gtk/gsk/gskrectprivate.h

324 lines
9.2 KiB
C
Raw Normal View History

#pragma once
#include "gdk/gdkdihedralprivate.h"
#include <graphene.h>
#include <math.h>
#define GSK_RECT_INIT_CAIRO(cairo_rect) GRAPHENE_RECT_INIT((cairo_rect)->x, (cairo_rect)->y, (cairo_rect)->width, (cairo_rect)->height)
2023-11-24 15:03:53 +00:00
static inline void
gsk_rect_init (graphene_rect_t *r,
float x,
float y,
float width,
float height)
{
r->origin.x = x;
r->origin.y = y;
r->size.width = width;
r->size.height = height;
}
static inline void
gsk_rect_init_from_rect (graphene_rect_t *r,
const graphene_rect_t *r1)
{
gsk_rect_init (r, r1->origin.x, r1->origin.y, r1->size.width, r1->size.height);
}
static inline void
gsk_rect_init_offset (graphene_rect_t *r,
const graphene_rect_t *src,
const graphene_point_t *offset)
{
gsk_rect_init (r, src->origin.x + offset->x, src->origin.y + offset->y, src->size.width, src->size.height);
}
static inline gboolean G_GNUC_PURE
gsk_rect_contains_rect (const graphene_rect_t *r1,
const graphene_rect_t *r2)
{
return r2->origin.x >= r1->origin.x &&
(r2->origin.x + r2->size.width) <= (r1->origin.x + r1->size.width) &&
r2->origin.y >= r1->origin.y &&
(r2->origin.y + r2->size.height) <= (r1->origin.y + r1->size.height);
}
static inline gboolean G_GNUC_PURE
gsk_rect_intersects (const graphene_rect_t *r1,
const graphene_rect_t *r2)
{
2023-11-24 15:03:53 +00:00
float x1, y1, x2, y2;
/* Assume both rects are already normalized, as they usually are */
2023-11-24 15:03:53 +00:00
x1 = MAX (r1->origin.x, r2->origin.x);
y1 = MAX (r1->origin.y, r2->origin.y);
x2 = MIN (r1->origin.x + r1->size.width, r2->origin.x + r2->size.width);
y2 = MIN (r1->origin.y + r1->size.height, r2->origin.y + r2->size.height);
if (x1 >= x2 || y1 >= y2)
return FALSE;
else
return TRUE;
}
2023-11-24 15:03:53 +00:00
static inline gboolean
gsk_rect_intersection (const graphene_rect_t *r1,
const graphene_rect_t *r2,
graphene_rect_t *res)
{
float x1, y1, x2, y2;
/* Assume both rects are already normalized, as they usually are */
x1 = MAX (r1->origin.x, r2->origin.x);
y1 = MAX (r1->origin.y, r2->origin.y);
x2 = MIN (r1->origin.x + r1->size.width, r2->origin.x + r2->size.width);
y2 = MIN (r1->origin.y + r1->size.height, r2->origin.y + r2->size.height);
if (x1 >= x2 || y1 >= y2)
{
gsk_rect_init (res, 0.f, 0.f, 0.f, 0.f);
return FALSE;
}
else
{
gsk_rect_init (res, x1, y1, x2 - x1, y2 - y1);
return TRUE;
}
}
/**
* gsk_rect_coverage:
* @r1: a valid rectangle
* @r2: another valid rectangle
* @res: The result, may be one of r1/r2
*
* Computes the largest rectangle that is fully covered by
* r1 and r2.
*
* Note that this is different from a union, which is the smallest
* rectangle that covers the rectangles.
*
* The use case for this function is joining opaque rectangles.
**/
static inline void
gsk_rect_coverage (const graphene_rect_t *r1,
const graphene_rect_t *r2,
graphene_rