionType, value);
if (value && *currentFunctionType != value->getType())
value = intermediate.addShapeConversion(EOpReturn, *currentFunctionType, value);
if (value == nullptr) {
error(loc, "type does not match, or is not convertible to, the function's return type", "return", "");
return value;
}
}
// The entry point needs to send any return value to the entry-point output instead.
// So, a subtree is built up, as a two-part sequence, with the first part being an
// assignment subtree, and the second part being a return with no value.
//
// Otherwise, for a non entry point, just return a return statement.
if (inEntryPoint) {
assert(entryPointOutput != nullptr); // should have been error tested at the beginning
TIntermSymbol* left = new TIntermSymbol(entryPointOutput->getUniqueId(), entryPointOutput->getName(),
entryPointOutput->getType());
TIntermNode* returnSequence = handleAssign(loc, EOpAssign, left, value);
returnSequence = intermediate.makeAggregate(returnSequence);
returnSequence = intermediate.growAggregate(returnSequence, intermediate.addBranch(EOpReturn, loc), loc);
returnSequence->getAsAggregate()->setOperator(EOpSequence);
return returnSequence;
} else
return intermediate.addBranch(EOpReturn, value, loc);
}
void HlslParseContext::handleFunctionArgument(TFunction* function,
TIntermTyped*& arguments, TIntermTyped* newArg)
{
TParameter param = { 0, new TType, nullptr };
param.type->shallowCopy(newArg->getType());
function->addParameter(param);
if (arguments)
arguments = intermediate.growAggregate(arguments, newArg);
else
arguments = newArg;
}
// Some simple source assignments need to be flattened to a sequence
// of AST assignments. Catch these and flatten, otherwise, pass through
// to intermediate.addAssign().
TIntermTyped* HlslParseContext::handleAssign(const TSourceLoc& loc, TOperator op, TIntermTyped* left, TIntermTyped* right) const
{
if (left == nullptr || right == nullptr)
return nullptr;
const bool isSplitLeft = wasSplit(left);
const bool isSplitRight = wasSplit(right);
const bool isFlattenLeft = wasFlattened(left);
const bool isFlattenRight = wasFlattened(right);
// OK to do a single assign if both are split, or both are unsplit. But if one is and the other
// isn't, we fall back to a memberwise copy.
if (! isFlattenLeft && ! isFlattenRight && !isSplitLeft && !isSplitRight)
return intermediate.addAssign(op, left, right, loc);
TIntermAggregate* assignList = nullptr;
const TVector<TVariable*>* leftVariables = nullptr;
const TVector<TVariable*>* rightVariables = nullptr;
// A temporary to store the right node's value, so we don't keep indirecting into it
// if it's not a simple symbol.
TVariable* rhsTempVar = nullptr;
// If the RHS is a simple symbol node, we'll copy it for each member.
TIntermSymbol* cloneSymNode = nullptr;
// Array structs are not yet handled in flattening. (Compilation error upstream, so
// this should never fire).
assert(!(left->getType().isStruct() && left->getType().isArray()));
int memberCount = 0;
// Track how many items there are to copy.
if (left->getType().isStruct())
memberCount = (int)left->getType().getStruct()->size();
if (left->getType().isArray())
memberCount = left->getType().getCumulativeArraySize();
if (isFlattenLeft)
leftVariables = &flattenMap.find(left->getAsSymbolNode()->getId())->second.members;
if (isFlattenRight) {
rightVariables = &flattenMap.find(right->getAsSymbolNode()->getId())->second.members;
} else {
// The RHS is not flattened. There are several cases:
// 1. 1 item to copy: Use the RHS directly.
// 2. >1 item, simple symbol RHS: we'll create a new TIntermSymbol node for each, but no assign to temp.
// 3. >1 item, complex RHS: assign it to a new temp variable, and create a TIntermSymbol for each member.
if (memberCount <= 1) {
// case 1: we'll use the symbol directly below. Nothing to do.
} else {
if (right->getAsSymbolNode() != nullptr) {
// case 2: we'll copy the symbol per iteration below.
cloneSymNode = right->getAsSymbolNode();
} else {
// case 3: assign to a temp, and indirect into that.
rhsTempVar = makeInternalVariable("flattenTemp", right->getType());
rhsTempVar->getWritableType().getQualifier().makeTemporary();
TIntermTyped* noFlattenRHS = intermediate.addSymbol(*rhsTempVar, loc);
// Add this to the aggregate being built.
assignList = intermediate.growAggregate(assignList, intermediate.addAssign(op, noFlattenRHS, right, loc), loc);
}
}
}
int memberIdx = 0;
// We track the outer-most aggregate, so that we can use its storage class later.
const TIntermTyped* outerLeft = left;
const TIntermTyped* outerRight = right;
const auto getMember = [&](bool isLeft, TIntermTyped* node, int member, TIntermTyped* splitNode, int splitMember) -> TIntermTyped * {
TIntermTyped* subTree;
const bool flattened = isLeft ? isFlattenLeft : isFlattenRight;
const bool split = isLeft ? isSplitLeft : isSplitRight;
const TIntermTyped* outer = isLeft ? outerLeft : outerRight;
const TVector<TVariable*>& flatVariables = isLeft ? *leftVariables : *rightVariables;
const TOperator op = node->getType().isArray() ? EOpIndexDirect : EOpIndexDirectStruct;
const TType derefType(node->getType(), member);
if (split && derefType.isBuiltInInterstageIO()) {
// copy from interstage IO builtin if needed
subTree = intermediate.addSymbol(*interstageBuiltInIo.find(tInterstageIoData(derefType, outer->getType()))->second);
} else if (flattened && isFinalFlattening(derefType)) {
subTree = intermediate.addSymbol(*flatVariables[memberIdx++]);
} else {
const TType splitDerefType(splitNode->getType(), splitMember);
subTree = intermediate.addIndex(op, splitNode, intermediate.addConstantUnion(splitMember, loc), loc);
subTree->setType(splitDerefType);
}
return subTree;
};
// Use the proper RHS node: a new symbol from a TVariable, copy
// of an TIntermSymbol node, or sometimes the right node directly.
right = rhsTempVar ? intermediate.addSymbol(*rhsTempVar, loc) :
cloneSymNode ? intermediate.addSymbol(*cloneSymNode) :
right;
// Cannot use auto here, because this is recursive, and auto can't work out the type without seeing the
// whole thing. So, we'll resort to an explicit type via std::function.
const std::function<void(TIntermTyped* left, TIntermTyped* right, TIntermTyped* splitLeft, TIntermTyped* splitRight)>
traverse = [&](TIntermTyped* left, TIntermTyped* right, TIntermTyped* splitLeft, TIntermTyped* splitRight) -> void {
// If we get here, we are assigning to or from a whole array or struct that must be
// flattened, so have to do member-by-member assignment:
if (left->getType().isArray()) {
const TType dereferencedType(left->getType(), 0);
// array case
for (int element=0; element < left->getType().getOuterArraySize(); ++element) {
// Add a new AST symbol node if we have a temp variable holding a complex RHS.
TIntermTyped* subLeft = getMember(true, left, element, left, element);
TIntermTyped* subRight = getMember(false, right, element, right, element);
if (isFinalFlattening(dereferencedType))
assignList = intermediate.growAggregate(assignList, intermediate.addAssign(op, subLeft, subRight, loc), loc);
else
traverse(subLeft, subRight, splitLeft, splitRight);
}
} else if (left->getType().isStruct()) {
// struct case
const auto& membersL = *left->getType().getStruct();
const auto& membersR = *right->getType().getStruct();
// These track the members in the split structures corresponding to the same in the unsplit structures,
// which we traverse in parallel.
int memberL = 0;
int memberR = 0;
for (int member = 0; member < int(membersL.size()); ++member) {
const TType& typeL = *membersL[member].type;
const TType& typeR = *membersR[member].type;
TIntermTyped* subLeft = getMember(true, left, member, left, member);
TIntermTyped* subRight = getMember(false, right, member, right, member);
// If there is no splitting, use the same values to avoid inefficiency.
TIntermTyped* subSplitLeft = isSplitLeft ? getMember(true, left, member, splitLeft, memberL) : subLeft;
TIntermTyped* subSplitRight = isSplitRight ? getMember(false, right, member, splitRight, memberR) : subRight;
// If this is the final flattening (no nested types below to flatten) we'll copy the member, else
// recurse into the type hierarchy. However, if splitting the struct, that means we can copy a whole
// subtree here IFF it does not itself contain any interstage built-in IO variables, so we only have to
// recurse into it if there's something for splitting to do. That can save a lot of AST verbosity for
// a bunch of memberwise copies.
if (isFinalFlattening(typeL) || (!isFlattenLeft && !isFlattenRight &&
!typeL.containsBuiltInInterstageIO() && !typeR.containsBuiltInInterstageIO())) {
assignList = intermediate.growAggregate(assignList, intermediate.addAssign(op, subSplitLeft, subSplitRight, loc), loc);
} else {
traverse(subLeft, subRight, subSplitLeft, subSplitRight);
}
memberL += (typeL.isBuiltInInterstageIO() ? 0 : 1);
memberR += (typeR.isBuiltInInterstageIO() ? 0 : 1);
}
} else {
assert(0); // we should never be called on a non-flattenable thing, because
// that case bails out above to a simple copy.
}
};
TIntermTyped* splitLeft = left;
TIntermTyped* splitRight = right;
// If either left or right was a split structure, we must read or write it, but still have to
// parallel-recurse through the unsplit structure to identify the builtin IO vars.
if (isSplitLeft)
splitLeft = intermediate.addSymbol(*getSplitIoVar(left), loc);
if (isSplitRight)
splitRight = intermediate.addSymbol(*getSplitIoVar(right), loc);
// This makes the whole assignment, recursing through subtypes as needed.
traverse(left, right, splitLeft, splitRight);
assert(assignList != nullptr);
assignList->setOperator(EOpSequence);
return assignList;
}
//
// HLSL atomic operations have slightly different arguments than
// GLSL/AST/SPIRV. The semantics are converted below in decomposeIntrinsic.
// This provides the post-decomposition equivalent opcode.
//
TOperator HlslParseContext::mapAtomicOp(const TSourceLoc& loc, TOperator op, bool isImage)
{
switch (op) {
case EOpInterlockedAdd: return isImage ? EOpImageAtomicAdd : EOpAtomicAdd;
case EOpInterlockedAnd: return isImage ? EOpImageAtomicAnd : EOpAtomicAnd;
case EOpInterlockedCompareExchange: return isImage ? EOpImageAtomicCompSwap : EOpAtomicCompSwap;
case EOpInterlockedMax: return isImage ? EOpImageAtomicMax : EOpAtomicMax;
case EOpInterlockedMin: return isImage ? EOpImageAtomicMin : EOpAtomicMin;
case EOpInterlockedOr: return isImage ? EOpImageAtomicOr : EOpAtomicOr;
case EOpInterlockedXor: return isImage ? EOpImageAtomicXor : EOpAtomicXor;
case EOpInterlockedExchange: return isImage ? EOpImageAtomicExchange : EOpAtomicExchange;
case EOpInterlockedCompareStore: // TODO: ...
default:
error(loc, "unknown atomic operation", "unknown op", "");
return EOpNull;
}
}
//
// Create a combined sampler/texture from separate sampler and texture.
//
TIntermAggregate* HlslParseContext::handleSamplerTextureCombine(const TSourceLoc& loc, TIntermTyped* argTex, TIntermTyped* argSampler)
{
TIntermAggregate* txcombine = new TIntermAggregate(EOpConstructTextureSampler);
txcombine->getSequence().push_back(argTex);
txcombine->getSequence().push_back(argSampler);
TSampler samplerType = argTex->getType().getSampler();
samplerType.combined = true;
samplerType.shadow = argSampler->getType().getSampler().shadow;
txcombine->setType(TType(samplerType, EvqTemporary));
txcombine->setLoc(loc);
return txcombine;
}
//
// Decompose DX9 and DX10 sample intrinsics & object methods into AST
//
void HlslParseContext::decomposeSampleMethods(const TSourceLoc& loc, TIntermTyped*& node, TIntermNode* arguments)
{
if (!node || !node->getAsOperator())
return;
const auto clampReturn = [&loc, &node, this](TIntermTyped* result, const TSampler& sampler) -> TIntermTyped* {
// Sampler return must always be a vec4, but we can construct a shorter vector
result->setType(TType(node->getType().getBasicType(), EvqTemporary, node->getVectorSize()));
if (sampler.vectorSize < (unsigned)node->getVectorSize()) {
// Too many components. Construct shorter vector from it.
const TType clampedType(result->getType().getBasicType(), EvqTemporary, sampler.vectorSize);
const TOperator op = intermediate.mapTypeToConstructorOp(clampedType);
result = constructBuiltIn(clampedType, op, result, loc, false);
}
result->setLoc(loc);
return result;
};
const TOperator op = node->getAsOperator()->getOp();
const TIntermAggregate* argAggregate = arguments ? arguments->getAsAggregate() : nullptr;
switch (op) {
// **** DX9 intrinsics: ****
case EOpTexture:
{
// Texture with ddx & ddy is really gradient form in HLSL
if (argAggregate->getSequence().size() == 4)
node->getAsAggregate()->setOperator(EOpTextureGrad);
break;
}
case EOpTextureBias:
{
TIntermTyped* arg0 = argAggregate->getSequence()[0]->getAsTyped(); // sampler
TIntermTyped* arg1 = argAggregate->getSequence()[1]->getAsTyped(); // coord
// HLSL puts bias in W component of coordinate. We extract it and add it to
// the argument list, instead
TIntermTyped* w = intermediate.addConstantUnion(3, loc, true);
TIntermTyped* bias = intermediate.addIndex(EOpIndexDirect, arg1, w, loc);
TOperator constructOp = EOpNull;
const TSampler& sampler = arg0->getType().getSampler();
switch (sampler.dim) {
case Esd1D: constructOp = EOpConstructFloat; break; // 1D
case Esd2D: constructOp = EOpConstructVec2; break; // 2D
case Esd3D: constructOp = EOpConstructVec3; break; // 3D
case EsdCube: constructOp = EOpConstructVec3; break; // also 3D
default: break;
}
TIntermAggregate* constructCoord = new TIntermAggregate(constructOp);
constructCoord->getSequence().push_back(arg1);
constructCoord->setLoc(loc);
// The input vector should never be less than 2, since there's always a bias.
// The max is for safety, and should be a no-op.
constructCoord->setType(TType(arg1->getBasicType(), EvqTemporary, std::max(arg1->getVectorSize() - 1, 0)));
TIntermAggregate* tex = new TIntermAggregate(EOpTexture);
tex->getSequence().push_back(arg0); // sampler
tex->getSequence().push_back(constructCoord); // coordinate
tex->getSequence().push_back(bias); // bias
node = clampReturn(tex, sampler);
break;
}
// **** DX10 methods: ****
case EOpMethodSample: // fall through
case EOpMethodSampleBias: // ...
{
TIntermTyped* argTex = argAggregate->getSequence()[0]->getAsTyped();
TIntermTyped* argSamp = argAggregate->getSequence()[1]->getAsTyped();
TIntermTyped* argCoord = argAggregate->getSequence()[2]->getAsTyped();
TIntermTyped* argBias = nullptr;
TIntermTyped* argOffset = nullptr;
const TSampler& sampler = argTex->getType().getSampler();
int nextArg = 3;
if (op == EOpMethodSampleBias) // SampleBias has a bias arg
argBias = argAggregate->getSequence()[nextArg++]->getAsTyped();
TOperator textureOp = EOpTexture;
if ((int)argAggregate->getSequence().size() == (nextArg+1)) { // last parameter is offset form
textureOp = EOpTextureOffset;
argOffset = argAggregate->getSequence()[nextArg++]->getAsTyped();
}
TIntermAggregate* txcombine = handleSamplerTextureCombine(loc, argTex, argSamp);
TIntermAggregate* txsample = new TIntermAggregate(textureOp);
txsample->getSequence().push_back(txcombine);
txsample->getSequence().push_back(argCoord);
if (argBias != nullptr)
txsample->getSequence().push_back(argBias);
if (argOffset != nullptr)
txsample->getSequence().push_back(argOffset);
node = clampReturn(txsample, sampler);
break;
}
case EOpMethodSampleGrad: // ...
{
TIntermTyped* argTex = argAggregate->getSequence()[0]->getAsTyped();
TIntermTyped* argSamp = argAggregate->getSequence()[1]->getAsTyped();
TIntermTyped* argCoord = argAggregate->getSequence()[2]->getAsTyped();
TIntermTyped* argDDX = argAggregate->getSequence()[3]->getAsTyped();
TIntermTyped* argDDY = argAggregate->getSequence()[4]->getAsTyped();
TIntermTyped* argOffset = nullptr;
const TSampler& sampler = argTex->getType().getSampler();
TOperator textureOp = EOpTextureGrad;
if (argAggregate->getSequence().size() == 6) { // last parameter is offset form
textureOp = EOpTextureGradOffset;
argOffset = argAggregate->getSequence()[5]->getAsTyped();
}
TIntermAggregate* txcombine = handleSamplerTextureCombine(loc, argTex, argSamp);
TIntermAggregate* txsample = new TIntermAggregate(textureOp);
txsample->getSequence().push_back(txcombine);
txsample->getSequence().push_back(argCoord);
txsample->getSequence().push_back(argDDX);
txsample->getSequence().push_back(argDDY);
if (argOffset != nullptr)
txsample->getSequence().push_back(argOffset);
node = clampReturn(txsample, sampler);
break;
}
case EOpMethodGetDimensions:
{
// AST returns a vector of results, which we break apart component-wise into
// separate values to assign to the HLSL method's outputs, ala:
// tx . GetDimensions(width, height);
// float2 sizeQueryTemp = EOpTextureQuerySize
// width = sizeQueryTemp.X;
// height = sizeQueryTemp.Y;
TIntermTyped* argTex = argAggregate->getSequence()[0]->getAsTyped();
const TType& texType = argTex->getType();
assert(texType.getBasicType() == EbtSampler);
const TSampler& sampler = texType.getSampler();
const TSamplerDim dim = sampler.dim;
const bool isImage = sampler.isImage();
const int numArgs = (int)argAggregate->getSequence().size();
int numDims = 0;
switch (dim) {
case Esd1D: numDims = 1; break; // W
case Esd2D: numDims = 2; break; // W, H
case Esd3D: numDims = 3; break; // W, H, D
case EsdCube: numDims = 2; break; // W, H (cube)
case EsdBuffer: numDims = 1; break; // W (buffers)
default:
assert(0 && "unhandled texture dimension");
}
// Arrayed adds another dimension for the number of array elements
if (sampler.isArrayed())
++numDims;
// Establish whether we're querying mip levels
const bool mipQuery = (numArgs > (numDims + 1)) && (!sampler.isMultiSample());
// AST assumes integer return. Will be converted to float if required.
TIntermAggregate* sizeQuery = new TIntermAggregate(isImage ? EOpImageQuerySize : EOpTextureQuerySize);
sizeQuery->getSequence().push_back(argTex);
// If we're querying an explicit LOD, add the LOD, which is always arg #1
if (mipQuery) {
TIntermTyped* queryLod = argAggregate->getSequence()[1]->getAsTyped();
sizeQuery->getSequence().push_back(queryLod);
}
sizeQuery->setType(TType(EbtUint, EvqTemporary, numDims));
sizeQuery->setLoc(loc);
// Return value from size query
TVariable* tempArg = makeInternalVariable("sizeQueryTemp", sizeQuery->getType());
tempArg->getWritableType().getQualifier().makeTemporary();
TIntermTyped* sizeQueryAssign = intermediate.addAssign(EOpAssign,
intermediate.addSymbol(*tempArg, loc),
sizeQuery, loc);
// Compound statement for assigning outputs
TIntermAggregate* compoundStatement = intermediate.makeAggregate(sizeQueryAssign, loc);
// Index of first output parameter
const int outParamBase = mipQuery ? 2 : 1;
for (int compNum = 0; compNum < numDims; ++compNum) {
TIntermTyped* indexedOut = nullptr;
TIntermSymbol* sizeQueryReturn = intermediate.addSymbol(*tempArg, loc);
if (numDims > 1) {
TIntermTyped* component = intermediate.addConstantUnion(compNum, loc, true);
indexedOut = intermediate.addIndex(EOpIndexDirect, sizeQueryReturn, component, loc);
indexedOut->setType(TType(EbtUint, EvqTemporary, 1));
indexedOut->setLoc(loc);
} else {
indexedOut = sizeQueryReturn;
}
TIntermTyped* outParam = argAggregate->getSequence()[outParamBase + compNum]->getAsTyped();
TIntermTyped* compAssign = intermediate.addAssign(EOpAssign, outParam, indexedOut, loc);
compoundStatement = intermediate.growAggregate(compoundStatement, compAssign);
}
// handle mip level parameter
if (mipQuery) {
TIntermTyped* outParam = argAggregate->getSequence()[outParamBase + numDims]->getAsTyped();
TIntermAggregate* levelsQuery = new TIntermAggregate(EOpTextureQueryLevels);
levelsQuery->getSequence().push_back(argTex);
levelsQuery->setType(TType(EbtUint, EvqTemporary, 1));
levelsQuery->setLoc(loc);
TIntermTyped* compAssign = intermediate.addAssign(EOpAssign, outParam, levelsQuery, loc);
compoundStatement = intermediate.growAggregate(compoundStatement, compAssign);
}
// 2DMS formats query # samples, which needs a different query op
if (sampler.isMultiSample()) {
TIntermTyped* outParam = argAggregate->getSequence()[outParamBase + numDims]->getAsTyped();
TIntermAggregate* samplesQuery = new TIntermAggregate(EOpImageQuerySamples);
samplesQuery->getSequence().push_back(argTex);
samplesQuery->setType(TType(EbtUint, EvqTemporary, 1));
samplesQuery->setLoc(loc);
TIntermTyped* compAssign = intermediate.addAssign(EOpAssign, outParam, samplesQuery, loc);
compoundStatement = intermediate.growAggregate(compoundStatement, compAssign);
}
compoundStatement->setOperator(EOpSequence);
compoundStatement->setLoc(loc);
compoundStatement->setType(TType(EbtVoid));
node = compoundStatement;
break;
}
case EOpMethodSampleCmp: // fall through...
case EOpMethodSampleCmpLevelZero:
{
TIntermTyped* argTex = argAggregate->getSequence()[0]->getAsTyped();
TIntermTyped* argSamp = argAggregate->getSequence()[1]->getAsTyped();
TIntermTyped* argCoord = argAggregate->getSequence()[2]->getAsTyped();
TIntermTyped* argCmpVal = argAggregate->getSequence()[3]->getAsTyped();
TIntermTyped* argOffset = nullptr;
// optional offset value
if (argAggregate->getSequence().size() > 4)
argOffset = argAggregate->getSequence()[4]->getAsTyped();
const int coordDimWithCmpVal = argCoord->getType().getVectorSize() + 1; // +1 for cmp
// AST wants comparison value as one of the texture coordinates
TOperator constructOp = EOpNull;
switch (coordDimWithCmpVal) {
// 1D can't happen: there's always at least 1 coordinate dimension + 1 cmp val
case 2: constructOp = EOpConstructVec2; break;
case 3: constructOp = EOpConstructVec3; break;
case 4: constructOp = EOpConstructVec4; break;
case 5: constructOp = EOpConstructVec4; break; // cubeArrayShadow, cmp value is separate arg.
default: assert(0); break;
}
TIntermAggregate* coordWithCmp = new TIntermAggregate(constructOp);
coordWithCmp->getSequence().push_back(argCoord);
if (coordDimWithCmpVal != 5) // cube array shadow is special.
coordWithCmp->getSequence().push_back(argCmpVal);
coordWithCmp->setLoc(loc);
coordWithCmp->setType(TType(argCoord->getBasicType(), EvqTemporary, std::min(coordDimWithCmpVal, 4)));
TOperator textureOp = (op == EOpMethodSampleCmpLevelZero ? EOpTextureLod : EOpTexture);
if (argOffset != nullptr)
textureOp = (op == EOpMethodSampleCmpLevelZero ? EOpTextureLodOffset : EOpTextureOffset);
// Create combined sampler & texture op
TIntermAggregate* txcombine = handleSamplerTextureCombine(loc, argTex, argSamp);
TIntermAggregate* txsample = new TIntermAggregate(textureOp);
txsample->getSequence().push_back(txcombine);
txsample->getSequence().push_back(coordWithCmp);
if (coordDimWithCmpVal == 5) // cube array shadow is special: cmp val follows coord.
txsample->getSequence().push_back(argCmpVal);
// the LevelZero form uses 0 as an explicit LOD
if (op == EOpMethodSampleCmpLevelZero)
txsample->getSequence().push_back(intermediate.addConstantUnion(0.0, EbtFloat, loc, true));
// Add offset if present
if (argOffset != nullptr)
txsample->getSequence().push_back(argOffset);
txsample->setType(node->getType());
txsample->setLoc(loc);
node = txsample;
break;
}
case EOpMethodLoad:
{
TIntermTyped* argTex = argAggregate->getSequence()[0]->getAsTyped();
TIntermTyped* argCoord = argAggregate->getSequence()[1]->getAsTyped();
TIntermTyped* argOffset = nullptr;
TIntermTyped* lodComponent = nullptr;
TIntermTyped* coordSwizzle = nullptr;
const TSampler& sampler = argTex->getType().getSampler();
const bool isMS = sampler.isMultiSample();
const bool isBuffer = sampler.dim == EsdBuffer;
const bool isImage = sampler.isImage();
const TBasicType coordBaseType = argCoord->getType().getBasicType();
// Last component of coordinate is the mip level, for non-MS. we separate them here:
if (isMS || isBuffer || isImage) {
// MS, Buffer, and Image have no LOD
coordSwizzle = argCoord;
} else {
// Extract coordinate
TVectorFields coordFields(0,1,2,3);
coordFields.num = argCoord->getType().getVectorSize() - (isMS ? 0 : 1);
TIntermTyped* coordIdx = intermediate.addSwizzle(coordFields, loc);
coordSwizzle = intermediate.addIndex(EOpVectorSwizzle, argCoord, coordIdx, loc);
coordSwizzle->setType(TType(coordBaseType, EvqTemporary, coordFields.num));
// Extract LOD
TIntermTyped* lodIdx = intermediate.addConstantUnion(coordFields.num, loc, true);
lodComponent = intermediate.addIndex(EOpIndexDirect, argCoord, lodIdx, loc);
lodComponent->setType(TType(coordBaseType, EvqTemporary, 1));
}
const int numArgs = (int)argAggregate->getSequence().size();
const bool hasOffset = ((!isMS && numArgs == 3) || (isMS && numArgs == 4));
// Create texel fetch
const TOperator fetchOp = (isImage ? EOpImageLoad :
hasOffset ? EOpTextureFetchOffset :
EOpTextureFetch);
TIntermAggregate* txfetch = new TIntermAggregate(fetchOp);
// Build up the fetch
txfetch->getSequence().push_back(argTex);
txfetch->getSequence().push_back(coordSwizzle);
if (isMS) {
// add 2DMS sample index
TIntermTyped* argSampleIdx = argAggregate->getSequence()[2]->getAsTyped();
txfetch->getSequence().push_back(argSampleIdx);
} else if (isBuffer) {
// Nothing else to do for buffers.
} else if (isImage) {
// Nothing else to do for images.
} else {
// 2DMS and buffer have no LOD, but everything else does.
txfetch->getSequence().push_back(lodComponent);
}
// Obtain offset arg, if there is one.
if (hasOffset) {
const int offsetPos = (isMS ? 3 : 2);
argOffset = argAggregate->getSequence()[offsetPos]->getAsTyped();
txfetch->getSequence().push_back(argOffset);
}
node = clampReturn(txfetch, sampler);
break;
}
case EOpMethodSampleLevel:
{
TIntermTyped* argTex = argAggregate->getSequence()[0]->getAsTyped();
TIntermTyped* argSamp = argAggregate->getSequence()[1]->getAsTyped();
TIntermTyped* argCoord = argAggregate->getSequence()[2]->getAsTyped();
TIntermTyped* argLod = argAggregate->getSequence()[3]->getAsTyped();
TIntermTyped* argOffset = nullptr;
const TSampler& sampler = argTex->getType().getSampler();
const int numArgs = (int)argAggregate->getSequence().size();
if (numArgs == 5) // offset, if present
argOffset = argAggregate->getSequence()[4]->getAsTyped();
const TOperator textureOp = (argOffset == nullptr ? EOpTextureLod : EOpTextureLodOffset);
TIntermAggregate* txsample = new TIntermAggregate(textureOp);
TIntermAggregate* txcombine = handleSamplerTextureCombine(loc, argTex, argSamp);
txsample->getSequence().push_back(txcombine);
txsample->getSequence().push_back(argCoord);
txsample->getSequence().push_back(argLod);
if (argOffset != nullptr)
txsample->getSequence().push_back(argOffset);
node = clampReturn(txsample, sampler);
break;
}
case EOpMethodGather:
{
TIntermTyped* argTex = argAggregate->getSequence()[0]->getAsTyped();
TIntermTyped* argSamp = argAggregate->getSequence()[1]->getAsTyped();
TIntermTyped* argCoord = argAggregate->getSequence()[2]->getAsTyped();
TIntermTyped* argOffset = nullptr;
// Offset is optional
if (argAggregate->getSequence().size() > 3)
argOffset = argAggregate->getSequence()[3]->getAsTyped();
const TOperator textureOp = (argOffset == nullptr ? EOpTextureGather : EOpTextureGatherOffset);
TIntermAggregate* txgather = new TIntermAggregate(textureOp);
TIntermAggregate* txcombine = handleSamplerTextureCombine(loc, argTex, argSamp);
txgather->getSequence().push_back(txcombine);
txgather->getSequence().push_back(argCoord);
// Offset if not given is implicitly channel 0 (red)
if (argOffset != nullptr)
txgather->getSequence().push_back(argOffset);
txgather->setType(node->getType());
txgather->setLoc(loc);
node = txgather;
break;
}
case EOpMethodGatherRed: // fall through...
case EOpMethodGatherGreen: // ...
case EOpMethodGatherBlue: // ...
case EOpMethodGatherAlpha: // ...
case EOpMethodGatherCmpRed: // ...
case EOpMethodGatherCmpGreen: // ...
case EOpMethodGatherCmpBlue: // ...
case EOpMethodGatherCmpAlpha: // ...
{
int channel = 0; // the channel we are gathering
int cmpValues = 0; // 1 if there is a compare value (handier than a bool below)
switch (op) {
case EOpMethodGatherCmpRed: cmpValues = 1; // fall through
case EOpMethodGatherRed: channel = 0; break;
case EOpMethodGatherCmpGreen: cmpValues = 1; // fall through
case EOpMethodGatherGreen: channel = 1; break;
case EOpMethodGatherCmpBlue: cmpValues = 1; // fall through
case EOpMethodGatherBlue: channel = 2; break;
case EOpMethodGatherCmpAlpha: cmpValues = 1; // fall through
case EOpMethodGatherAlpha: channel = 3; break;
default: assert(0); break;
}
// For now, we have nothing to map the component-wise comparison forms
// to, because neither GLSL nor SPIR-V has such an opcode. Issue an
// unimplemented error instead. Most of the machinery is here if that
// should ever become available.
if (cmpValues) {
error(loc, "unimplemented: component-level gather compare", "", "");
return;
}
int arg = 0;
TIntermTyped* argTex = argAggregate->getSequence()[arg++]->getAsTyped();
TIntermTyped* argSamp = argAggregate->getSequence()[arg++]->getAsTyped();
TIntermTyped* argCoord = argAggregate->getSequence()[arg++]->getAsTyped();
TIntermTyped* argOffset = nullptr;
TIntermTyped* argOffsets[4] = { nullptr, nullptr, nullptr, nullptr };
// TIntermTyped* argStatus = nullptr; // TODO: residency
TIntermTyped* argCmp = nullptr;
const TSamplerDim dim = argTex->getType().getSampler().dim;
const int argSize = (int)argAggregate->getSequence().size();
bool hasStatus = (argSize == (5+cmpValues) || argSize == (8+cmpValues));
bool hasOffset1 = false;
bool hasOffset4 = false;
// Only 2D forms can have offsets. Discover if we have 0, 1 or 4 offsets.
if (dim == Esd2D) {
hasOffset1 = (argSize == (4+cmpValues) || argSize == (5+cmpValues));
hasOffset4 = (argSize == (7+cmpValues) || argSize == (8+cmpValues));
}
assert(!(hasOffset1 && hasOffset4));
TOperator textureOp = EOpTextureGather;
// Compare forms have compare value
if (cmpValues != 0)
argCmp = argOffset = argAggregate->getSequence()[arg++]->getAsTyped();
// Some forms have single offset
if (hasOffset1) {
textureOp = EOpTextureGatherOffset; // single offset form
argOffset = argAggregate->getSequence()[arg++]->getAsTyped();
}
// Some forms have 4 gather offsets
if (hasOffset4) {
textureOp = EOpTextureGatherOffsets; // note plural, for 4 offset form
for (int offsetNum = 0; offsetNum < 4; ++offsetNum)
argOffsets[offsetNum] = argAggregate->getSequence()[arg++]->getAsTyped();
}
// Residency status
if (hasStatus) {
// argStatus = argAggregate->getSequence()[arg++]->getAsTyped();
error(loc, "unimplemented: residency status", "", "");
return;
}
TIntermAggregate* txgather = new TIntermAggregate(textureOp);
TIntermAggregate* txcombine = handleSamplerTextureCombine(loc, argTex, argSamp);
TIntermTyped* argChannel = intermediate.addConstantUnion(channel, loc, true);
txgather->getSequence().push_back(txcombine);
txgather->getSequence().push_back(argCoord);
// AST wants an array of 4 offsets, where HLSL has separate args. Here
// we construct an array from the separate args.
if (hasOffset4) {
TType arrayType(EbtInt, EvqTemporary, 2);
TArraySizes arraySizes;
arraySizes.addInnerSize(4);
arrayType.newArraySizes(arraySizes);
TIntermAggregate* initList = new TIntermAggregate(EOpNull);
for (int offsetNum = 0; offsetNum < 4; ++offsetNum)
initList->getSequence().push_back(argOffsets[offsetNum]);
argOffset = addConstructor(loc, initList, arrayType);
}
// Add comparison value if we have one
if (argTex->getType().getSampler().isShadow())
txgather->getSequence().push_back(argCmp);
// Add offset (either 1, or an array of 4) if we have one
if (argOffset != nullptr)
txgather->getSequence().push_back(argOffset);
txgather->getSequence().push_back(argChannel);
txgather->setType(node->getType());
txgather->setLoc(loc);
node = txgather;
break;
}
case EOpMethodCalculateLevelOfDetail:
case EOpMethodCalculateLevelOfDetailUnclamped:
{
TIntermTyped* argTex = argAggregate->getSequence()[0]->getAsTyped();
TIntermTyped* argSamp = argAggregate->getSequence()[1]->getAsTyped();
TIntermTyped* argCoord = argAggregate->getSequence()[2]->getAsTyped();
TIntermAggregate* txquerylod = new TIntermAggregate(EOpTextureQueryLod);
TIntermAggregate* txcombine = handleSamplerTextureCombine(loc, argTex, argSamp);
txquerylod->getSequence().push_back(txcombine);
txquerylod->getSequence().push_back(argCoord);
TIntermTyped* lodComponent = intermediate.addConstantUnion(0, loc, true);
TIntermTyped* lodComponentIdx = intermediate.addIndex(EOpIndexDirect, txquerylod, lodComponent, loc);
lodComponentIdx->setType(TType(EbtFloat, EvqTemporary, 1));
node = lodComponentIdx;
// We cannot currently obtain the unclamped LOD
if (op == EOpMethodCalculateLevelOfDetailUnclamped)
error(loc, "unimplemented: CalculateLevelOfDetailUnclamped", "", "");
break;
}
case EOpMethodGetSamplePosition:
{
error(loc, "unimplemented: GetSamplePosition", "", "");
break;
}
default:
break; // most pass through unchanged
}
}
//
// Decompose geometry shader methods
//
void HlslParseContext::decomposeGeometryMethods(const TSourceLoc& loc, TIntermTyped*& node, TIntermNode* arguments)
{
if (!node || !node->getAsOperator())
return;
const TOperator op = node->getAsOperator()->getOp();
const TIntermAggregate* argAggregate = arguments ? arguments->getAsAggregate() : nullptr;
switch (op) {
case EOpMethodAppend:
if (argAggregate) {
TIntermAggregate* sequence = nullptr;
TIntermAggregate* emit = new TIntermAggregate(EOpEmitVertex);
emit->setLoc(loc);
emit->setType(TType(EbtVoid));
sequence = intermediate.growAggregate(sequence,
handleAssign(loc, EOpAssign,
argAggregate->getSequence()[0]->getAsTyped(),
argAggregate->getSequence()[1]->getAsTyped()),
loc);
sequence = intermediate.growAggregate(sequence, emit);
sequence->setOperator(EOpSequence);
sequence->setLoc(loc);
sequence->setType(TType(EbtVoid));
node = sequence;
}
break;
case EOpMethodRestartStrip:
{
TIntermAggregate* cut = new TIntermAggregate(EOpEndPrimitive);
cut->setLoc(loc);
cut->setType(TType(EbtVoid));
node = cut;
}
break;
default:
break; // most pass through unchanged
}
}
//
// Optionally decompose intrinsics to AST opcodes.
//
void HlslParseContext::decomposeIntrinsic(const TSourceLoc& loc, TIntermTyped*& node, TIntermNode* arguments)
{
// Helper to find image data for image atomics:
// OpImageLoad(image[idx])
// We take the image load apart and add its params to the atomic op aggregate node
const auto imageAtomicParams = [this, &loc, &node](TIntermAggregate* atomic, TIntermTyped* load) {
TIntermAggregate* loadOp = load->getAsAggregate();
if (loadOp == nullptr) {
error(loc, "unknown image type in atomic operation", "", "");
node = nullptr;
return;
}
atomic->getSequence().push_back(loadOp->getSequence()[0]);
atomic->getSequence().push_back(loadOp->getSequence()[1]);
};
// Return true if this is an imageLoad, which we will change to an image atomic.
const auto isImageParam = [](TIntermTyped* image) -> bool {
TIntermAggregate* imageAggregate = image->getAsAggregate();
return imageAggregate != nullptr && imageAggregate->getOp() == EOpImageLoad;
};
// HLSL intrinsics can be pass through to native AST opcodes, or decomposed here to existing AST
// opcodes for compatibility with existing software stacks.
static const bool decomposeHlslIntrinsics = true;
if (!decomposeHlslIntrinsics || !node || !node->getAsOperator())
return;
const TIntermAggregate* argAggregate = arguments ? arguments->getAsAggregate() : nullptr;
TIntermUnary* fnUnary = node->getAsUnaryNode();
const TOperator op = node->getAsOperator()->getOp();
switch (op) {
case EOpGenMul:
{
// mul(a,b) -> MatrixTimesMatrix, MatrixTimesVector, MatrixTimesScalar, VectorTimesScalar, Dot, Mul
// Since we are treating HLSL rows like GLSL columns (the first matrix indirection),
// we must reverse the operand order here. Hence, arg0 gets sequence[1], etc.
TIntermTyped* arg0 = argAggregate->getSequence()[1]->getAsTyped();
TIntermTyped* arg1 = argAggregate->getSequence()[0]->getAsTyped();
if (arg0->isVector() && arg1->isVector()) { // vec * vec
node->getAsAggregate()->setOperator(EOpDot);
} else {
node = handleBinaryMath(loc, "mul", EOpMul, arg0, arg1);
}
break;
}
case EOpRcp:
{
// rcp(a) -> 1 / a
TIntermTyped* arg0 = fnUnary->getOperand();
TBasicType type0 = arg0->getBasicType();
TIntermTyped* one = intermediate.addConstantUnion(1, type0, loc, true);
node = handleBinaryMath(loc, "rcp", EOpDiv, one, arg0);
break;
}
case EOpSaturate:
{
// saturate(a) -> clamp(a,0,1)
TIntermTyped* arg0 = fnUnary->getOperand();
TBasicType type0 = arg0->getBasicType();
TIntermAggregate* clamp = new TIntermAggregate(EOpClamp);
clamp->getSequence().push_back(arg0);
clamp->getSequence().push_back(intermediate.addConstantUnion(0, type0, loc, true));
clamp->getSequence().push_back(intermediate.addConstantUnion(1, type0, loc, true));
clamp->setLoc(loc);
clamp->setType(node->getType());
clamp->getWritableType().getQualifier().makeTemporary();
node = clamp;
break;
}
case EOpSinCos:
{
// sincos(a,b,c) -> b = sin(a), c = cos(a)
TIntermTyped* arg0 = argAggregate->getSequence()[0]->getAsTyped();
TIntermTyped* arg1 = argAggregate->getSequence()[1]->getAsTyped();
TIntermTyped* arg2 = argAggregate->getSequence()[2]->getAsTyped();
TIntermTyped* sinStatement = handleUnaryMath(loc, "sin", EOpSin, arg0);
TIntermTyped* cosStatement = handleUnaryMath(loc, "cos", EOpCos, arg0);
TIntermTyped* sinAssign = intermediate.addAssign(EOpAssign, arg1, sinStatement, loc);
TIntermTyped* cosAssign = intermediate.addAssign(EOpAssign, arg2, cosStatement, loc);
TIntermAggregate* compoundStatement = intermediate.makeAggregate(sinAssign, loc);
compoundStatement = intermediate.growAggregate(compoundStatement, cosAssign);
compoundStatement->setOperator(EOpSequence);
compoundStatement->setLoc(loc);
compoundStatement->setType(TType(EbtVoid));
node = compoundStatement;
break;
}
case EOpClip:
{
// clip(a) -> if (any(a<0)) discard;
TIntermTyped* arg0 = fnUnary->getOperand();
TBasicType type0 = arg0->getBasicType();
TIntermTyped* compareNode = nullptr;
// For non-scalars: per experiment with FXC compiler, discard if any component < 0.
if (!arg0->isScalar()) {
// component-wise compare: a < 0
TIntermAggregate* less = new TIntermAggregate(EOpLessThan);
less->getSequence().push_back(arg0);
less->setLoc(loc);
// make vec or mat of bool matching dimensions of input
less->setType(TType(EbtBool, EvqTemporary,
arg0->getType().getVectorSize(),
arg0->getType().getMatrixCols(),
arg0->getType().getMatrixRows(),
arg0->getType().isVector()));
// calculate # of components for comparison const
const int constComponentCount =
std::max(arg0->getType().getVectorSize(), 1) *
std::max(arg0->getType().getMatrixCols(), 1) *
std::max(arg0->getType().getMatrixRows(), 1);
TConstUnion zero;
zero.setDConst(0.0);
TConstUnionArray zeros(constComponentCount, zero);
less->getSequence().push_back(intermediate.addConstantUnion(zeros, arg0->getType(), loc, true));
compareNode = intermediate.addBuiltInFunctionCall(loc, EOpAny, true, less, TType(EbtBool));
} else {
TIntermTyped* zero = intermediate.addConstantUnion(0, type0, loc, true);
compareNode = handleBinaryMath(loc, "clip", EOpLessThan, arg0, zero);
}
TIntermBranch* killNode = intermediate.addBranch(EOpKill, loc);
node = new TIntermSelection(compareNode, killNode, nullptr);
node->setLoc(loc);
break;
}
case EOpLog10:
{
// log10(a) -> log2(a) * 0.301029995663981 (== 1/log2(10))
TIntermTyped* arg0 = fnUnary->getOperand();
TIntermTyped* log2 = handleUnaryMath(loc, "log2", EOpLog2, arg0);
TIntermTyped* base = intermediate.addConstantUnion(0.301029995663981f, EbtFloat, loc, true);
node = handleBinaryMath(loc, "mul", EOpMul, log2, base);
break;
}
case EOpDst:
{
// dest.x = 1;
// dest.y = src0.y * src1.y;
// dest.z = src0.z;
// dest.w = src1.w;
TIntermTyped* arg0 = argAggregate->getSequence()[0]->getAsTyped();
TIntermTyped* arg1 = argAggregate->getSequence()[1]->getAsTyped();
TIntermTyped* y = intermediate.addConstantUnion(1, loc, true);
TIntermTyped* z = intermediate.addConstantUnion(2, loc, true);
TIntermTyped* w = intermediate.addConstantUnion(3, loc, true);
TIntermTyped* src0y = intermediate.addIndex(EOpIndexDirect, arg0, y, loc);
TIntermTyped* src1y = intermediate.addIndex(EOpIndexDirect, arg1, y, loc);
TIntermTyped* src0z = intermediate.addIndex(EOpIndexDirect, arg0, z, loc);
TIntermTyped* src1w = intermediate.addIndex(EOpIndexDirect, arg1, w, loc);
TIntermAggregate* dst = new TIntermAggregate(EOpConstructVec4);
dst->getSequence().push_back(intermediate.addConstantUnion(1.0, EbtFloat, loc, true));
dst->getSequence().push_back(handleBinaryMath(loc, "mul", EOpMul, src0y, src1y));
dst->getSequence().push_back(src0z);
dst->getSequence().push_back(src1w);
dst->setType(TType(EbtFloat, EvqTemporary, 4));
dst->setLoc(loc);
node = dst;
break;
}
case EOpInterlockedAdd: // optional last argument (if present) is assigned from return value
case EOpInterlockedMin: // ...
case EOpInterlockedMax: // ...
case EOpInterlockedAnd: // ...
case EOpInterlockedOr: // ...
case EOpInterlockedXor: // ...
case EOpInterlockedExchange: // always has output arg
{
TIntermTyped* arg0 = argAggregate->getSequence()[0]->getAsTyped(); // dest
TIntermTyped* arg1 = argAggregate->getSequence()[1]->getAsTyped(); // value
TIntermTyped* arg2 = nullptr;
if (argAggregate->getSequence().size() > 2)
arg2 = argAggregate->getSequence()[2]->getAsTyped();
const bool isImage = isImageParam(arg0);
const TOperator atomicOp = mapAtomicOp(loc, op, isImage);
TIntermAggregate* atomic = new TIntermAggregate(atomicOp);
atomic->setType(arg0->getType());
atomic->getWritableType().getQualifier().makeTemporary();
atomic->setLoc(loc);
if (isImage) {
// orig_value = imageAtomicOp(image, loc, data)
imageAtomicParams(atomic, arg0);
atomic->getSequence().push_back(arg1);
if (argAggregate->getSequence().size() > 2) {
node = intermediate.addAssign(EOpAssign, arg2, atomic, loc);
} else {
node = atomic; // no assignment needed, as there was no out var.
}
} else {
// Normal memory variable:
// arg0 = mem, arg1 = data, arg2(optional,out) = orig_value
if (argAggregate->getSequence().size() > 2) {
// optional output param is present. return value goes to arg2.
atomic->getSequence().push_back(arg0);
atomic->getSequence().push_back(arg1);
node = intermediate.addAssign(EOpAssign, arg2, atomic, loc);
} else {
// Set the matching operator. Since output is absent, this is all we need to do.
node->getAsAggregate()->setOperator(atomicOp);
}
}
break;
}
case EOpInterlockedCompareExchange:
{
TIntermTyped* arg0 = argAggregate->getSequence()[0]->getAsTyped(); // dest
TIntermTyped* arg1 = argAggregate->getSequence()[1]->getAsTyped(); // cmp
TIntermTyped* arg2 = argAggregate->getSequence()[2]->getAsTyped(); // value
TIntermTyped* arg3 = argAggregate->getSequence()[3]->getAsTyped(); // orig
const bool isImage = isImageParam(arg0);
TIntermAggregate* atomic = new TIntermAggregate(mapAtomicOp(loc, op, isImage));
atomic->setLoc(loc);
atomic->setType(arg2->getType());
atomic->getWritableType().getQualifier().makeTemporary();
if (isImage) {
imageAtomicParams(atomic, arg0);
} else {
atomic->getSequence().push_back(arg0);
}
atomic->getSequence().push_back(arg1);
atomic->getSequence().push_back(arg2);
node = intermediate.addAssign(EOpAssign, arg3, atomic, loc);
break;
}
case EOpEvaluateAttributeSnapped:
{
// SPIR-V InterpolateAtOffset uses float vec2 offset in pixels
// HLSL uses int2 offset on a 16x16 grid in [-8..7] on x & y:
// iU = (iU<<28)>>28
// fU = ((float)iU)/16
// Targets might handle this natively, in which case they can disable
// decompositions.
TIntermTyped* arg0 = argAggregate->getSequence()[0]->getAsTyped(); // value
TIntermTyped* arg1 = argAggregate->getSequence()[1]->getAsTyped(); // offset
TIntermTyped* i28 = intermediate.addConstantUnion(28, loc, true);
TIntermTyped* iU = handleBinaryMath(loc, ">>", EOpRightShift,
handleBinaryMath(loc, "<<", EOpLeftShift, arg1, i28),
i28);
TIntermTyped* recip16 = intermediate.addConstantUnion((1.0/16.0), EbtFloat, loc, true);
TIntermTyped* floatOffset = handleBinaryMath(loc, "mul", EOpMul,
intermediate.addConversion(EOpConstructFloat,
TType(EbtFloat, EvqTemporary, 2), iU),
recip16);
TIntermAggregate* interp = new TIntermAggregate(EOpInterpolateAtOffset);
interp->getSequence().push_back(arg0);
interp->getSequence().push_back(floatOffset);
interp->setLoc(loc);
interp->setType(arg0->getType());
interp->getWritableType().getQualifier().makeTemporary();
node = interp;
break;
}
case EOpLit:
{
TIntermTyped* n_dot_l = argAggregate->getSequence()[0]->getAsTyped();
TIntermTyped* n_dot_h = argAggregate->getSequence()[1]->getAsTyped();
TIntermTyped* m = argAggregate->getSequence()[2]->getAsTyped();
TIntermAggregate* dst = new TIntermAggregate(EOpConstructVec4);
// Ambient
dst->getSequence().push_back(intermediate.addConstantUnion(1.0, EbtFloat, loc, true));
// Diffuse:
TIntermTyped* zero = intermediate.addConstantUnion(0.0, EbtFloat, loc, true);
TIntermAggregate* diffuse = new TIntermAggregate(EOpMax);
diffuse->getSequence().push_back(n_dot_l);
diffuse->getSequence().push_back(zero);
diffuse->setLoc(loc);
diffuse->setType(TType(EbtFloat));
dst->getSequence().push_back(diffuse);
// Specular:
TIntermAggregate* min_ndot = new TIntermAggregate(EOpMin);
min_ndot->getSequence().push_back(n_dot_l);
min_ndot->getSequence().push_back(n_dot_h);
min_ndot->setLoc(loc);
min_ndot->setType(TType(EbtFloat));
TIntermTyped* compare = handleBinaryMath(loc, "<", EOpLessThan, min_ndot, zero);
TIntermTyped* n_dot_h_m = handleBinaryMath(loc, "mul", EOpMul, n_dot_h, m); // n_dot_h * m
dst->getSequence().push_back(intermediate.addSelection(compare, zero, n_dot_h_m, loc));
// One:
dst->getSequence().push_back(intermediate.addConstantUnion(1.0, EbtFloat, loc, true));
dst->setLoc(loc);
dst->setType(TType(EbtFloat, EvqTemporary, 4));
node = dst;
break;
}
case EOpAsDouble:
{
// asdouble accepts two 32 bit ints. we can use EOpUint64BitsToDouble, but must
// first construct a uint64.
TIntermTyped* arg0 = argAggregate->getSequence()[0]->getAsTyped();
TIntermTyped* arg1 = argAggregate->getSequence()[1]->getAsTyped();
if (arg0->getType().isVector()) { // TODO: ...
error(loc, "double2 conversion not implemented", "asdouble", "");
break;
}
TIntermAggregate* uint64 = new TIntermAggregate(EOpConstructUVec2);
uint64->getSequence().push_back(arg0);
uint64->getSequence().push_back(arg1);
uint64->setType(TType(EbtUint, EvqTemporary, 2)); // convert 2 uints to a uint2
uint64->setLoc(loc);
// bitcast uint2 to a double
TIntermTyped* convert = new TIntermUnary(EOpUint64BitsToDouble);
convert->getAsUnaryNode()->setOperand(uint64);
convert->setLoc(loc);
convert->setType(TType(EbtDouble, EvqTemporary));
node = convert;
break;
}
case EOpF16tof32:
case EOpF32tof16:
{
// Temporary until decomposition is available.
error(loc, "unimplemented intrinsic: handle natively", "f32tof16", "");
break;
}
case EOpD3DCOLORtoUBYTE4:
{
// ivec4 ( x.zyxw * 255.001953 );
TIntermTyped* arg0 = node->getAsUnaryNode()->getOperand();
TVectorFields fields(2,1,0,3);
TIntermTyped* swizzleIdx = intermediate.addSwizzle(fields, loc);
TIntermTyped* swizzled = intermediate.addIndex(EOpVectorSwizzle, arg0, swizzleIdx, loc);
swizzled->setType(arg0->getType());
swizzled->getWritableType().getQualifier().makeTemporary();
TIntermTyped* conversion = intermediate.addConstantUnion(255.001953f, EbtFloat, loc, true);
TIntermTyped* rangeConverted = handleBinaryMath(loc, "mul", EOpMul, conversion, swizzled);
rangeConverted->setType(arg0->getType());
rangeConverted->getWritableType().getQualifier().makeTemporary();
node = intermediate.addConversion(EOpConstructInt, TType(EbtInt, EvqTemporary, 4), rangeConverted);
node->setLoc(loc);
node->setType(TType(EbtInt, EvqTemporary, 4));
break;
}
default:
break; // most pass through unchanged
}
}
//
// Handle seeing function call syntax in the grammar, which could be any of
// - .length() method
// - constructor
// - a call to a built-in function mapped to an operator
// - a call to a built-in function that will remain a function call (e.g., texturing)
// - user function
// - subroutine call (not implemented yet)
//
TIntermTyped* HlslParseContext::handleFunctionCall(const TSourceLoc& loc, TFunction* function, TIntermTyped* arguments)
{
TIntermTyped* result = nullptr;
TOperator op = function->getBuiltInOp();
if (op == EOpArrayLength)
result = handleLengthMethod(loc, function, arguments);
else if (op != EOpNull) {
//
// Then this should be a constructor.
// Don't go through the symbol table for constructors.
// Their parameters will be verified algorithmically.
//
TType type(EbtVoid); // use this to get the type back
if (! constructorError(loc, arguments, *function, op, type)) {
//
// It's a constructor, of type 'type'.
//
result = addConstructor(loc, arguments, type);
if (result == nullptr)
error(loc, "cannot construct with these arguments", type.getCompleteString().c_str(), "");
}
} else {
//
// Find it in the symbol table.
//
const TFunction* fnCandidate;
bool builtIn;
fnCandidate = findFunction(loc, *function, builtIn, arguments);
if (fnCandidate) {
// This is a declared function that might map to
// - a built-in operator,
// - a built-in function not mapped to an operator, or
// - a user function.
// Error check for a function requiring specific extensions present.
if (builtIn && fnCandidate->getNumExtensions())
requireExtensions(loc, fnCandidate->getNumExtensions(), fnCandidate->getExtensions(), fnCandidate->getName().c_str());
// Convert 'in' arguments
if (arguments)
addInputArgumentConversions(*fnCandidate, arguments);
op = fnCandidate->getBuiltInOp();
if (builtIn && op != EOpNull) {
// A function call mapped to a built-in operation.
result = intermediate.addBuiltInFunctionCall(loc, op, fnCandidate->getParamCount() == 1, arguments, fnCandidate->getType());
if (result == nullptr) {
error(arguments->getLoc(), " wrong operand type", "Internal Error",
"built in unary operator function. Type: %s",
static_cast<TIntermTyped*>(arguments)->getCompleteString().c_str());
} else if (result->getAsOperator()) {
builtInOpCheck(loc, *fnCandidate, *result->getAsOperator());
}
} else {
// This is a function call not mapped to built-in operator.
// It could still be a built-in function, but only if PureOperatorBuiltins == false.
result = intermediate.setAggregateOperator(arguments, EOpFunctionCall, fnCandidate->getType(), loc);
TIntermAggregate* call = result->getAsAggregate();
call->setName(fnCandidate->getMangledName());
// this is how we know whether the given function is a built-in function or a user-defined function
// if builtIn == false, it's a userDefined -> could be an overloaded built-in function also
// if builtIn == true, it's definitely a built-in function with EOpNull
if (! builtIn) {
call->setUserDefined();
intermediate.addToCallGraph(infoSink, currentCaller, fnCandidate->getMangledName());
}
}
// for decompositions, since we want to operate on the function node, not the aggregate holding
// output conversions.
const TIntermTyped* fnNode = result;
decomposeIntrinsic(loc, result, arguments); // HLSL->AST intrinsic decompositions
decomposeSampleMethods(loc, result, arguments); // HLSL->AST sample method decompositions
decomposeGeometryMethods(loc, result, arguments); // HLSL->AST geometry method decompositions
// Convert 'out' arguments. If it was a constant folded built-in, it won't be an aggregate anymore.
// Built-ins with a single argument aren't called with an aggregate, but they also don't have an output.
// Also, build the qualifier list for user function calls, which are always called with an aggregate.
// We don't do this is if there has been a decomposition, which will have added its own conversions
// for output parameters.
if (result == fnNode && result->getAsAggregate()) {
TQualifierList& qualifierList = result->getAsAggregate()->getQualifierList();
for (int i = 0; i < fnCandidate->getParamCount(); ++i) {
TStorageQualifier qual = (*fnCandidate)[i].type->getQualifier().storage;
qualifierList.push_back(qual);
}
result = addOutputArgumentConversions(*fnCandidate, *result->getAsOperator());
}
}
}
// generic error recovery
// TODO: simplification: localize all the error recoveries that look like this, and taking type into account to reduce cascades
if (result == nullptr)
result = intermediate.addConstantUnion(0.0, EbtFloat, loc);
return result;
}
// Finish processing object.length(). This started earlier in handleDotDereference(), where
// the ".length" part was recognized and semantically checked, and finished here where the
// function syntax "()" is recognized.
//
// Return resulting tree node.
TIntermTyped* HlslParseContext::handleLengthMethod(const TSourceLoc& loc, TFunction* function, TIntermNode* intermNode)
{
int length = 0;
if (function->getParamCount() > 0)
error(loc, "method does not accept any arguments", function->getName().c_str(), "");
else {
const TType& type = intermNode->getAsTyped()->getType();
if (type.isArray()) {
if (type.isRuntimeSizedArray()) {
// Create a unary op and let the back end handle it
return intermediate.addBuiltInFunctionCall(loc, EOpArrayLength, true, intermNode, TType(EbtInt));
} else
length = type.getOuterArraySize();
} else if (type.isMatrix())
length = type.getMatrixCols();
else if (type.isVector())
length = type.getVectorSize();
else {
// we should not get here, because earlier semantic checking should have prevented this path
error(loc, ".length()", "unexpected use of .length()", "");
}
}
if (length == 0)
length = 1;
return intermediate.addConstantUnion(length, loc);
}
//
// Add any needed implicit conversions for function-call arguments to input parameters.
//
void HlslParseContext::addInputArgumentConversions(const TFunction& function, TIntermTyped*& arguments)
{
TIntermAggregate* aggregate = arguments->getAsAggregate();
const auto setArg = [&](int argNum, TIntermTyped* arg) {
if (function.getParamCount() == 1)
arguments = arg;
else {
if (aggregate)
aggregate->getSequence()[argNum] = arg;
else
arguments = arg;
}
};
// Process each argument's conversion
for (int i = 0; i < function.getParamCount(); ++i) {
if (! function[i].type->getQualifier().isParamInput())
continue;
// At this early point there is a slight ambiguity between whether an aggregate 'arguments'
// is the single argument itself or its children are the arguments. Only one argument
// means take 'arguments' itself as the one argument.
TIntermTyped* arg = function.getParamCount() == 1
? arguments->getAsTyped()
: (aggregate ? aggregate->getSequence()[i]->getAsTyped() : arguments->getAsTyped());
if (*function[i].type != arg->getType()) {
// In-qualified arguments just need an extra node added above the argument to
// convert to the correct type.
TIntermTyped* convArg = intermediate.addConversion(EOpFunctionCall, *function[i].type, arg);
if (convArg != nullptr)
convArg = intermediate.addShapeConversion(EOpFunctionCall, *function[i].type, convArg);
if (convArg != nullptr)
setArg(i, convArg);
else
error(arg->getLoc(), "cannot convert input argument, argument", "", "%d", i);
} else {
if (wasFlattened(arg) || wasSplit(arg)) {
// Will make a two-level subtree.
// The deepest will copy member-by-member to build the structure to pass.
// The level above that will be a two-operand EOpComma sequence that follows the copy by the
// object itself.
TVariable* internalAggregate = makeInternalVariable("aggShadow", *function[i].type);
internalAggregate->getWritableType().getQualifier().makeTemporary();
TIntermSymbol* internalSymbolNode = new TIntermSymbol(internalAggregate->getUniqueId(),
internalAggregate->getName(),
internalAggregate->getType());
internalSymbolNode->setLoc(arg->getLoc());
// This makes the deepest level, the member-wise copy
TIntermAggregate* assignAgg = handleAssign(arg->getLoc(), EOpAssign, internalSymbolNode, arg)->getAsAggregate();
// Now, pair that with the resulting aggregate.
assignAgg = intermediate.growAggregate(assignAgg, internalSymbolNode, arg->getLoc());
assignAgg->setOperator(EOpComma);
assignAgg->setType(internalAggregate->getType());
setArg(i, assignAgg);
}
}
}
}
//
// Add any needed implicit output conversions for function-call arguments. This
// can require a new tree topology, complicated further by whether the function
// has a return value.
//
// Returns a node of a subtree that evaluates to the return value of the function.
//
TIntermTyped* HlslParseContext::addOutputArgumentConversions(const TFunction& function, TIntermOperator& intermNode)
{
assert (intermNode.getAsAggregate() != nullptr || intermNode.getAsUnaryNode() != nullptr);
const TSourceLoc& loc = intermNode.getLoc();
TIntermSequence argSequence; // temp sequence for unary node args
if (intermNode.getAsUnaryNode())
argSequence.push_back(intermNode.getAsUnaryNode()->getOperand());
TIntermSequence& arguments = argSequence.empty() ? intermNode.getAsAggregate()->getSequence() : argSequence;
const auto needsConversion = [&](int argNum) {
return function[argNum].type->getQualifier().isParamOutput() &&
(*function[argNum].type != arguments[argNum]->getAsTyped()->getType() ||
shouldConvertLValue(arguments[argNum]) ||
wasFlattened(arguments[argNum]->getAsTyped()));
};
// Will there be any output conversions?
bool outputConversions = false;
for (int i = 0; i < function.getParamCount(); ++i) {
if (needsConversion(i)) {
outputConversions = true;
break;
}
}
if (! outputConversions)
return &intermNode;
// Setup for the new tree, if needed:
//
// Output conversions need a different tree topology.
// Out-qualified arguments need a temporary of the correct type, with the call
// followed by an assignment of the temporary to the original argument:
// void: function(arg, ...) -> ( function(tempArg, ...), arg = tempArg, ...)
// ret = function(arg, ...) -> ret = (tempRet = function(tempArg, ...), arg = tempArg, ..., tempRet)
// Where the "tempArg" type needs no conversion as an argument, but will convert on assignment.
TIntermTyped* conversionTree = nullptr;
TVariable* tempRet = nullptr;
if (intermNode.getBasicType() != EbtVoid) {
// do the "tempRet = function(...), " bit from above
tempRet = makeInternalVariable("tempReturn", intermNode.getType());
TIntermSymbol* tempRetNode = intermediate.addSymbol(*tempRet, loc);
conversionTree = intermediate.addAssign(EOpAssign, tempRetNode, &intermNode, loc);
} else
conversionTree = &intermNode;
conversionTree = intermediate.makeAggregate(conversionTree);
// Process each argument's conversion
for (int i = 0; i < function.getParamCount(); ++i) {
if (needsConversion(i)) {
// Out-qualified arguments needing conversion need to use the topology setup above.
// Do the " ...(tempArg, ...), arg = tempArg" bit from above.
// Make a temporary for what the function expects the argument to look like.
TVariable* tempArg = makeInternalVariable("tempArg", *function[i].type);
tempArg->getWritableType().getQualifier().makeTemporary();
TIntermSymbol* tempArgNode = intermediate.addSymbol(*tempArg, loc);
// This makes the deepest level, the member-wise copy
TIntermTyped* tempAssign = handleAssign(arguments[i]->getLoc(), EOpAssign, arguments[i]->getAsTyped(), tempArgNode);
tempAssign = handleLvalue(arguments[i]->getLoc(), "assign", tempAssign);
conversionTree = intermediate.growAggregate(conversionTree, tempAssign, arguments[i]->getLoc());
// replace the argument with another node for the same tempArg variable
arguments[i] = intermediate.addSymbol(*tempArg, loc);
}
}
// Finalize the tree topology (see bigger comment above).
if (tempRet) {
// do the "..., tempRet" bit from above
TIntermSymbol* tempRetNode = intermediate.addSymbol(*tempRet, loc);
conversionTree = intermediate.growAggregate(conversionTree, tempRetNode, loc);
}
conversionTree = intermediate.setAggregateOperator(conversionTree, EOpComma, intermNode.getType(), loc);
return conversionTree;
}
//
// Do additional checking of built-in function calls that is not caught
// by normal semantic checks on argument type, extension tagging, etc.
//
// Assumes there has been a semantically correct match to a built-in function prototype.
//
void HlslParseContext::builtInOpCheck(const TSourceLoc& loc, const TFunction& fnCandidate, TIntermOperator& callNode)
{
// Set up convenience accessors to the argument(s). There is almost always
// multiple arguments for the cases below, but when there might be one,
// check the unaryArg first.
const TIntermSequence* argp = nullptr; // confusing to use [] syntax on a pointer, so this is to help get a reference
const TIntermTyped* unaryArg = nullptr;
const TIntermTyped* arg0 = nullptr;
if (callNode.getAsAggregate()) {
argp = &callNode.getAsAggregate()->getSequence();
if (argp->size() > 0)
arg0 = (*argp)[0]->getAsTyped();
} else {
assert(callNode.getAsUnaryNode());
unaryArg = callNode.getAsUnaryNode()->getOperand();
arg0 = unaryArg;
}
const TIntermSequence& aggArgs = *argp; // only valid when unaryArg is nullptr
switch (callNode.getOp()) {
case EOpTextureGather:
case EOpTextureGatherOffset:
case EOpTextureGatherOffsets:
{
// Figure out which variants are allowed by what extensions,
// and what arguments must be constant for which situations.
TString featureString = fnCandidate.getName() + "(...)";
const char* feature = featureString.c_str();
int compArg = -1; // track which argument, if any, is the constant component argument
switch (callNode.getOp()) {
case EOpTextureGather:
// More than two arguments needs gpu_shader5, and rectangular or shadow needs gpu_shader5,
// otherwise, need GL_ARB_texture_gather.
if (fnCandidate.getParamCount() > 2 || fnCandidate[0].type->getSampler().dim == EsdRect || fnCandidate[0].type->getSampler().shadow) {
if (! fnCandidate[0].type->getSampler().shadow)
compArg = 2;
}
break;
case EOpTextureGatherOffset:
// GL_ARB_texture_gather is good enough for 2D non-shadow textures with no component argument
if (! fnCandidate[0].type->getSampler().shadow)
compArg = 3;
break;
case EOpTextureGatherOffsets:
if (! fnCandidate[0].type->getSampler().shadow)
compArg = 3;
break;
default:
break;
}
if (compArg > 0 && compArg < fnCandidate.getParamCount()) {
if (aggArgs[compArg]->getAsConstantUnion()) {
int value = aggArgs[compArg]->getAsConstantUnion()->getConstArray()[0].getIConst();
if (value < 0 || value > 3)
error(loc, "must be 0, 1, 2, or 3:", feature, "component argument");
} else
error(loc, "must be a compile-time constant:", feature, "component argument");
}
break;
}
case EOpTextureOffset:
case EOpTextureFetchOffset:
case EOpTextureProjOffset:
case EOpTextureLodOffset:
case EOpTextureProjLodOffset:
case EOpTextureGradOffset:
case EOpTextureProjGradOffset:
{
// Handle texture-offset limits checking
// Pick which argument has to hold constant offsets
int arg = -1;
switch (callNode.getOp()) {
case EOpTextureOffset: arg = 2; break;
case EOpTextureFetchOffset: arg = (arg0->getType().getSampler().dim != EsdRect) ? 3 : 2; break;
case EOpTextureProjOffset: arg = 2; break;
case EOpTextureLodOffset: arg = 3; break;
case EOpTextureProjLodOffset: arg = 3; break;
case EOpTextureGradOffset: arg = 4; break;
case EOpTextureProjGradOffset: arg = 4; break;
default:
assert(0);
break;
}
if (arg > 0) {
if (! aggArgs[arg]->getAsConstantUnion())
error(loc, "argument must be compile-time constant", "texel offset", "");
else {
const TType& type = aggArgs[arg]->getAsTyped()->getType();
for (int c = 0; c < type.getVectorSize(); ++c) {
int offset = aggArgs[arg]->getAsConstantUnion()->getConstArray()[c].getIConst();
if (offset > resources.maxProgramTexelOffset || offset < resources.minProgramTexelOffset)
error(loc, "value is out of range:", "texel offset", "[gl_MinProgramTexelOffset, gl_MaxProgramTexelOffset]");
}
}
}
break;
}
case EOpTextureQuerySamples:
case EOpImageQuerySamples:
break;
case EOpImageAtomicAdd:
case EOpImageAtomicMin:
case EOpImageAtomicMax:
case EOpImageAtomicAnd:
case EOpImageAtomicOr:
case EOpImageAtomicXor:
case EOpImageAtomicExchange:
case EOpImageAtomicCompSwap:
break;
case EOpInterpolateAtCentroid:
case EOpInterpolateAtSample:
case EOpInterpolateAtOffset:
// Make sure the first argument is an interpolant, or an array element of an interpolant
if (arg0->getType().getQualifier().storage != EvqVaryingIn) {
// It might still be an array element.
//
// We could check more, but the semantics of the first argument are already met; the
// only way to turn an array into a float/vec* is array dereference and swizzle.
//
// ES and desktop 4.3 and earlier: swizzles may not be used
// desktop 4.4 and later: swizzles may be used
const TIntermTyped* base = TIntermediate::findLValueBase(arg0, true);
if (base == nullptr || base->getType().getQualifier().storage != EvqVaryingIn)
error(loc, "first argument must be an interpolant, or interpolant-array element", fnCandidate.getName().c_str(), "");
}
break;
default:
break;
}
}
//
// Handle seeing a built-in constructor in a grammar production.
//
TFunction* HlslParseContext::handleConstructorCall(const TSourceLoc& loc, const TType& type)
{
TOperator op = intermediate.mapTypeToConstructorOp(type);
if (op == EOpNull) {
error(loc, "cannot construct this type", type.getBasicString(), "");
return nullptr;
}
TString empty("");
return new TFunction(&empty, type, op);
}
//
// Handle seeing a "COLON semantic" at the end of a type declaration,
// by updating the type according to the semantic.
//
void HlslParseContext::handleSemantic(TSourceLoc loc, TQualifier& qualifier, const TString& semantic)
{
// TODO: need to know if it's an input or an output
// The following sketches what needs to be done, but can't be right
// without taking into account stage and input/output.
TString semanticUpperCase = semantic;
std::transform(semanticUpperCase.begin(), semanticUpperCase.end(), semanticUpperCase.begin(), ::toupper);
// in DX9, all outputs had to have a semantic associated with them, that was either consumed
// by the system or was a specific register assignment
// in DX10+, only semantics with the SV_ prefix have any meaning beyond decoration
// Fxc will only accept DX9 style semantics in compat mode
// Also, in DX10 if a SV value is present as the input of a stage, but isn't appropriate for that
// stage, it would just be ignored as it is likely there as part of an output struct from one stage
// to the next
bool bParseDX9 = false;
if (bParseDX9) {
if (semanticUpperCase == "PSIZE")
qualifier.builtIn = EbvPointSize;
else if (semantic == "FOG")
qualifier.builtIn = EbvFogFragCoord;
else if (semanticUpperCase == "DEPTH")
qualifier.builtIn = EbvFragDepth;
else if (semanticUpperCase == "VFACE")
qualifier.builtIn = EbvFace;
else if (semanticUpperCase == "VPOS")
qualifier.builtIn = EbvFragCoord;
}
//SV Position has a different meaning in vertex vs fragment
if (semanticUpperCase == "SV_POSITION" && language != EShLangFragment)
qualifier.builtIn = EbvPosition;
else if (semanticUpperCase == "SV_POSITION" && language == EShLangFragment)
qualifier.builtIn = EbvFragCoord;
else if (semanticUpperCase == "SV_CLIPDISTANCE")
qualifier.builtIn = EbvClipDistance;
else if (semanticUpperCase == "SV_CULLDISTANCE")
qualifier.builtIn = EbvCullDistance;
else if (semanticUpperCase == "SV_VERTEXID")
qualifier.builtIn = EbvVertexIndex;
else if (semanticUpperCase == "SV_VIEWPORTARRAYINDEX")
qualifier.builtIn = EbvViewportIndex;
else if (semanticUpperCase == "SV_TESSFACTOR")
qualifier.builtIn = EbvTessLevelOuter;
//Targets are defined 0-7
else if (semanticUpperCase == "SV_TARGET") {
qualifier.builtIn = EbvNone;
//qualifier.layoutLocation = 0;
} else if (semanticUpperCase == "SV_TARGET0") {
qualifier.builtIn = EbvNone;
//qualifier.layoutLocation = 0;
} else if (semanticUpperCase == "SV_TARGET1") {
qualifier.builtIn = EbvNone;
//qualifier.layoutLocation = 1;
} else if (semanticUpperCase == "SV_TARGET2") {
qualifier.builtIn = EbvNone;
//qualifier.layoutLocation = 2;
} else if (semanticUpperCase == "SV_TARGET3") {
qualifier.builtIn = EbvNone;
//qualifier.layoutLocation = 3;
} else if (semanticUpperCase == "SV_TARGET4") {
qualifier.builtIn = EbvNone;
//qualifier.layoutLocation = 4;
} else if (semanticUpperCase == "SV_TARGET5") {
qualifier.builtIn = EbvNone;
//qualifier.layoutLocation = 5;
} else if (semanticUpperCase == "SV_TARGET6") {
qualifier.builtIn = EbvNone;
//qualifier.layoutLocation = 6;
} else if (semanticUpperCase == "SV_TARGET7") {
qualifier.builtIn = EbvNone;
//qualifier.layoutLocation = 7;
} else if (semanticUpperCase == "SV_SAMPLEINDEX")
qualifier.builtIn = EbvSampleId;
else if (semanticUpperCase == "SV_RENDERTARGETARRAYINDEX")
qualifier.builtIn = EbvLayer;
else if (semanticUpperCase == "SV_PRIMITIVEID")
qualifier.builtIn = EbvPrimitiveId;
else if (semanticUpperCase == "SV_OUTPUTCONTROLPOINTID")
qualifier.builtIn = EbvInvocationId;
else if (semanticUpperCase == "SV_ISFRONTFACE")
qualifier.builtIn = EbvFace;
else if (semanticUpperCase == "SV_INSTANCEID")
qualifier.builtIn = EbvInstanceIndex;
else if (semanticUpperCase == "SV_INSIDETESSFACTOR")
qualifier.builtIn = EbvTessLevelInner;
else if (semanticUpperCase == "SV_GSINSTANCEID")
qualifier.builtIn = EbvInvocationId;
else if (semanticUpperCase == "SV_DISPATCHTHREADID")
qualifier.builtIn = EbvGlobalInvocationId;
else if (semanticUpperCase == "SV_GROUPTHREADID")
qualifier.builtIn = EbvLocalInvocationId;
else if (semanticUpperCase == "SV_GROUPID")
qualifier.builtIn = EbvWorkGroupId;
else if (semanticUpperCase == "SV_DOMAINLOCATION")
qualifier.builtIn = EbvTessCoord;
else if (semanticUpperCase == "SV_DEPTH")
qualifier.builtIn = EbvFragDepth;
else if( semanticUpperCase == "SV_COVERAGE")
qualifier.builtIn = EbvSampleMask;
//TODO, these need to get refined to be more specific
else if( semanticUpperCase == "SV_DEPTHGREATEREQUAL")
qualifier.builtIn = EbvFragDepthGreater;
else if( semanticUpperCase == "SV_DEPTHLESSEQUAL")
qualifier.builtIn = EbvFragDepthLesser;
else if( semanticUpperCase == "SV_STENCILREF")
error(loc, "unimplemented; need ARB_shader_stencil_export", "SV_STENCILREF", "");
else if( semanticUpperCase == "SV_GROUPINDEX")
error(loc, "unimplemented", "SV_GROUPINDEX", "");
}
//
// Handle seeing something like "PACKOFFSET LEFT_PAREN c[Subcomponent][.component] RIGHT_PAREN"
//
// 'location' has the "c[Subcomponent]" part.
// 'component' points to the "component" part, or nullptr if not present.
//
void HlslParseContext::handlePackOffset(const TSourceLoc& loc, TQualifier& qualifier, const glslang::TString& location,
const glslang::TString* component)
{
if (location.size() == 0 || location[0] != 'c') {
error(loc, "expected 'c'", "packoffset", "");
return;
}
if (location.size() == 1)
return;
if (! isdigit(location[1])) {
error(loc, "expected number after 'c'", "packoffset", "");
return;
}
qualifier.layoutOffset = 16 * atoi(location.substr(1, location.size()).c_str());
if (component != nullptr) {
int componentOffset = 0;
switch ((*component)[0]) {
case 'x': componentOffset = 0; break;
case 'y': componentOffset = 4; break;
case 'z': componentOffset = 8; break;
case 'w': componentOffset = 12; break;
default:
componentOffset = -1;
break;
}
if (componentOffset < 0 || component->size() > 1) {
error(loc, "expected {x, y, z, w} for component", "packoffset", "");
return;
}
qualifier.layoutOffset += componentOffset;
}
}
//
// Handle seeing something like "REGISTER LEFT_PAREN [shader_profile,] Type# RIGHT_PAREN"
//
// 'profile' points to the shader_profile part, or nullptr if not present.
// 'desc' is the type# part.
//
void HlslParseContext::handleRegister(const TSourceLoc& loc, TQualifier& qualifier, const glslang::TString* profile,
const glslang::TString& desc, int subComponent, const glslang::TString* spaceDesc)
{
if (profile != nullptr)
warn(loc, "ignoring shader_profile", "register", "");
if (desc.size() < 1) {
error(loc, "expected register type", "register", "");
return;
}
int regNumber = 0;
if (desc.size() > 1) {
if (isdigit(desc[1]))
regNumber = atoi(desc.substr(1, desc.size()).c_str());
else {
error(loc, "expected register number after register type", "register", "");
return;
}
}
// TODO: learn what all these really mean and how they interact with regNumber and subComponent
switch (std::tolower(desc[0])) {
case 'b':
case 't':
case 'c':
case 's':
case 'u':
qualifier.layoutBinding = regNumber + subComponent;
break;
default:
warn(loc, "ignoring unrecognized register type", "register", "%c", desc[0]);
break;
}
// space
unsigned int setNumber;
const auto crackSpace = [&]() -> bool {
const int spaceLen = 5;
if (spaceDesc->size() < spaceLen + 1)
return false;
if (spaceDesc->compare(0, spaceLen, "space") != 0)
return false;
if (! isdigit((*spaceDesc)[spaceLen]))
return false;
setNumber = atoi(spaceDesc->substr(spaceLen, spaceDesc->size()).c_str());
return true;
};
if (spaceDesc) {
if (! crackSpace()) {
error(loc, "expected spaceN", "register", "");
return;
}
qualifier.layoutSet = setNumber;
}
}
//
// Same error message for all places assignments don't work.
//
void HlslParseContext::assignError(const TSourceLoc& loc, const char* op, TString left, TString right)
{
error(loc, "", op, "cannot convert from '%s' to '%s'",
right.c_str(), left.c_str());
}
//
// Same error message for all places unary operations don't work.
//
void HlslParseContext::unaryOpError(const TSourceLoc& loc, const char* op, TString operand)
{
error(loc, " wrong operand type", op,
"no operation '%s' exists that takes an operand of type %s (or there is no acceptable conversion)",
op, operand.c_str());
}
//
// Same error message for all binary operations don't work.
//
void HlslParseContext::binaryOpError(const TSourceLoc& loc, const char* op, TString left, TString right)
{
error(loc, " wrong operand types:", op,
"no operation '%s' exists that takes a left-hand operand of type '%s' and "
"a right operand of type '%s' (or there is no acceptable conversion)",
op, left.c_str(), right.c_str());
}
//
// A basic type of EbtVoid is a key that the name string was seen in the source, but
// it was not found as a variable in the symbol table. If so, give the error
// message and insert a dummy variable in the symbol table to prevent future errors.
//
void HlslParseContext::variableCheck(TIntermTyped*& nodePtr)
{
TIntermSymbol* symbol = nodePtr->getAsSymbolNode();
if (! symbol)
return;
if (symbol->getType().getBasicType() == EbtVoid) {
error(symbol->getLoc(), "undeclared identifier", symbol->getName().c_str(), "");
// Add to symbol table to prevent future error messages on the same name
if (symbol->getName().size() > 0) {
TVariable* fakeVariable = new TVariable(&symbol->getName(), TType(EbtFloat));
symbolTable.insert(*fakeVariable);
// substitute a symbol node for this new variable
nodePtr = intermediate.addSymbol(*fakeVariable, symbol->getLoc());
}
}
}
//
// Both test, and if necessary spit out an error, to see if the node is really
// a constant.
//
void HlslParseContext::constantValueCheck(TIntermTyped* node, const char* token)
{
if (node->getQualifier().storage != EvqConst)
error(node->getLoc(), "constant expression required", token, "");
}
//
// Both test, and if necessary spit out an error, to see if the node is really
// an integer.
//
void HlslParseContext::integerCheck(const TIntermTyped* node, const char* token)
{
if ((node->getBasicType() == EbtInt || node->getBasicType() == EbtUint) && node->isScalar())
return;
error(node->getLoc(), "scalar integer expression required", token, "");
}
//
// Both test, and if necessary spit out an error, to see if we are currently
// globally scoped.
//
void HlslParseContext::globalCheck(const TSourceLoc& loc, const char* token)
{
if (! symbolTable.atGlobalLevel())
error(loc, "not allowed in nested scope", token, "");
}
bool HlslParseContext::builtInName(const TString& /*identifier*/)
{
return false;
}
//
// Make sure there is enough data and not too many arguments provided to the
// constructor to build something of the type of the constructor. Also returns
// the type of the constructor.
//
// Returns true if there was an error in construction.
//
bool HlslParseContext::constructorError(const TSourceLoc& loc, TIntermNode* node, TFunction& function,
TOperator op, TType& type)
{
type.shallowCopy(function.getType());
bool constructingMatrix = false;
switch (op) {
case EOpConstructTextureSampler:
return constructorTextureSamplerError(loc, function);
case EOpConstructMat2x2:
case EOpConstructMat2x3:
case EOpConstructMat2x4:
case EOpConstructMat3x2:
case EOpConstructMat3x3:
case EOpConstructMat3x4:
case EOpConstructMat4x2:
case EOpConstructMat4x3:
case EOpConstructMat4x4:
case EOpConstructDMat2x2:
case EOpConstructDMat2x3:
case EOpConstructDMat2x4:
case EOpConstructDMat3x2:
case EOpConstructDMat3x3:
case EOpConstructDMat3x4:
case EOpConstructDMat4x2:
case EOpConstructDMat4x3:
case EOpConstructDMat4x4:
constructingMatrix = true;
break;
default:
break;
}
//
// Walk the arguments for first-pass checks and collection of information.
//
int size = 0;
bool constType = true;
bool full = false;
bool overFull = false;
bool matrixInMatrix = false;
bool arrayArg = false;
for (int arg = 0; arg < function.getParamCount(); ++arg) {
if (function[arg].type->isArray()) {
if (! function[arg].type->isExplicitlySizedArray()) {
// Can't construct from an unsized array.
error(loc, "array argument must be sized", "constructor", "");
return true;
}
arrayArg = true;
}
if (constructingMatrix && function[arg].type->isMatrix())
matrixInMatrix = true;
// 'full' will go to true when enough args have been seen. If we loop
// again, there is an extra argument.
if (full) {
// For vectors and matrices, it's okay to have too many components
// available, but not okay to have unused arguments.
overFull = true;
}
size += function[arg].type->computeNumComponents();
if (op != EOpConstructStruct && ! type.isArray() && size >= type.computeNumComponents())
full = true;
if (function[arg].type->getQualifier().storage != EvqConst)
constType = false;
}
if (constType)
type.getQualifier().storage = EvqConst;
if (type.isArray()) {
if (function.getParamCount() == 0) {
error(loc, "array constructor must have at least one argument", "constructor", "");
return true;
}
if (type.isImplicitlySizedArray()) {
// auto adapt the constructor type to the number of arguments
type.changeOuterArraySize(function.getParamCount());
} else if (type.getOuterArraySize() != function.getParamCount()) {
error(loc, "array constructor needs one argument per array element", "constructor", "");
return true;
}
if (type.isArrayOfArrays()) {
// Types have to match, but we're still making the type.
// Finish making the type, and the comparison is done later
// when checking for conversion.
TArraySizes& arraySizes = type.getArraySizes();
// At least the dimensionalities have to match.
if (! function[0].type->isArray() || arraySizes.getNumDims() != function[0].type->getArraySizes().getNumDims() + 1) {
error(loc, "array constructor argument not correct type to construct array element", "constructor", "");
return true;
}
if (arraySizes.isInnerImplicit()) {
// "Arrays of arrays ..., and the size for any dimension is optional"
// That means we need to adopt (from the first argument) the other array sizes into the type.
for (int d = 1; d < arraySizes.getNumDims(); ++d) {
if (arraySizes.getDimSize(d) == UnsizedArraySize) {
arraySizes.setDimSize(d, function[0].type->getArraySizes().getDimSize(d - 1));
}
}
}
}
}
if (arrayArg && op != EOpConstructStruct && ! type.isArrayOfArrays()) {
error(loc, "constructing non-array constituent from array argument", "constructor", "");
return true;
}
if (matrixInMatrix && ! type.isArray()) {
return false;
}
if (overFull) {
error(loc, "too many arguments", "constructor", "");
return true;
}
if (op == EOpConstructStruct && ! type.isArray() && isZeroConstructor(node))
return false;
if (op == EOpConstructStruct && ! type.isArray() && (int)type.getStruct()->size() != function.getParamCount()) {
error(loc, "Number of constructor parameters does not match the number of structure fields", "constructor", "");
return true;
}
if ((op != EOpConstructStruct && size != 1 && size < type.computeNumComponents()) ||
(op == EOpConstructStruct && size < type.computeNumComponents())) {
error(loc, "not enough data provided for construction", "constructor", "");
return true;
}
return false;
}
bool HlslParseContext::isZeroConstructor(const TIntermNode* node)
{
return node->getAsTyped()->isScalar() && node->getAsConstantUnion() &&
node->getAsConstantUnion()->getConstArray()[0].getIConst() == 0;
}
// Verify all the correct semantics for constructing a combined texture/sampler.
// Return true if the semantics are incorrect.
bool HlslParseContext::constructorTextureSamplerError(const TSourceLoc& loc, const TFunction& function)
{
TString constructorName = function.getType().getBasicTypeString(); // TODO: performance: should not be making copy; interface needs to change
const char* token = constructorName.c_str();
// exactly two arguments needed
if (function.getParamCount() != 2) {
error(loc, "sampler-constructor requires two arguments", token, "");
return true;
}
// For now, not allowing arrayed constructors, the rest of this function
// is set up to allow them, if this test is removed:
if (function.getType().isArray()) {
error(loc, "sampler-constructor cannot make an array of samplers", token, "");
return true;
}
// first argument
// * the constructor's first argument must be a texture type
// * the dimensionality (1D, 2D, 3D, Cube, Rect, Buffer, MS, and Array)
// of the texture type must match that of the constructed sampler type
// (that is, the suffixes of the type of the first argument and the
// type of the constructor will be spelled the same way)
if (function[0].type->getBasicType() != EbtSampler ||
! function[0].type->getSampler().isTexture() ||
function[0].type->isArray()) {
error(loc, "sampler-constructor first argument must be a scalar textureXXX type", token, "");
return true;
}
// simulate the first argument's impact on the result type, so it can be compared with the encapsulated operator!=()
TSampler texture = function.getType().getSampler();
texture.combined = false;
texture.shadow = false;
if (texture != function[0].type->getSampler()) {
error(loc, "sampler-constructor first argument must match type and dimensionality of constructor type", token, "");
return true;
}
// second argument
// * the constructor's second argument must be a scalar of type
// *sampler* or *samplerShadow*
// * the presence or absence of depth comparison (Shadow) must match
// between the constructed sampler type and the type of the second argument
if (function[1].type->getBasicType() != EbtSampler ||
! function[1].type->getSampler().isPureSampler() ||
function[1].type->isArray()) {
error(loc, "sampler-constructor second argument must be a scalar type 'sampler'", token, "");
return true;
}
if (function.getType().getSampler().shadow != function[1].type->getSampler().shadow) {
error(loc, "sampler-constructor second argument presence of shadow must match constructor presence of shadow", token, "");
return true;
}
return false;
}
// Checks to see if a void variable has been declared and raise an error message for such a case
//
// returns true in case of an error
//
bool HlslParseContext::voidErrorCheck(const TSourceLoc& loc, const TString& identifier, const TBasicType basicType)
{
if (basicType == EbtVoid) {
error(loc, "illegal use of type 'void'", identifier.c_str(), "");
return true;
}
return false;
}
// Checks to see if the node (for the expression) contains a scalar boolean expression or not
void HlslParseContext::boolCheck(const TSourceLoc& loc, const TIntermTyped* type)
{
if (type->getBasicType() != EbtBool || type->isArray() || type->isMatrix() || type->isVector())
error(loc, "boolean expression expected", "", "");
}
//
// Fix just a full qualifier (no variables or types yet, but qualifier is complete) at global level.
//
void HlslParseContext::globalQualifierFix(const TSourceLoc&, TQualifier& qualifier)
{
// move from parameter/unknown qualifiers to pipeline in/out qualifiers
switch (qualifier.storage) {
case EvqIn:
qualifier.storage = EvqVaryingIn;
break;
case EvqOut:
qualifier.storage = EvqVaryingOut;
break;
default:
break;
}
}
//
// Merge characteristics of the 'src' qualifier into the 'dst'.
// If there is duplication, issue error messages, unless 'force'
// is specified, which means to just override default settings.
//
// Also, when force is false, it will be assumed that 'src' follows
// 'dst', for the purpose of error checking order for versions
// that require specific orderings of qualifiers.
//
void HlslParseContext::mergeQualifiers(TQualifier& dst, const TQualifier& src)
{
// Storage qualification
if (dst.storage == EvqTemporary || dst.storage == EvqGlobal)
dst.storage = src.storage;
else if ((dst.storage == EvqIn && src.storage == EvqOut) ||
(dst.storage == EvqOut && src.storage == EvqIn))
dst.storage = EvqInOut;
else if ((dst.storage == EvqIn && src.storage == EvqConst) ||
(dst.storage == EvqConst && src.storage == EvqIn))
dst.storage = EvqConstReadOnly;
// Layout qualifiers
mergeObjectLayoutQualifiers(dst, src, false);
// individual qualifiers
bool repeated = false;
#define MERGE_SINGLETON(field) repeated |= dst.field && src.field; dst.field |= src.field;
MERGE_SINGLETON(invariant);
MERGE_SINGLETON(noContraction);
MERGE_SINGLETON(centroid);
MERGE_SINGLETON(smooth);
MERGE_SINGLETON(flat);
MERGE_SINGLETON(nopersp);
MERGE_SINGLETON(patch);
MERGE_SINGLETON(sample);
MERGE_SINGLETON(coherent);
MERGE_SINGLETON(volatil);
MERGE_SINGLETON(restrict);
MERGE_SINGLETON(readonly);
MERGE_SINGLETON(writeonly);
MERGE_SINGLETON(specConstant);
}
// used to flatten the sampler type space into a single dimension
// correlates with the declaration of defaultSamplerPrecision[]
int HlslParseContext::computeSamplerTypeIndex(TSampler& sampler)
{
int arrayIndex = sampler.arrayed ? 1 : 0;
int shadowIndex = sampler.shadow ? 1 : 0;
int externalIndex = sampler.external ? 1 : 0;
return EsdNumDims * (EbtNumTypes * (2 * (2 * arrayIndex + shadowIndex) + externalIndex) + sampler.type) + sampler.dim;
}
//
// Do size checking for an array type's size.
//
void HlslParseContext::arraySizeCheck(const TSourceLoc& loc, TIntermTyped* expr, TArraySize& sizePair)
{
bool isConst = false;
sizePair.size = 1;
sizePair.node = nullptr;
TIntermConstantUnion* constant = expr->getAsConstantUnion();
if (constant) {
// handle true (non-specialization) constant
sizePair.size = constant->getConstArray()[0].getIConst();
isConst = true;
} else {
// see if it's a specialization constant instead
if (expr->getQualifier().isSpecConstant()) {
isConst = true;
sizePair.node = expr;
TIntermSymbol* symbol = expr->getAsSymbolNode();
if (symbol && symbol->getConstArray().size() > 0)
sizePair.size = symbol->getConstArray()[0].getIConst();
}
}
if (! isConst || (expr->getBasicType() != EbtInt && expr->getBasicType() != EbtUint)) {
error(loc, "array size must be a constant integer expression", "", "");
return;
}
if (sizePair.size <= 0) {
error(loc, "array size must be a positive integer", "", "");
return;
}
}
//
// Require array to be completely sized
//
void HlslParseContext::arraySizeRequiredCheck(const TSourceLoc& loc, const TArraySizes& arraySizes)
{
if (arraySizes.isImplicit())
error(loc, "array size required", "", "");
}
void HlslParseContext::structArrayCheck(const TSourceLoc& /*loc*/, const TType& type)
{
const TTypeList& structure = *type.getStruct();
for (int m = 0; m < (int)structure.size(); ++m) {
const TType& member = *structure[m].type;
if (member.isArray())
arraySizeRequiredCheck(structure[m].loc, *member.getArraySizes());
}
}
// Merge array dimensions listed in 'sizes' onto the type's array dimensions.
//
// From the spec: "vec4[2] a[3]; // size-3 array of size-2 array of vec4"
//
// That means, the 'sizes' go in front of the 'type' as outermost sizes.
// 'type' is the type part of the declaration (to the left)
// 'sizes' is the arrayness tagged on the identifier (to the right)
//
void HlslParseContext::arrayDimMerge(TType& type, const TArraySizes* sizes)
{
if (sizes)
type.addArrayOuterSizes(*sizes);
}
//
// Do all the semantic checking for declaring or redeclaring an array, with and
// without a size, and make the right changes to the symbol table.
//
void HlslParseContext::declareArray(const TSourceLoc& loc, TString& identifier, const TType& type, TSymbol*& symbol, bool track)
{
if (! symbol) {
bool currentScope;
symbol = symbolTable.find(identifier, nullptr, &currentScope);
if (symbol && builtInName(identifier) && ! symbolTable.atBuiltInLevel()) {
// bad shader (errors already reported) trying to redeclare a built-in name as an array
return;
}
if (symbol == nullptr || ! currentScope) {
//
// Successfully process a new definition.
// (Redeclarations have to take place at the same scope; otherwise they are hiding declarations)
//
symbol = new TVariable(&identifier, type);
symbolTable.insert(*symbol);
if (track && symbolTable.atGlobalLevel())
trackLinkageDeferred(*symbol);
return;
}
if (symbol->getAsAnonMember()) {
error(loc, "cannot redeclare a user-block member array", identifier.c_str(), "");
symbol = nullptr;
return;
}
}
//
// Process a redeclaration.
//
if (! symbol) {
error(loc, "array variable name expected", identifier.c_str(), "");
return;
}
// redeclareBuiltinVariable() should have already done the copyUp()
TType& existingType = symbol->getWritableType();
if (existingType.isExplicitlySizedArray()) {
// be more lenient for input arrays to geometry shaders and tessellation control outputs, where the redeclaration is the same size
return;
}
existingType.updateArraySizes(type);
}
void HlslParseContext::updateImplicitArraySize(const TSourceLoc& loc, TIntermNode *node, int index)
{
// maybe there is nothing to do...
TIntermTyped* typedNode = node->getAsTyped();
if (typedNode->getType().getImplicitArraySize() > index)
return;
// something to do...
// Figure out what symbol to lookup, as we will use its type to edit for the size change,
// as that type will be shared through shallow copies for future references.
TSymbol* symbol = nullptr;
int blockIndex = -1;
const TString* lookupName = nullptr;
if (node->getAsSymbolNode())
lookupName = &node->getAsSymbolNode()->getName();
else if (node->getAsBinaryNode()) {
const TIntermBinary* deref = node->getAsBinaryNode();
// This has to be the result of a block dereference, unless it's bad shader code
// If it's a uniform block, then an error will be issued elsewhere, but
// return early now to avoid crashing later in this function.
if (! deref->getLeft()->getAsSymbolNode() || deref->getLeft()->getBasicType() != EbtBlock ||
deref->getLeft()->getType().getQualifier().storage == EvqUniform ||
deref->getRight()->getAsConstantUnion() == nullptr)
return;
blockIndex = deref->getRight()->getAsConstantUnion()->getConstArray()[0].getIConst();
lookupName = &deref->getLeft()->getAsSymbolNode()->getName();
if (IsAnonymous(*lookupName))
lookupName = &(*deref->getLeft()->getType().getStruct())[blockIndex].type->getFieldName();
}
// Lookup the symbol, should only fail if shader code is incorrect
symbol = symbolTable.find(*lookupName);
if (symbol == nullptr)
return;
if (symbol->getAsFunction()) {
error(loc, "array variable name expected", symbol->getName().c_str(), "");
return;
}
symbol->getWritableType().setImplicitArraySize(index + 1);
}
//
// Enforce non-initializer type/qualifier rules.
//
void HlslParseContext::fixConstInit(const TSourceLoc& loc, TString& identifier, TType& type, TIntermTyped*& initializer)
{
//
// Make the qualifier make sense, given that there is an initializer.
//
if (initializer == nullptr) {
if (type.getQualifier().storage == EvqConst ||
type.getQualifier().storage == EvqConstReadOnly) {
initializer = intermediate.makeAggregate(loc);
warn(loc, "variable with qualifier 'const' not initialized; zero initializing", identifier.c_str(), "");
}
}
}
//
// See if the identifier is a built-in symbol that can be redeclared, and if so,
// copy the symbol table's read-only built-in variable to the current
// global level, where it can be modified based on the passed in type.
//
// Returns nullptr if no redeclaration took place; meaning a normal declaration still
// needs to occur for it, not necessarily an error.
//
// Returns a redeclared and type-modified variable if a redeclared occurred.
//
TSymbol* HlslParseContext::redeclareBuiltinVariable(const TSourceLoc& /*loc*/, const TString& identifier,
const TQualifier& /*qualifier*/,
const TShaderQualifiers& /*publicType*/)
{
if (! builtInName(identifier) || symbolTable.atBuiltInLevel() || ! symbolTable.atGlobalLevel())
return nullptr;
return nullptr;
}
//
// Either redeclare the requested block, or give an error message why it can't be done.
//
// TODO: functionality: explicitly sizing members of redeclared blocks is not giving them an explicit size
void HlslParseContext::redeclareBuiltinBlock(const TSourceLoc& loc, TTypeList& newTypeList, const TString& blockName, const TString* instanceName, TArraySizes* arraySizes)
{
// Redeclaring a built-in block...
// Blocks with instance names are easy to find, lookup the instance name,
// Anonymous blocks need to be found via a member.
bool builtIn;
TSymbol* block;
if (instanceName)
block = symbolTable.find(*instanceName, &builtIn);
else
block = symbolTable.find(newTypeList.front().type->getFieldName(), &builtIn);
// If the block was not found, this must be a version/profile/stage
// that doesn't have it, or the instance name is wrong.
const char* errorName = instanceName ? instanceName->c_str() : newTypeList.front().type->getFieldName().c_str();
if (! block) {
error(loc, "no declaration found for redeclaration", errorName, "");
return;
}
// Built-in blocks cannot be redeclared more than once, which if happened,
// we'd be finding the already redeclared one here, rather than the built in.
if (! builtIn) {
error(loc, "can only redeclare a built-in block once, and before any use", blockName.c_str(), "");
return;
}
// Copy the block to make a writable version, to insert into the block table after editing.
block = symbolTable.copyUpDeferredInsert(block);
if (block->getType().getBasicType() != EbtBlock) {
error(loc, "cannot redeclare a non block as a block", errorName, "");
return;
}
// Edit and error check the container against the redeclaration
// - remove unused members
// - ensure remaining qualifiers/types match
TType& type = block->getWritableType();
TTypeList::iterator member = type.getWritableStruct()->begin();
size_t numOriginalMembersFound = 0;
while (member != type.getStruct()->end()) {
// look for match
bool found = false;
TTypeList::const_iterator newMember;
TSourceLoc memberLoc;
memberLoc.init();
for (newMember = newTypeList.begin(); newMember != newTypeList.end(); ++newMember) {
if (member->type->getFieldName() == newMember->type->getFieldName()) {
found = true;
memberLoc = newMember->loc;
break;
}
}
if (found) {
++numOriginalMembersFound;
// - ensure match between redeclared members' types
// - check for things that can't be changed
// - update things that can be changed
TType& oldType = *member->type;
const TType& newType = *newMember->type;
if (! newType.sameElementType(oldType))
error(memberLoc, "cannot redeclare block member with a different type", member->type->getFieldName().c_str(), "");
if (oldType.isArray() != newType.isArray())
error(memberLoc, "cannot change arrayness of redeclared block member", member->type->getFieldName().c_str(), "");
else if (! oldType.sameArrayness(newType) && oldType.isExplicitlySizedArray())
error(memberLoc, "cannot change array size of redeclared block member", member->type->getFieldName().c_str(), "");
if (newType.getQualifier().isMemory())
error(memberLoc, "cannot add memory qualifier to redeclared block member", member->type->getFieldName().c_str(), "");
if (newType.getQualifier().hasLayout())
error(memberLoc, "cannot add layout to redeclared block member", member->type->getFieldName().c_str(), "");
if (newType.getQualifier().patch)
error(memberLoc, "cannot add patch to redeclared block member", member->type->getFieldName().c_str(), "");
oldType.getQualifier().centroid = newType.getQualifier().centroid;
oldType.getQualifier().sample = newType.getQualifier().sample;
oldType.getQualifier().invariant = newType.getQualifier().invariant;
oldType.getQualifier().noContraction = newType.getQualifier().noContraction;
oldType.getQualifier().smooth = newType.getQualifier().smooth;
oldType.getQualifier().flat = newType.getQualifier().flat;
oldType.getQualifier().nopersp = newType.getQualifier().nopersp;
// go to next member
++member;
} else {
// For missing members of anonymous blocks that have been redeclared,
// hide the original (shared) declaration.
// Instance-named blocks can just have the member removed.
if (instanceName)
member = type.getWritableStruct()->erase(member);
else {
member->type->hideMember();
++member;
}
}
}
if (numOriginalMembersFound < newTypeList.size())
error(loc, "block redeclaration has extra members", blockName.c_str(), "");
if (type.isArray() != (arraySizes != nullptr))
error(loc, "cannot change arrayness of redeclared block", blockName.c_str(), "");
else if (type.isArray()) {
if (type.isExplicitlySizedArray() && arraySizes->getOuterSize() == UnsizedArraySize)
error(loc, "block already declared with size, can't redeclare as implicitly-sized", blockName.c_str(), "");
else if (type.isExplicitlySizedArray() && type.getArraySizes() != *arraySizes)
error(loc, "cannot change array size of redeclared block", blockName.c_str(), "");
else if (type.isImplicitlySizedArray() && arraySizes->getOuterSize() != UnsizedArraySize)
type.changeOuterArraySize(arraySizes->getOuterSize());
}
symbolTable.insert(*block);
// Save it in the AST for linker use.
trackLinkageDeferred(*block);
}
void HlslParseContext::paramFix(TType& type)
{
switch (type.getQualifier().storage) {
case EvqConst:
type.getQualifier().storage = EvqConstReadOnly;
break;
case EvqGlobal:
case EvqTemporary:
type.getQualifier().storage = EvqIn;
break;
default:
break;
}
}
void HlslParseContext::specializationCheck(const TSourceLoc& loc, const TType& type, const char* op)
{
if (type.containsSpecializationSize())
error(loc, "can't use with types containing arrays sized with a specialization constant", op, "");
}
//
// Layout qualifier stuff.
//
// Put the id's layout qualification into the public type, for qualifiers not having a number set.
// This is before we know any type information for error checking.
void HlslParseContext::setLayoutQualifier(const TSourceLoc& loc, TQualifier& qualifier, TString& id)
{
std::transform(id.begin(), id.end(), id.begin(), ::tolower);
if (id == TQualifier::getLayoutMatrixString(ElmColumnMajor)) {
qualifier.layoutMatrix = ElmRowMajor;
return;
}
if (id == TQualifier::getLayoutMatrixString(ElmRowMajor)) {
qualifier.layoutMatrix = ElmColumnMajor;
return;
}
if (id == "push_constant") {
requireVulkan(loc, "push_constant");
qualifier.layoutPushConstant = true;
return;
}
if (language == EShLangGeometry || language == EShLangTessEvaluation) {
if (id == TQualifier::getGeometryString(ElgTriangles)) {
//publicType.shaderQualifiers.geometry = ElgTriangles;
warn(loc, "ignored", id.c_str(), "");
return;
}
if (language == EShLangGeometry) {
if (id == TQualifier::getGeometryString(ElgPoints)) {
//publicType.shaderQualifiers.geometry = ElgPoints;
warn(loc, "ignored", id.c_str(), "");
return;
}
if (id == TQualifier::getGeometryString(ElgLineStrip)) {
//publicType.shaderQualifiers.geometry = ElgLineStrip;
warn(loc, "ignored", id.c_str(), "");
return;
}
if (id == TQualifier::getGeometryString(ElgLines)) {
//publicType.shaderQualifiers.geometry = ElgLines;
warn(loc, "ignored", id.c_str(), "");
return;
}
if (id == TQualifier::getGeometryString(ElgLinesAdjacency)) {
//publicType.shaderQualifiers.geometry = ElgLinesAdjacency;
warn(loc, "ignored", id.c_str(), "");
return;
}
if (id == TQualifier::getGeometryString(ElgTrianglesAdjacency)) {
//publicType.shaderQualifiers.geometry = ElgTrianglesAdjacency;
warn(loc, "ignored", id.c_str(), "");
return;
}
if (id == TQualifier::getGeometryString(ElgTriangleStrip)) {
//publicType.shaderQualifiers.geometry = ElgTriangleStrip;
warn(loc, "ignored", id.c_str(), "");
return;
}
} else {
assert(language == EShLangTessEvaluation);
// input primitive
if (id == TQualifier::getGeometryString(ElgTriangles)) {
//publicType.shaderQualifiers.geometry = ElgTriangles;
warn(loc, "ignored", id.c_str(), "");
return;
}
if (id == TQualifier::getGeometryString(ElgQuads)) {
//publicType.shaderQualifiers.geometry = ElgQuads;
warn(loc, "ignored", id.c_str(), "");
return;
}
if (id == TQualifier::getGeometryString(ElgIsolines)) {
//publicType.shaderQualifiers.geometry = ElgIsolines;
warn(loc, "ignored", id.c_str(), "");
return;
}
// vertex spacing
if (id == TQualifier::getVertexSpacingString(EvsEqual)) {
//publicType.shaderQualifiers.spacing = EvsEqual;
warn(loc, "ignored", id.c_str(), "");
return;
}
if (id == TQualifier::getVertexSpacingString(EvsFractionalEven)) {
//publicType.shaderQualifiers.spacing = EvsFractionalEven;
warn(loc, "ignored", id.c_str(), "");
return;
}
if (id == TQualifier::getVertexSpacingString(EvsFractionalOdd)) {
//publicType.shaderQualifiers.spacing = EvsFractionalOdd;
warn(loc, "ignored", id.c_str(), "");
return;
}
// triangle order
if (id == TQualifier::getVertexOrderString(EvoCw)) {
//publicType.shaderQualifiers.order = EvoCw;
warn(loc, "ignored", id.c_str(), "");
return;
}
if (id == TQualifier::getVertexOrderString(EvoCcw)) {
//publicType.shaderQualifiers.order = EvoCcw;
warn(loc, "ignored", id.c_str(), "");
return;
}
// point mode
if (id == "point_mode") {
//publicType.shaderQualifiers.pointMode = true;
warn(loc, "ignored", id.c_str(), "");
return;
}
}
}
if (language == EShLangFragment) {
if (id == "origin_upper_left") {
//publicType.shaderQualifiers.originUpperLeft = true;
warn(loc, "ignored", id.c_str(), "");
return;
}
if (id == "pixel_center_integer") {
//publicType.shaderQualifiers.pixelCenterInteger = true;
warn(loc, "ignored", id.c_str(), "");
return;
}
if (id == "early_fragment_tests") {
//publicType.shaderQualifiers.earlyFragmentTests = true;
warn(loc, "ignored", id.c_str(), "");
return;
}
for (TLayoutDepth depth = (TLayoutDepth)(EldNone + 1); depth < EldCount; depth = (TLayoutDepth)(depth + 1)) {
if (id == TQualifier::getLayoutDepthString(depth)) {
//publicType.shaderQualifiers.layoutDepth = depth;
warn(loc, "ignored", id.c_str(), "");
return;
}
}
if (id.compare(0, 13, "blend_support") == 0) {
bool found = false;
for (TBlendEquationShift be = (TBlendEquationShift)0; be < EBlendCount; be = (TBlendEquationShift)(be + 1)) {
if (id == TQualifier::getBlendEquationString(be)) {
requireExtensions(loc, 1, &E_GL_KHR_blend_equation_advanced, "blend equation");
intermediate.addBlendEquation(be);
//publicType.shaderQualifiers.blendEquation = true;
warn(loc, "ignored", id.c_str(), "");
found = true;
break;
}
}
if (! found)
error(loc, "unknown blend equation", "blend_support", "");
return;
}
}
error(loc, "unrecognized layout identifier, or qualifier requires assignment (e.g., binding = 4)", id.c_str(), "");
}
// Put the id's layout qualifier value into the public type, for qualifiers having a number set.
// This is before we know any type information for error checking.
void HlslParseContext::setLayoutQualifier(const TSourceLoc& loc, TQualifier& qualifier, TString& id, const TIntermTyped* node)
{
const char* feature = "layout-id value";
//const char* nonLiteralFeature = "non-literal layout-id value";
integerCheck(node, feature);
const TIntermConstantUnion* constUnion = node->getAsConstantUnion();
int value = 0;
if (constUnion) {
value = constUnion->getConstArray()[0].getIConst();
}
std::transform(id.begin(), id.end(), id.begin(), ::tolower);
if (id == "offset") {
qualifier.layoutOffset = value;
return;
} else if (id == "align") {
// "The specified alignment must be a power of 2, or a compile-time error results."
if (! IsPow2(value))
error(loc, "must be a power of 2", "align", "");
else
qualifier.layoutAlign = value;
return;
} else if (id == "location") {
if ((unsigned int)value >= TQualifier::layoutLocationEnd)
error(loc, "location is too large", id.c_str(), "");
else
qualifier.layoutLocation = value;
return;
} else if (id == "set") {
if ((unsigned int)value >= TQualifier::layoutSetEnd)
error(loc, "set is too large", id.c_str(), "");
else
qualifier.layoutSet = value;
return;
} else if (id == "binding") {
if ((unsigned int)value >= TQualifier::layoutBindingEnd)
error(loc, "binding is too large", id.c_str(), "");
else
qualifier.layoutBinding = value;
return;
} else if (id == "component") {
if ((unsigned)value >= TQualifier::layoutComponentEnd)
error(loc, "component is too large", id.c_str(), "");
else
qualifier.layoutComponent = value;
return;
} else if (id.compare(0, 4, "xfb_") == 0) {
// "Any shader making any static use (after preprocessing) of any of these
// *xfb_* qualifiers will cause the shader to be in a transform feedback
// capturing mode and hence responsible for describing the transform feedback
// setup."
intermediate.setXfbMode();
if (id == "xfb_buffer") {
// "It is a compile-time error to specify an *xfb_buffer* that is greater than
// the implementation-dependent constant gl_MaxTransformFeedbackBuffers."
if (value >= resources.maxTransformFeedbackBuffers)
error(loc, "buffer is too large:", id.c_str(), "gl_MaxTransformFeedbackBuffers is %d", resources.maxTransformFeedbackBuffers);
if (value >= (int)TQualifier::layoutXfbBufferEnd)
error(loc, "buffer is too large:", id.c_str(), "internal max is %d", TQualifier::layoutXfbBufferEnd - 1);
else
qualifier.layoutXfbBuffer = value;
return;
} else if (id == "xfb_offset") {
if (value >= (int)TQualifier::layoutXfbOffsetEnd)
error(loc, "offset is too large:", id.c_str(), "internal max is %d", TQualifier::layoutXfbOffsetEnd - 1);
else
qualifier.layoutXfbOffset = value;
return;
} else if (id == "xfb_stride") {
// "The resulting stride (implicit or explicit), when divided by 4, must be less than or equal to the
// implementation-dependent constant gl_MaxTransformFeedbackInterleavedComponents."
if (value > 4 * resources.maxTransformFeedbackInterleavedComponents)
error(loc, "1/4 stride is too large:", id.c_str(), "gl_MaxTransformFeedbackInterleavedComponents is %d", resources.maxTransformFeedbackInterleavedComponents);
else if (value >= (int)TQualifier::layoutXfbStrideEnd)
error(loc, "stride is too large:", id.c_str(), "internal max is %d", TQualifier::layoutXfbStrideEnd - 1);
if (value < (int)TQualifier::layoutXfbStrideEnd)
qualifier.layoutXfbStride = value;
return;
}
}
if (id == "input_attachment_index") {
requireVulkan(loc, "input_attachment_index");
if (value >= (int)TQualifier::layoutAttachmentEnd)
error(loc, "attachment index is too large", id.c_str(), "");
else
qualifier.layoutAttachment = value;
return;
}
if (id == "constant_id") {
requireSpv(loc, "constant_id");
if (value >= (int)TQualifier::layoutSpecConstantIdEnd) {
error(loc, "specialization-constant id is too large", id.c_str(), "");
} else {
qualifier.layoutSpecConstantId = value;
qualifier.specConstant = true;
if (! intermediate.addUsedConstantId(value))
error(loc, "specialization-constant id already used", id.c_str(), "");
}
return;
}
switch (language) {
case EShLangVertex:
break;
case EShLangTessControl:
if (id == "vertices") {
if (value == 0)
error(loc, "must be greater than 0", "vertices", "");
else
//publicType.shaderQualifiers.vertices = value;
warn(loc, "ignored", id.c_str(), "");
return;
}
break;
case EShLangTessEvaluation:
break;
case EShLangGeometry:
if (id == "invocations") {
if (value == 0)
error(loc, "must be at least 1", "invocations", "");
else
//publicType.shaderQualifiers.invocations = value;
warn(loc, "ignored", id.c_str(), "");
return;
}
if (id == "max_vertices") {
//publicType.shaderQualifiers.vertices = value;
warn(loc, "ignored", id.c_str(), "");
if (value > resources.maxGeometryOutputVertices)
error(loc, "too large, must be less than gl_MaxGeometryOutputVertices", "max_vertices", "");
return;
}
if (id == "stream") {
qualifier.layoutStream = value;
return;
}
break;
case EShLangFragment:
if (id == "index") {
qualifier.layoutIndex = value;
return;
}
break;
case EShLangCompute:
if (id.compare(0, 11, "local_size_") == 0) {
if (id == "local_size_x") {
//publicType.shaderQualifiers.localSize[0] = value;
warn(loc, "ignored", id.c_str(), "");
return;
}
if (id == "local_size_y") {
//publicType.shaderQualifiers.localSize[1] = value;
warn(loc, "ignored", id.c_str(), "");
return;
}
if (id == "local_size_z") {
//publicType.shaderQualifiers.localSize[2] = value;
warn(loc, "ignored", id.c_str(), "");
return;
}
if (spvVersion.spv != 0) {
if (id == "local_size_x_id") {
//publicType.shaderQualifiers.localSizeSpecId[0] = value;
warn(loc, "ignored", id.c_str(), "");
return;
}
if (id == "local_size_y_id") {
//publicType.shaderQualifiers.localSizeSpecId[1] = value;
warn(loc, "ignored", id.c_str(), "");
return;
}
if (id == "local_size_z_id") {
//publicType.shaderQualifiers.localSizeSpecId[2] = value;
warn(loc, "ignored", id.c_str(), "");
return;
}
}
}
break;
default:
break;
}
error(loc, "there is no such layout identifier for this stage taking an assigned value", id.c_str(), "");
}
// Merge any layout qualifier information from src into dst, leaving everything else in dst alone
//
// "More than one layout qualifier may appear in a single declaration.
// Additionally, the same layout-qualifier-name can occur multiple times
// within a layout qualifier or across multiple layout qualifiers in the
// same declaration. When the same layout-qualifier-name occurs
// multiple times, in a single declaration, the last occurrence overrides
// the former occurrence(s). Further, if such a layout-qualifier-name
// will effect subsequent declarations or other observable behavior, it
// is only the last occurrence that will have any effect, behaving as if
// the earlier occurrence(s) within the declaration are not present.
// This is also true for overriding layout-qualifier-names, where one
// overrides the other (e.g., row_major vs. column_major); only the last
// occurrence has any effect."
//
void HlslParseContext::mergeObjectLayoutQualifiers(TQualifier& dst, const TQualifier& src, bool inheritOnly)
{
if (src.hasMatrix())
dst.layoutMatrix = src.layoutMatrix;
if (src.hasPacking())
dst.layoutPacking = src.layoutPacking;
if (src.hasStream())
dst.layoutStream = src.layoutStream;
if (src.hasFormat())
dst.layoutFormat = src.layoutFormat;
if (src.hasXfbBuffer())
dst.layoutXfbBuffer = src.layoutXfbBuffer;
if (src.hasAlign())
dst.layoutAlign = src.layoutAlign;
if (! inheritOnly) {
if (src.hasLocation())
dst.layoutLocation = src.layoutLocation;
if (src.hasComponent())
dst.layoutComponent = src.layoutComponent;
if (src.hasIndex())
dst.layoutIndex = src.layoutIndex;
if (src.hasOffset())
dst.layoutOffset = src.layoutOffset;
if (src.hasSet())
dst.layoutSet = src.layoutSet;
if (src.layoutBinding != TQualifier::layoutBindingEnd)
dst.layoutBinding = src.layoutBinding;
if (src.hasXfbStride())
dst.layoutXfbStride = src.layoutXfbStride;
if (src.hasXfbOffset())
dst.layoutXfbOffset = src.layoutXfbOffset;
if (src.hasAttachment())
dst.layoutAttachment = src.layoutAttachment;
if (src.hasSpecConstantId())
dst.layoutSpecConstantId = src.layoutSpecConstantId;
if (src.layoutPushConstant)
dst.layoutPushConstant = true;
}
}
//
// Look up a function name in the symbol table, and make sure it is a function.
//
// First, look for an exact match. If there is none, use the generic selector
// TParseContextBase::selectFunction() to find one, parameterized by the
// convertible() and better() predicates defined below.
//
// Return the function symbol if found, otherwise nullptr.
//
const TFunction* HlslParseContext::findFunction(const TSourceLoc& loc, TFunction& call, bool& builtIn,
TIntermTyped*& args)
{
// const TFunction* function = nullptr;
if (symbolTable.isFunctionNameVariable(call.getName())) {
error(loc, "can't use function syntax on variable", call.getName().c_str(), "");
return nullptr;
}
// first, look for an exact match
TSymbol* symbol = symbolTable.find(call.getMangledName(), &builtIn);
if (symbol)
return symbol->getAsFunction();
// no exact match, use the generic selector, parameterized by the GLSL rules
// create list of candidates to send
TVector<const TFunction*> candidateList;
symbolTable.findFunctionNameList(call.getMangledName(), candidateList, builtIn);
// These builtin ops can accept any type, so we bypass the argument selection
if (candidateList.size() == 1 && builtIn &&
(candidateList[0]->getBuiltInOp() == EOpMethodAppend ||
candidateList[0]->getBuiltInOp() == EOpMethodRestartStrip)) {
return candidateList[0];
}
bool allowOnlyUpConversions = true;
// can 'from' convert to 'to'?
const auto convertible = [&](const TType& from, const TType& to, TOperator op, int arg) -> bool {
if (from == to)
return true;
// no aggregate conversions
if (from.isArray() || to.isArray() ||
from.isStruct() || to.isStruct())
return false;
switch (op) {
case EOpInterlockedAdd:
case EOpInterlockedAnd:
case EOpInterlockedCompareExchange:
case EOpInterlockedCompareStore:
case EOpInterlockedExchange:
case EOpInterlockedMax:
case EOpInterlockedMin:
case EOpInterlockedOr:
case EOpInterlockedXor:
// We do not promote the texture or image type for these ocodes. Normally that would not
// be an issue because it's a buffer, but we haven't decomposed the opcode yet, and at this
// stage it's merely e.g, a basic integer type.
//
// Instead, we want to promote other arguments, but stay within the same family. In other
// words, InterlockedAdd(RWBuffer<int>, ...) will always use the int flavor, never the uint flavor,
// but it is allowed to promote its other arguments.
if (arg == 0)
return false;
default:
break;
}
// basic types have to be convertible
if (allowOnlyUpConversions)
if (! intermediate.canImplicitlyPromote(from.getBasicType(), to.getBasicType(), EOpFunctionCall))
return false;
// shapes have to be convertible
if ((from.isScalarOrVec1() && to.isScalarOrVec1()) ||
(from.isScalarOrVec1() && to.isVector()) ||
(from.isVector() && to.isVector() && from.getVectorSize() >= to.getVectorSize()))
return true;
// TODO: what are the matrix rules? they go here
return false;
};
// Is 'to2' a better conversion than 'to1'?
// Ties should not be considered as better.
// Assumes 'convertible' already said true.
const auto better = [](const TType& from, const TType& to1, const TType& to2) -> bool {
// exact match is always better than mismatch
if (from == to2)
return from != to1;
if (from == to1)
return false;
// shape changes are always worse
if (from.isScalar() || from.isVector()) {
if (from.getVectorSize() == to2.getVectorSize() &&
from.getVectorSize() != to1.getVectorSize())
return true;
if (from.getVectorSize() == to1.getVectorSize() &&
from.getVectorSize() != to2.getVectorSize())
return false;
}
// Handle sampler betterness: An exact sampler match beats a non-exact match.
// (If we just looked at basic type, all EbtSamplers would look the same).
// If any type is not a sampler, just use the linearize function below.
if (from.getBasicType() == EbtSampler && to1.getBasicType() == EbtSampler && to2.getBasicType() == EbtSampler) {
// We can ignore the vector size in the comparison.
TSampler to1Sampler = to1.getSampler();
TSampler to2Sampler = to2.getSampler();
to1Sampler.vectorSize = to2Sampler.vectorSize = from.getSampler().vectorSize;
if (from.getSampler() == to2Sampler)
return from.getSampler() != to1Sampler;
if (from.getSampler() == to1Sampler)
return false;
}
// Might or might not be changing shape, which means basic type might
// or might not match, so within that, the question is how big a
// basic-type conversion is being done.
//
// Use a hierarchy of domains, translated to order of magnitude
// in a linearized view:
// - floating-point vs. integer
// - 32 vs. 64 bit (or width in general)
// - bool vs. non bool
// - signed vs. not signed
const auto linearize = [](const TBasicType& basicType) -> int {
switch (basicType) {
case EbtBool: return 1;
case EbtInt: return 10;
case EbtUint: return 11;
case EbtInt64: return 20;
case EbtUint64: return 21;
case EbtFloat: return 100;
case EbtDouble: return 110;
default: return 0;
}
};
return std::abs(linearize(to2.getBasicType()) - linearize(from.getBasicType())) <
std::abs(linearize(to1.getBasicType()) - linearize(from.getBasicType()));
};
// for ambiguity reporting
bool tie = false;
// send to the generic selector
const TFunction* bestMatch = selectFunction(candidateList, call, convertible, better, tie);
if (bestMatch == nullptr) {
// If there is nothing selected by allowing only up-conversions (to a larger linearize() value),
// we instead try down-conversions, which are valid in HLSL, but not preferred if there are any
// upconversions possible.
allowOnlyUpConversions = false;
bestMatch = selectFunction(candidateList, call, convertible, better, tie);
}
if (bestMatch == nullptr) {
error(loc, "no matching overloaded function found", call.getName().c_str(), "");
return nullptr;
}
// For builtins, we can convert across the arguments. This will happen in several steps:
// Step 1: If there's an exact match, use it.
// Step 2a: Otherwise, get the operator from the best match and promote arguments:
// Step 2b: reconstruct the TFunction based on the new arg types
// Step 3: Re-select after type promotion is applied, to find proper candidate.
if (builtIn) {
// Step 1: If there's an exact match, use it.
if (call.getMangledName() == bestMatch->getMangledName())
return bestMatch;
// Step 2a: Otherwise, get the operator from the best match and promote arguments as if we
// are that kind of operator.
if (args != nullptr) {
// The arg list can be a unary node, or an aggregate. We have to handle both.
// We will use the normal promote() facilities, which require an interm node.
TIntermOperator* promote = nullptr;
if (call.getParamCount() == 1) {
promote = new TIntermUnary(bestMatch->getBuiltInOp());
promote->getAsUnaryNode()->setOperand(args->getAsTyped());
} else {
promote = new TIntermAggregate(bestMatch->getBuiltInOp());
promote->getAsAggregate()->getSequence().swap(args->getAsAggregate()->getSequence());
}
if (! intermediate.promote(promote))
return nullptr;
// Obtain the promoted arg list.
if (call.getParamCount() == 1) {
args = promote->getAsUnaryNode()->getOperand();
} else {
promote->getAsAggregate()->getSequence().swap(args->getAsAggregate()->getSequence());
}
}
// Step 2b: reconstruct the TFunction based on the new arg types
TFunction convertedCall(&call.getName(), call.getType(), call.getBuiltInOp());
if (args->getAsAggregate()) {
// Handle aggregates: put all args into the new function call
for (int arg=0; arg<int(args->getAsAggregate()->getSequence().size()); ++arg) {
// TODO: But for constness, we could avoid the new & shallowCopy, and use the pointer directly.
TParameter param = { 0, new TType, nullptr };
param.type->shallowCopy(args->getAsAggregate()->getSequence()[arg]->getAsTyped()->getType());
convertedCall.addParameter(param);
}
} else if (args->getAsUnaryNode()) {
// Handle unaries: put all args into the new function call
TParameter param = { 0, new TType, nullptr };
param.type->shallowCopy(args->getAsUnaryNode()->getOperand()->getAsTyped()->getType());
convertedCall.addParameter(param);
} else if (args->getAsTyped()) {
// Handle bare e.g, floats, not in an aggregate.
TParameter param = { 0, new TType, nullptr };
param.type->shallowCopy(args->getAsTyped()->getType());
convertedCall.addParameter(param);
} else {
assert(0); // unknown argument list.
return nullptr;
}
// Step 3: Re-select after type promotion, to find proper candidate
// send to the generic selector
bestMatch = selectFunction(candidateList, convertedCall, convertible, better, tie);
// At this point, there should be no tie.
}
if (tie)
error(loc, "ambiguous best function under implicit type conversion", call.getName().c_str(), "");
// Append default parameter values if needed
if (!tie && bestMatch != nullptr) {
for (int defParam = call.getParamCount(); defParam < bestMatch->getParamCount(); ++defParam) {
handleFunctionArgument(&call, args, (*bestMatch)[defParam].defaultValue);
}
}
return bestMatch;
}
//
// Do everything necessary to handle a typedef declaration, for a single symbol.
//
// 'parseType' is the type part of the declaration (to the left)
// 'arraySizes' is the arrayness tagged on the identifier (to the right)
//
void HlslParseContext::declareTypedef(const TSourceLoc& loc, TString& identifier, const TType& parseType, TArraySizes* /*arraySizes*/)
{
TType type;
type.deepCopy(parseType);
TVariable* typeSymbol = new TVariable(&identifier, type, true);
if (! symbolTable.insert(*typeSymbol))
error(loc, "name already defined", "typedef", identifier.c_str());
}
// Type sanitization: return existing sanitized (temporary) type if there is one, else make new one.
TType* HlslParseContext::sanitizeType(TType* type)
{
// We only do this for structs.
if (!type->isStruct())
return type;
// Type sanitization: if this is declaring a variable of a type that contains
// interstage IO, we want to make it a temporary.
const auto sanitizedTypeIter = sanitizedTypeMap.find(type->getStruct());
if (sanitizedTypeIter != sanitizedTypeMap.end()) {
// We've sanitized this before. Use that one.
TType* sanitizedType = new TType();
sanitizedType->shallowCopy(*sanitizedTypeIter->second);
// Arrayness is not part of the sanitized type. Use the input type's arrayness.
if (type->isArray())
sanitizedType->newArraySizes(type->getArraySizes());
else
sanitizedType->clearArraySizes();
return sanitizedType;
} else {
if (type->containsBuiltInInterstageIO()) {
// This means the type contains interstage IO, but we've never encountered it before.
// Copy it, sanitize it, and remember it in the sanitizedTypeMap
TType* sanitizedType = type->clone();
sanitizedType->makeTemporary();
sanitizedTypeMap[type->getStruct()] = sanitizedType;
return sanitizedType;
} else {
// This means the type has no interstage IO, so we can use it as is.
return type;
}
}
}
//
// Do everything necessary to handle a variable (non-block) declaration.
// Either redeclaring a variable, or making a new one, updating the symbol
// table, and all error checking.
//
// Returns a subtree node that computes an initializer, if needed.
// Returns nullptr if there is no code to execute for initialization.
//
// 'parseType' is the type part of the declaration (to the left)
// 'arraySizes' is the arrayness tagged on the identifier (to the right)
//
TIntermNode* HlslParseContext::declareVariable(const TSourceLoc& loc, TString& identifier, TType& type, TIntermTyped* initializer)
{
if (voidErrorCheck(loc, identifier, type.getBasicType()))
return nullptr;
// make const and initialization consistent
fixConstInit(loc, identifier, type, initializer);
// Check for redeclaration of built-ins and/or attempting to declare a reserved name
TSymbol* symbol = nullptr;
inheritGlobalDefaults(type.getQualifier());
const bool flattenVar = shouldFlatten(type);
const bool splitVar = shouldSplit(type);
// Type sanitization: if this is declaring a variable of a type that contains
// interstage IO, we want to make it a temporary.
TType* sanitizedType = sanitizeType(&type);
// Declare the variable
if (type.isArray()) {
// array case
declareArray(loc, identifier, *sanitizedType, symbol, !flattenVar);
} else {
// non-array case
if (! symbol)
symbol = declareNonArray(loc, identifier, *sanitizedType, !flattenVar);
else if (type != symbol->getType())
error(loc, "cannot change the type of", "redeclaration", symbol->getName().c_str());
}
if (flattenVar)
flatten(loc, *symbol->getAsVariable());
if (splitVar)
split(*symbol->getAsVariable());
if (! symbol)
return nullptr;
// Deal with initializer
TIntermNode* initNode = nullptr;
if (symbol && initializer) {
if (flattenVar)
error(loc, "flattened array with initializer list unsupported", identifier.c_str(), "");
TVariable* variable = symbol->getAsVariable();
if (! variable) {
error(loc, "initializer requires a variable, not a member", identifier.c_str(), "");
return nullptr;
}
initNode = executeInitializer(loc, initializer, variable);
}
return initNode;
}
// Pick up global defaults from the provide global defaults into dst.
void HlslParseContext::inheritGlobalDefaults(TQualifier& dst) const
{
if (dst.storage == EvqVaryingOut) {
if (! dst.hasStream() && language == EShLangGeometry)
dst.layoutStream = globalOutputDefaults.layoutStream;
if (! dst.hasXfbBuffer())
dst.layoutXfbBuffer = globalOutputDefaults.layoutXfbBuffer;
}
}
//
// Make an internal-only variable whose name is for debug purposes only
// and won't be searched for. Callers will only use the return value to use
// the variable, not the name to look it up. It is okay if the name
// is the same as other names; there won't be any conflict.
//
TVariable* HlslParseContext::makeInternalVariable(const char* name, const TType& type) const
{
TString* nameString = new TString(name);
TVariable* variable = new TVariable(nameString, type);
symbolTable.makeInternalVariable(*variable);
return variable;
}
//
// Declare a non-array variable, the main point being there is no redeclaration
// for resizing allowed.
//
// Return the successfully declared variable.
//
TVariable* HlslParseContext::declareNonArray(const TSourceLoc& loc, TString& identifier, TType& type, bool track)
{
// make a new variable
TVariable* variable = new TVariable(&identifier, type);
// add variable to symbol table
if (symbolTable.insert(*variable)) {
if (track && symbolTable.atGlobalLevel())
trackLinkageDeferred(*variable);
return variable;
}
error(loc, "redefinition", variable->getName().c_str(), "");
return nullptr;
}
//
// Handle all types of initializers from the grammar.
//
// Returning nullptr just means there is no code to execute to handle the
// initializer, which will, for example, be the case for constant initializers.
//
TIntermNode* HlslParseContext::executeInitializer(const TSourceLoc& loc, TIntermTyped* initializer, TVariable* variable)
{
//
// Identifier must be of type constant, a global, or a temporary, and
// starting at version 120, desktop allows uniforms to have initializers.
//
TStorageQualifier qualifier = variable->getType().getQualifier().storage;
//
// If the initializer was from braces { ... }, we convert the whole subtree to a
// constructor-style subtree, allowing the rest of the code to operate
// identically for both kinds of initializers.
//
//
// Type can't be deduced from the initializer list, so a skeletal type to
// follow has to be passed in. Constness and specialization-constness
// should be deduced bottom up, not dictated by the skeletal type.
//
TType skeletalType;
skeletalType.shallowCopy(variable->getType());
skeletalType.getQualifier().makeTemporary();
if (initializer->getAsAggregate() && initializer->getAsAggregate()->getOp() == EOpNull)
initializer = convertInitializerList(loc, skeletalType, initializer);
if (! initializer) {
// error recovery; don't leave const without constant values
if (qualifier == EvqConst)
variable->getWritableType().getQualifier().storage = EvqTemporary;
return nullptr;
}
// Fix outer arrayness if variable is unsized, getting size from the initializer
if (initializer->getType().isExplicitlySizedArray() &&
variable->getType().isImplicitlySizedArray())
variable->getWritableType().changeOuterArraySize(initializer->getType().getOuterArraySize());
// Inner arrayness can also get set by an initializer
if (initializer->getType().isArrayOfArrays() && variable->getType().isArrayOfArrays() &&
initializer->getType().getArraySizes()->getNumDims() ==
variable->getType().getArraySizes()->getNumDims()) {
// adopt unsized sizes from the initializer's sizes
for (int d = 1; d < variable->getType().getArraySizes()->getNumDims(); ++d) {
if (variable->getType().getArraySizes()->getDimSize(d) == UnsizedArraySize)
variable->getWritableType().getArraySizes().setDimSize(d, initializer->getType().getArraySizes()->getDimSize(d));
}
}
// Uniform and global consts require a constant initializer
if (qualifier == EvqUniform && initializer->getType().getQualifier().storage != EvqConst) {
error(loc, "uniform initializers must be constant", "=", "'%s'", variable->getType().getCompleteString().c_str());
variable->getWritableType().getQualifier().storage = EvqTemporary;
return nullptr;
}
if (qualifier == EvqConst && symbolTable.atGlobalLevel() && initializer->getType().getQualifier().storage != EvqConst) {
error(loc, "global const initializers must be constant", "=", "'%s'", variable->getType().getCompleteString().c_str());
variable->getWritableType().getQualifier().storage = EvqTemporary;
return nullptr;
}
// Const variables require a constant initializer, depending on version
if (qualifier == EvqConst) {
if (initializer->getType().getQualifier().storage != EvqConst) {
variable->getWritableType().getQualifier().storage = EvqConstReadOnly;
qualifier = EvqConstReadOnly;
}
}
if (qualifier == EvqConst || qualifier == EvqUniform) {
// Compile-time tagging of the variable with its constant value...
initializer = intermediate.addConversion(EOpAssign, variable->getType(), initializer);
if (! initializer || ! initializer->getAsConstantUnion() || variable->getType() != initializer->getType()) {
error(loc, "non-matching or non-convertible constant type for const initializer",
variable->getType().getStorageQualifierString(), "");
variable->getWritableType().getQualifier().storage = EvqTemporary;
return nullptr;
}
variable->setConstArray(initializer->getAsConstantUnion()->getConstArray());
} else {
// normal assigning of a value to a variable...
specializationCheck(loc, initializer->getType(), "initializer");
TIntermSymbol* intermSymbol = intermediate.addSymbol(*variable, loc);
TIntermNode* initNode = handleAssign(loc, EOpAssign, intermSymbol, initializer);
if (! initNode)
assignError(loc, "=", intermSymbol->getCompleteString(), initializer->getCompleteString());
return initNode;
}
return nullptr;
}
//
// Reprocess any initializer-list { ... } parts of the initializer.
// Need to hierarchically assign correct types and implicit
// conversions. Will do this mimicking the same process used for
// creating a constructor-style initializer, ensuring we get the
// same form.
//
// Returns a node representing an expression for the initializer list expressed
// as the correct type.
//
// Returns nullptr if there is an error.
//
TIntermTyped* HlslParseContext::convertInitializerList(const TSourceLoc& loc, const TType& type, TIntermTyped* initializer)
{
// Will operate recursively. Once a subtree is found that is constructor style,
// everything below it is already good: Only the "top part" of the initializer
// can be an initializer list, where "top part" can extend for several (or all) levels.
// see if we have bottomed out in the tree within the initializer-list part
TIntermAggregate* initList = initializer->getAsAggregate();
if (! initList || initList->getOp() != EOpNull) {
// We don't have a list, but if it's a scalar and the 'type' is a
// composite, we need to lengthen below to make it useful.
// Otherwise, this is an already formed object to initialize with.
if (type.isScalar() || !initializer->getType().isScalar())
return initializer;
else
initList = intermediate.makeAggregate(initializer);
}
// Of the initializer-list set of nodes, need to process bottom up,
// so recurse deep, then process on the way up.
// Go down the tree here...
if (type.isArray()) {
// The type's array might be unsized, which could be okay, so base sizes on the size of the aggregate.
// Later on, initializer execution code will deal with array size logic.
TType arrayType;
arrayType.shallowCopy(type); // sharing struct stuff is fine
arrayType.newArraySizes(*type.getArraySizes()); // but get a fresh copy of the array information, to edit below
// edit array sizes to fill in unsized dimensions
if (type.isImplicitlySizedArray())
arrayType.changeOuterArraySize((int)initList->getSequence().size());
// set unsized array dimensions that can be derived from the initializer's first element
if (arrayType.isArrayOfArrays() && initList->getSequence().size() > 0) {
TIntermTyped* firstInit = initList->getSequence()[0]->getAsTyped();
if (firstInit->getType().isArray() &&
arrayType.getArraySizes().getNumDims() == firstInit->getType().getArraySizes()->getNumDims() + 1) {
for (int d = 1; d < arrayType.getArraySizes().getNumDims(); ++d) {
if (arrayType.getArraySizes().getDimSize(d) == UnsizedArraySize)
arrayType.getArraySizes().setDimSize(d, firstInit->getType().getArraySizes()->getDimSize(d - 1));
}
}
}
// lengthen list to be long enough
lengthenList(loc, initList->getSequence(), arrayType.getOuterArraySize());
// recursively process each element
TType elementType(arrayType, 0); // dereferenced type
for (int i = 0; i < arrayType.getOuterArraySize(); ++i) {
initList->getSequence()[i] = convertInitializerList(loc, elementType, initList->getSequence()[i]->getAsTyped());
if (initList->getSequence()[i] == nullptr)
return nullptr;
}
return addConstructor(loc, initList, arrayType);
} else if (type.isStruct()) {
// lengthen list to be long enough
lengthenList(loc, initList->getSequence(), static_cast<int>(type.getStruct()->size()));
if (type.getStruct()->size() != initList->getSequence().size()) {
error(loc, "wrong number of structure members", "initializer list", "");
return nullptr;
}
for (size_t i = 0; i < type.getStruct()->size(); ++i) {
initList->getSequence()[i] = convertInitializerList(loc, *(*type.getStruct())[i].type, initList->getSequence()[i]->getAsTyped());
if (initList->getSequence()[i] == nullptr)
return nullptr;
}
} else if (type.isMatrix()) {
if (type.computeNumComponents() == (int)initList->getSequence().size()) {
// This means the matrix is initialized component-wise, rather than as
// a series of rows and columns. We can just use the list directly as
// a constructor; no further processing needed.
} else {
// lengthen list to be long enough
lengthenList(loc, initList->getSequence(), type.getMatrixCols());
if (type.getMatrixCols() != (int)initList->getSequence().size()) {
error(loc, "wrong number of matrix columns:", "initializer list", type.getCompleteString().c_str());
return nullptr;
}
TType vectorType(type, 0); // dereferenced type
for (int i = 0; i < type.getMatrixCols(); ++i) {
initList->getSequence()[i] = convertInitializerList(loc, vectorType, initList->getSequence()[i]->getAsTyped());
if (initList->getSequence()[i] == nullptr)
return nullptr;
}
}
} else if (type.isVector()) {
// lengthen list to be long enough
lengthenList(loc, initList->getSequence(), type.getVectorSize());
// error check; we're at bottom, so work is finished below
if (type.getVectorSize() != (int)initList->getSequence().size()) {
error(loc, "wrong vector size (or rows in a matrix column):", "initializer list", type.getCompleteString().c_str());
return nullptr;
}
} else if (type.isScalar()) {
// lengthen list to be long enough
lengthenList(loc, initList->getSequence(), 1);
if ((int)initList->getSequence().size() != 1) {
error(loc, "scalar expected one element:", "initializer list", type.getCompleteString().c_str());
return nullptr;
}
} else {
error(loc, "unexpected initializer-list type:", "initializer list", type.getCompleteString().c_str());
return nullptr;
}
// Now that the subtree is processed, process this node as if the
// initializer list is a set of arguments to a constructor.
TIntermNode* emulatedConstructorArguments;
if (initList->getSequence().size() == 1)
emulatedConstructorArguments = initList->getSequence()[0];
else
emulatedConstructorArguments = initList;
return addConstructor(loc, emulatedConstructorArguments, type);
}
// Lengthen list to be long enough to cover any gap from the current list size
// to 'size'. If the list is longer, do nothing.
// The value to lengthen with is the default for short lists.
void HlslParseContext::lengthenList(const TSourceLoc& loc, TIntermSequence& list, int size)
{
for (int c = (int)list.size(); c < size; ++c)
list.push_back(intermediate.addConstantUnion(0, loc));
}
//
// Test for the correctness of the parameters passed to various constructor functions
// and also convert them to the right data type, if allowed and required.
//
// Returns nullptr for an error or the constructed node (aggregate or typed) for no error.
//
TIntermTyped* HlslParseContext::addConstructor(const TSourceLoc& loc, TIntermNode* node, const TType& type)
{
if (node == nullptr || node->getAsTyped() == nullptr)
return nullptr;
// Handle the idiom "(struct type)0"
if (type.isStruct() && isZeroConstructor(node))
return convertInitializerList(loc, type, intermediate.makeAggregate(loc));
TIntermAggregate* aggrNode = node->getAsAggregate();
TOperator op = intermediate.mapTypeToConstructorOp(type);
// Combined texture-sampler constructors are completely semantic checked
// in constructorTextureSamplerError()
if (op == EOpConstructTextureSampler)
return intermediate.setAggregateOperator(aggrNode, op, type, loc);
TTypeList::const_iterator memberTypes;
if (op == EOpConstructStruct)
memberTypes = type.getStruct()->begin();
TType elementType;
if (type.isArray()) {
TType dereferenced(type, 0);
elementType.shallowCopy(dereferenced);
} else
elementType.shallowCopy(type);
bool singleArg;
if (aggrNode) {
if (aggrNode->getOp() != EOpNull || aggrNode->getSequence().size() == 1)
singleArg = true;
else
singleArg = false;
} else
singleArg = true;
TIntermTyped *newNode;
if (singleArg) {
// If structure constructor or array constructor is being called
// for only one parameter inside the structure, we need to call constructAggregate function once.
if (type.isArray())
newNode = constructAggregate(node, elementType, 1, node->getLoc());
else if (op == EOpConstructStruct)
newNode = constructAggregate(node, *(*memberTypes).type, 1, node->getLoc());
else
newNode = constructBuiltIn(type, op, node->getAsTyped(), node->getLoc(), false);
if (newNode && (type.isArray() || op == EOpConstructStruct))
newNode = intermediate.setAggregateOperator(newNode, EOpConstructStruct, type, loc);
return newNode;
}
//
// Handle list of arguments.
//
TIntermSequence &sequenceVector = aggrNode->getSequence(); // Stores the information about the parameter to the constructor
// if the structure constructor contains more than one parameter, then construct
// each parameter
int paramCount = 0; // keeps a track of the constructor parameter number being checked
// for each parameter to the constructor call, check to see if the right type is passed or convert them
// to the right type if possible (and allowed).
// for structure constructors, just check if the right type is passed, no conversion is allowed.
for (TIntermSequence::iterator p = sequenceVector.begin();
p != sequenceVector.end(); p++, paramCount++) {
if (type.isArray())
newNode = constructAggregate(*p, elementType, paramCount + 1, node->getLoc());
else if (op == EOpConstructStruct)
newNode = constructAggregate(*p, *(memberTypes[paramCount]).type, paramCount + 1, node->getLoc());
else
newNode = constructBuiltIn(type, op, (*p)->getAsTyped(), node->getLoc(), true);
if (newNode)
*p = newNode;
else
return nullptr;
}
TIntermTyped* constructor = intermediate.setAggregateOperator(aggrNode, op, type, loc);
return constructor;
}
// Function for constructor implementation. Calls addUnaryMath with appropriate EOp value
// for the parameter to the constructor (passed to this function). Essentially, it converts
// the parameter types correctly. If a constructor expects an int (like ivec2) and is passed a
// float, then float is converted to int.
//
// Returns nullptr for an error or the constructed node.
//
TIntermTyped* HlslParseContext::constructBuiltIn(const TType& type, TOperator op, TIntermTyped* node, const TSourceLoc& loc, bool subset)
{
TIntermTyped* newNode;
TOperator basicOp;
//
// First, convert types as needed.
//
switch (op) {
case EOpConstructVec2:
case EOpConstructVec3:
case EOpConstructVec4:
case EOpConstructMat2x2:
case EOpConstructMat2x3:
case EOpConstructMat2x4:
case EOpConstructMat3x2:
case EOpConstructMat3x3:
case EOpConstructMat3x4:
case EOpConstructMat4x2:
case EOpConstructMat4x3:
case EOpConstructMat4x4:
case EOpConstructFloat:
basicOp = EOpConstructFloat;
break;
case EOpConstructDVec2:
case EOpConstructDVec3:
case EOpConstructDVec4:
case EOpConstructDMat2x2:
case EOpConstructDMat2x3:
case EOpConstructDMat2x4:
case EOpConstructDMat3x2:
case EOpConstructDMat3x3:
case EOpConstructDMat3x4:
case EOpConstructDMat4x2:
case EOpConstructDMat4x3:
case EOpConstructDMat4x4:
case EOpConstructDouble:
basicOp = EOpConstructDouble;
break;
case EOpConstructIVec2:
case EOpConstructIVec3:
case EOpConstructIVec4:
case EOpConstructInt:
basicOp = EOpConstructInt;
break;
case EOpConstructUVec2:
case EOpConstructUVec3:
case EOpConstructUVec4:
case EOpConstructUint:
basicOp = EOpConstructUint;
break;
case EOpConstructBVec2:
case EOpConstructBVec3:
case EOpConstructBVec4:
case EOpConstructBool:
basicOp = EOpConstructBool;
break;
default:
error(loc, "unsupported construction", "", "");
return nullptr;
}
newNode = intermediate.addUnaryMath(basicOp, node, node->getLoc());
if (newNode == nullptr) {
error(loc, "can't convert", "constructor", "");
return nullptr;
}
//
// Now, if there still isn't an operation to do the construction, and we need one, add one.
//
// Otherwise, skip out early.
if (subset || (newNode != node && newNode->getType() == type))
return newNode;
// setAggregateOperator will insert a new node for the constructor, as needed.
return intermediate.setAggregateOperator(newNode, op, type, loc);
}
// This function tests for the type of the parameters to the structure or array constructor. Raises
// an error message if the expected type does not match the parameter passed to the constructor.
//
// Returns nullptr for an error or the input node itself if the expected and the given parameter types match.
//
TIntermTyped* HlslParseContext::constructAggregate(TIntermNode* node, const TType& type, int paramCount, const TSourceLoc& loc)
{
TIntermTyped* converted = intermediate.addConversion(EOpConstructStruct, type, node->getAsTyped());
if (! converted || converted->getType() != type) {
error(loc, "", "constructor", "cannot convert parameter %d from '%s' to '%s'", paramCount,
node->getAsTyped()->getType().getCompleteString().c_str(), type.getCompleteString().c_str());
return nullptr;
}
return converted;
}
//
// Do everything needed to add an interface block.
//
void HlslParseContext::declareBlock(const TSourceLoc& loc, TType& type, const TString* instanceName, TArraySizes* arraySizes)
{
assert(type.getWritableStruct() != nullptr);
TTypeList& typeList = *type.getWritableStruct();
// fix and check for member storage qualifiers and types that don't belong within a block
for (unsigned int member = 0; member < typeList.size(); ++member) {
TType& memberType = *typeList[member].type;
TQualifier& memberQualifier = memberType.getQualifier();
const TSourceLoc& memberLoc = typeList[member].loc;
globalQualifierFix(memberLoc, memberQualifier);
memberQualifier.storage = type.getQualifier().storage;
}
// This might be a redeclaration of a built-in block. If so, redeclareBuiltinBlock() will
// do all the rest.
//if (! symbolTable.atBuiltInLevel() && builtInName(*blockName)) {
// redeclareBuiltinBlock(loc, typeList, *blockName, instanceName, arraySizes);
// return;
//}
// Make default block qualification, and adjust the member qualifications
TQualifier defaultQualification;
switch (type.getQualifier().storage) {
case EvqUniform: defaultQualification = globalUniformDefaults; break;
case EvqBuffer: defaultQualification = globalBufferDefaults; break;
case EvqVaryingIn: defaultQualification = globalInputDefaults; break;
case EvqVaryingOut: defaultQualification = globalOutputDefaults; break;
default: defaultQualification.clear(); break;
}
// Special case for "push_constant uniform", which has a default of std430,
// contrary to normal uniform defaults, and can't have a default tracked for it.
if (type.getQualifier().layoutPushConstant && ! type.getQualifier().hasPacking())
type.getQualifier().layoutPacking = ElpStd430;
// fix and check for member layout qualifiers
mergeObjectLayoutQualifiers(defaultQualification, type.getQualifier(), true);
bool memberWithLocation = false;
bool memberWithoutLocation = false;
for (unsigned int member = 0; member < typeList.size(); ++member) {
TQualifier& memberQualifier = typeList[member].type->getQualifier();
const TSourceLoc& memberLoc = typeList[member].loc;
if (memberQualifier.hasStream()) {
if (defaultQualification.layoutStream != memberQualifier.layoutStream)
error(memberLoc, "member cannot contradict block", "stream", "");
}
// "This includes a block's inheritance of the
// current global default buffer, a block member's inheritance of the block's
// buffer, and the requirement that any *xfb_buffer* declared on a block
// member must match the buffer inherited from the block."
if (memberQualifier.hasXfbBuffer()) {
if (defaultQualification.layoutXfbBuffer != memberQualifier.layoutXfbBuffer)
error(memberLoc, "member cannot contradict block (or what block inherited from global)", "xfb_buffer", "");
}
if (memberQualifier.hasPacking())
error(memberLoc, "member of block cannot have a packing layout qualifier", typeList[member].type->getFieldName().c_str(), "");
if (memberQualifier.hasLocation()) {
switch (type.getQualifier().storage) {
case EvqVaryingIn:
case EvqVaryingOut:
memberWithLocation = true;
break;
default:
break;
}
} else
memberWithoutLocation = true;
if (memberQualifier.hasAlign()) {
if (defaultQualification.layoutPacking != ElpStd140 && defaultQualification.layoutPacking != ElpStd430)
error(memberLoc, "can only be used with std140 or std430 layout packing", "align", "");
}
TQualifier newMemberQualification = defaultQualification;
mergeQualifiers(newMemberQualification, memberQualifier);
memberQualifier = newMemberQualification;
}
// Process the members
fixBlockLocations(loc, type.getQualifier(), typeList, memberWithLocation, memberWithoutLocation);
fixBlockXfbOffsets(type.getQualifier(), typeList);
fixBlockUniformOffsets(type.getQualifier(), typeList);
// reverse merge, so that currentBlockQualifier now has all layout information
// (can't use defaultQualification directly, it's missing other non-layout-default-class qualifiers)
mergeObjectLayoutQualifiers(type.getQualifier(), defaultQualification, true);
//
// Build and add the interface block as a new type named 'blockName'
//
// Use the instance name as the interface name if one exists, else the block name.
const TString& interfaceName = (instanceName && !instanceName->empty()) ? *instanceName : type.getTypeName();
TType blockType(&typeList, interfaceName, type.getQualifier());
if (arraySizes)
blockType.newArraySizes(*arraySizes);
// Add the variable, as anonymous or named instanceName.
// Make an anonymous variable if no name was provided.
if (! instanceName)
instanceName = NewPoolTString("");
TVariable& variable = *new TVariable(instanceName, blockType);
if (! symbolTable.insert(variable)) {
if (*instanceName == "")
error(loc, "nameless block contains a member that already has a name at global scope", "" /* blockName->c_str() */, "");
else
error(loc, "block instance name redefinition", variable.getName().c_str(), "");
return;
}
// Save it in the AST for linker use.
trackLinkageDeferred(variable);
}
void HlslParseContext::finalizeGlobalUniformBlockLayout(TVariable& block)
{
block.getWritableType().getQualifier().layoutPacking = ElpStd140;
block.getWritableType().getQualifier().layoutMatrix = ElmRowMajor;
fixBlockUniformOffsets(block.getType().getQualifier(), *block.getWritableType().getWritableStruct());
}
//
// "For a block, this process applies to the entire block, or until the first member
// is reached that has a location layout qualifier. When a block member is declared with a location
// qualifier, its location comes from that qualifier: The member's location qualifier overrides the block-level
// declaration. Subsequent members are again assigned consecutive locations, based on the newest location,
// until the next member declared with a location qualifier. The values used for locations do not have to be
// declared in increasing order."
void HlslParseContext::fixBlockLocations(const TSourceLoc& loc, TQualifier& qualifier, TTypeList& typeList, bool memberWithLocation, bool memberWithoutLocation)
{
// "If a block has no block-level location layout qualifier, it is required that either all or none of its members
// have a location layout qualifier, or a compile-time error results."
if (! qualifier.hasLocation() && memberWithLocation && memberWithoutLocation)
error(loc, "either the block needs a location, or all members need a location, or no members have a location", "location", "");
else {
if (memberWithLocation) {
// remove any block-level location and make it per *every* member
int nextLocation = 0; // by the rule above, initial value is not relevant
if (qualifier.hasAnyLocation()) {
nextLocation = qualifier.layoutLocation;
qualifier.layoutLocation = TQualifier::layoutLocationEnd;
if (qualifier.hasComponent()) {
// "It is a compile-time error to apply the *component* qualifier to a ... block"
error(loc, "cannot apply to a block", "component", "");
}
if (qualifier.hasIndex()) {
error(loc, "cannot apply to a block", "index", "");
}
}
for (unsigned int member = 0; member < typeList.size(); ++member) {
TQualifier& memberQualifier = typeList[member].type->getQualifier();
const TSourceLoc& memberLoc = typeList[member].loc;
if (! memberQualifier.hasLocation()) {
if (nextLocation >= (int)TQualifier::layoutLocationEnd)
error(memberLoc, "location is too large", "location", "");
memberQualifier.layoutLocation = nextLocation;
memberQualifier.layoutComponent = 0;
}
nextLocation = memberQualifier.layoutLocation + intermediate.computeTypeLocationSize(*typeList[member].type);
}
}
}
}
void HlslParseContext::fixBlockXfbOffsets(TQualifier& qualifier, TTypeList& typeList)
{
// "If a block is qualified with xfb_offset, all its
// members are assigned transform feedback buffer offsets. If a block is not qualified with xfb_offset, any
// members of that block not qualified with an xfb_offset will not be assigned transform feedback buffer
// offsets."
if (! qualifier.hasXfbBuffer() || ! qualifier.hasXfbOffset())
return;
int nextOffset = qualifier.layoutXfbOffset;
for (unsigned int member = 0; member < typeList.size(); ++member) {
TQualifier& memberQualifier = typeList[member].type->getQualifier();
bool containsDouble = false;
int memberSize = intermediate.computeTypeXfbSize(*typeList[member].type, containsDouble);
// see if we need to auto-assign an offset to this member
if (! memberQualifier.hasXfbOffset()) {
// "if applied to an aggregate containing a double, the offset must also be a multiple of 8"
if (containsDouble)
RoundToPow2(nextOffset, 8);
memberQualifier.layoutXfbOffset = nextOffset;
} else
nextOffset = memberQualifier.layoutXfbOffset;
nextOffset += memberSize;
}
// The above gave all block members an offset, so we can take it off the block now,
// which will avoid double counting the offset usage.
qualifier.layoutXfbOffset = TQualifier::layoutXfbOffsetEnd;
}
// Calculate and save the offset of each block member, using the recursively
// defined block offset rules and the user-provided offset and align.
//
// Also, compute and save the total size of the block. For the block's size, arrayness
// is not taken into account, as each element is backed by a separate buffer.
//
void HlslParseContext::fixBlockUniformOffsets(const TQualifier& qualifier, TTypeList& typeList)
{
if (! qualifier.isUniformOrBuffer())
return;
if (qualifier.layoutPacking != ElpStd140 && qualifier.layoutPacking != ElpStd430)
return;
int offset = 0;
int memberSize;
for (unsigned int member = 0; member < typeList.size(); ++member) {
TQualifier& memberQualifier = typeList[member].type->getQualifier();
const TSourceLoc& memberLoc = typeList[member].loc;
// "When align is applied to an array, it effects only the start of the array, not the array's internal stride."
// modify just the children's view of matrix layout, if there is one for this member
TLayoutMatrix subMatrixLayout = typeList[member].type->getQualifier().layoutMatrix;
int dummyStride;
int memberAlignment = intermediate.getBaseAlignment(*typeList[member].type, memberSize, dummyStride,
qualifier.layoutPacking == ElpStd140,
subMatrixLayout != ElmNone ? subMatrixLayout == ElmRowMajor
: qualifier.layoutMatrix == ElmRowMajor);
if (memberQualifier.hasOffset()) {
// "The specified offset must be a multiple
// of the base alignment of the type of the block member it qualifies, or a compile-time error results."
if (! IsMultipleOfPow2(memberQualifier.layoutOffset, memberAlignment))
error(memberLoc, "must be a multiple of the member's alignment", "offset", "");
// "The offset qualifier forces the qualified member to start at or after the specified
// integral-constant expression, which will be its byte offset from the beginning of the buffer.
// "The actual offset of a member is computed as
// follows: If offset was declared, start with that offset, otherwise start with the next available offset."
offset = std::max(offset, memberQualifier.layoutOffset);
}
// "The actual alignment of a member will be the greater of the specified align alignment and the standard
// (e.g., std140) base alignment for the member's type."
if (memberQualifier.hasAlign())
memberAlignment = std::max(memberAlignment, memberQualifier.layoutAlign);
// "If the resulting offset is not a multiple of the actual alignment,
// increase it to the first offset that is a multiple of
// the actual alignment."
RoundToPow2(offset, memberAlignment);
typeList[member].type->getQualifier().layoutOffset = offset;
offset += memberSize;
}
}
// For an identifier that is already declared, add more qualification to it.
void HlslParseContext::addQualifierToExisting(const TSourceLoc& loc, TQualifier qualifier, const TString& identifier)
{
TSymbol* symbol = symbolTable.find(identifier);
if (! symbol) {
error(loc, "identifier not previously declared", identifier.c_str(), "");
return;
}
if (symbol->getAsFunction()) {
error(loc, "cannot re-qualify a function name", identifier.c_str(), "");
return;
}
if (qualifier.isAuxiliary() ||
qualifier.isMemory() ||
qualifier.isInterpolation() ||
qualifier.hasLayout() ||
qualifier.storage != EvqTemporary ||
qualifier.precision != EpqNone) {
error(loc, "cannot add storage, auxiliary, memory, interpolation, layout, or precision qualifier to an existing variable", identifier.c_str(), "");
return;
}
// For read-only built-ins, add a new symbol for holding the modified qualifier.
// This will bring up an entire block, if a block type has to be modified (e.g., gl_Position inside a block)
if (symbol->isReadOnly())
symbol = symbolTable.copyUp(symbol);
if (qualifier.invariant) {
if (intermediate.inIoAccessed(identifier))
error(loc, "cannot change qualification after use", "invariant", "");
symbol->getWritableType().getQualifier().invariant = true;
} else if (qualifier.noContraction) {
if (intermediate.inIoAccessed(identifier))
error(loc, "cannot change qualification after use", "precise", "");
symbol->getWritableType().getQualifier().noContraction = true;
} else if (qualifier.specConstant) {
symbol->getWritableType().getQualifier().makeSpecConstant();
if (qualifier.hasSpecConstantId())
symbol->getWritableType().getQualifier().layoutSpecConstantId = qualifier.layoutSpecConstantId;
} else
warn(loc, "unknown requalification", "", "");
}
void HlslParseContext::addQualifierToExisting(const TSourceLoc& loc, TQualifier qualifier, TIdentifierList& identifiers)
{
for (unsigned int i = 0; i < identifiers.size(); ++i)
addQualifierToExisting(loc, qualifier, *identifiers[i]);
}
//
// Update the intermediate for the given input geometry
//
bool HlslParseContext::handleInputGeometry(const TSourceLoc& loc, const TLayoutGeometry& geometry)
{
switch (geometry) {
case ElgPoints: // fall through
case ElgLines: // ...
case ElgTriangles: // ...
case ElgLinesAdjacency: // ...
case ElgTrianglesAdjacency: // ...
if (! intermediate.setInputPrimitive(geometry)) {
error(loc, "input primitive geometry redefinition", TQualifier::getGeometryString(geometry), "");
return false;
}
break;
default:
error(loc, "cannot apply to 'in'", TQualifier::getGeometryString(geometry), "");
return false;
}
return true;
}
//
// Update the intermediate for the given output geometry
//
bool HlslParseContext::handleOutputGeometry(const TSourceLoc& loc, const TLayoutGeometry& geometry)
{
switch (geometry) {
case ElgPoints:
case ElgLineStrip:
case ElgTriangleStrip:
if (! intermediate.setOutputPrimitive(geometry)) {
error(loc, "output primitive geometry redefinition", TQualifier::getGeometryString(geometry), "");
return false;
}
break;
default:
error(loc, "cannot apply to 'out'", TQualifier::getGeometryString(geometry), "");
return false;
}
return true;
}
//
// Updating default qualifier for the case of a declaration with just a qualifier,
// no type, block, or identifier.
//
void HlslParseContext::updateStandaloneQualifierDefaults(const TSourceLoc& loc, const TPublicType& publicType)
{
if (publicType.shaderQualifiers.vertices != TQualifier::layoutNotSet) {
assert(language == EShLangTessControl || language == EShLangGeometry);
// const char* id = (language == EShLangTessControl) ? "vertices" : "max_vertices";
}
if (publicType.shaderQualifiers.invocations != TQualifier::layoutNotSet) {
if (! intermediate.setInvocations(publicType.shaderQualifiers.invocations))
error(loc, "cannot change previously set layout value", "invocations", "");
}
if (publicType.shaderQualifiers.geometry != ElgNone) {
if (publicType.qualifier.storage == EvqVaryingIn) {
switch (publicType.shaderQualifiers.geometry) {
case ElgPoints:
case ElgLines:
case ElgLinesAdjacency:
case ElgTriangles:
case ElgTrianglesAdjacency:
case ElgQuads:
case ElgIsolines:
break;
default:
error(loc, "cannot apply to input", TQualifier::getGeometryString(publicType.shaderQualifiers.geometry), "");
}
} else if (publicType.qualifier.storage == EvqVaryingOut) {
handleOutputGeometry(loc, publicType.shaderQualifiers.geometry);
} else
error(loc, "cannot apply to:", TQualifier::getGeometryString(publicType.shaderQualifiers.geometry), GetStorageQualifierString(publicType.qualifier.storage));
}
if (publicType.shaderQualifiers.spacing != EvsNone)
intermediate.setVertexSpacing(publicType.shaderQualifiers.spacing);
if (publicType.shaderQualifiers.order != EvoNone)
intermediate.setVertexOrder(publicType.shaderQualifiers.order);
if (publicType.shaderQualifiers.pointMode)
intermediate.setPointMode();
for (int i = 0; i < 3; ++i) {
if (publicType.shaderQualifiers.localSize[i] > 1) {
int max = 0;
switch (i) {
case 0: max = resources.maxComputeWorkGroupSizeX; break;
case 1: max = resources.maxComputeWorkGroupSizeY; break;
case 2: max = resources.maxComputeWorkGroupSizeZ; break;
default: break;
}
if (intermediate.getLocalSize(i) > (unsigned int)max)
error(loc, "too large; see gl_MaxComputeWorkGroupSize", "local_size", "");
// Fix the existing constant gl_WorkGroupSize with this new information.
TVariable* workGroupSize = getEditableVariable("gl_WorkGroupSize");
workGroupSize->getWritableConstArray()[i].setUConst(intermediate.getLocalSize(i));
}
if (publicType.shaderQualifiers.localSizeSpecId[i] != TQualifier::layoutNotSet) {
intermediate.setLocalSizeSpecId(i, publicType.shaderQualifiers.localSizeSpecId[i]);
// Set the workgroup built-in variable as a specialization constant
TVariable* workGroupSize = getEditableVariable("gl_WorkGroupSize");
workGroupSize->getWritableType().getQualifier().specConstant = true;
}
}
if (publicType.shaderQualifiers.earlyFragmentTests)
intermediate.setEarlyFragmentTests();
const TQualifier& qualifier = publicType.qualifier;
switch (qualifier.storage) {
case EvqUniform:
if (qualifier.hasMatrix())
globalUniformDefaults.layoutMatrix = qualifier.layoutMatrix;
if (qualifier.hasPacking())
globalUniformDefaults.layoutPacking = qualifier.layoutPacking;
break;
case EvqBuffer:
if (qualifier.hasMatrix())
globalBufferDefaults.layoutMatrix = qualifier.layoutMatrix;
if (qualifier.hasPacking())
globalBufferDefaults.layoutPacking = qualifier.layoutPacking;
break;
case EvqVaryingIn:
break;
case EvqVaryingOut:
if (qualifier.hasStream())
globalOutputDefaults.layoutStream = qualifier.layoutStream;
if (qualifier.hasXfbBuffer())
globalOutputDefaults.layoutXfbBuffer = qualifier.layoutXfbBuffer;
if (globalOutputDefaults.hasXfbBuffer() && qualifier.hasXfbStride()) {
if (! intermediate.setXfbBufferStride(globalOutputDefaults.layoutXfbBuffer, qualifier.layoutXfbStride))
error(loc, "all stride settings must match for xfb buffer", "xfb_stride", "%d", qualifier.layoutXfbBuffer);
}
break;
default:
error(loc, "default qualifier requires 'uniform', 'buffer', 'in', or 'out' storage qualification", "", "");
return;
}
}
//
// Take the sequence of statements that has been built up since the last case/default,
// put it on the list of top-level nodes for the current (inner-most) switch statement,
// and follow that by the case/default we are on now. (See switch topology comment on
// TIntermSwitch.)
//
void HlslParseContext::wrapupSwitchSubsequence(TIntermAggregate* statements, TIntermNode* branchNode)
{
TIntermSequence* switchSequence = switchSequenceStack.back();
if (statements) {
statements->setOperator(EOpSequence);
switchSequence->push_back(statements);
}
if (branchNode) {
// check all previous cases for the same label (or both are 'default')
for (unsigned int s = 0; s < switchSequence->size(); ++s) {
TIntermBranch* prevBranch = (*switchSequence)[s]->getAsBranchNode();
if (prevBranch) {
TIntermTyped* prevExpression = prevBranch->getExpression();
TIntermTyped* newExpression = branchNode->getAsBranchNode()->getExpression();
if (prevExpression == nullptr && newExpression == nullptr)
error(branchNode->getLoc(), "duplicate label", "default", "");
else if (prevExpression != nullptr &&
newExpression != nullptr &&
prevExpression->getAsConstantUnion() &&
newExpression->getAsConstantUnion() &&
prevExpression->getAsConstantUnion()->getConstArray()[0].getIConst() ==
newExpression->getAsConstantUnion()->getConstArray()[0].getIConst())
error(branchNode->getLoc(), "duplicated value", "case", "");
}
}
switchSequence->push_back(branchNode);
}
}
//
// Turn the top-level node sequence built up of wrapupSwitchSubsequence
// into a switch node.
//
TIntermNode* HlslParseContext::addSwitch(const TSourceLoc& loc, TIntermTyped* expression, TIntermAggregate* lastStatements)
{
wrapupSwitchSubsequence(lastStatements, nullptr);
if (expression == nullptr ||
(expression->getBasicType() != EbtInt && expression->getBasicType() != EbtUint) ||
expression->getType().isArray() || expression->getType().isMatrix() || expression->getType().isVector())
error(loc, "condition must be a scalar integer expression", "switch", "");
// If there is nothing to do, drop the switch but still execute the expression
TIntermSequence* switchSequence = switchSequenceStack.back();
if (switchSequence->size() == 0)
return expression;
if (lastStatements == nullptr) {
// emulate a break for error recovery
lastStatements = intermediate.makeAggregate(intermediate.addBranch(EOpBreak, loc));
lastStatements->setOperator(EOpSequence);
switchSequence->push_back(lastStatements);
}
TIntermAggregate* body = new TIntermAggregate(EOpSequence);
body->getSequence() = *switchSequenceStack.back();
body->setLoc(loc);
TIntermSwitch* switchNode = new TIntermSwitch(expression, body);
switchNode->setLoc(loc);
return switchNode;
}
// Potentially rename shader entry point function
void HlslParseContext::renameShaderFunction(TString*& name) const
{
// Replace the entry point name given in the shader with the real entry point name,
// if there is a substitution.
if (name != nullptr && *name == sourceEntryPointName)
name = new TString(intermediate.getEntryPointName().c_str());
}
// post-processing
void HlslParseContext::finish()
{
addInterstageIoToLinkage();
TParseContextBase::finish();
}
} // end namespace glslang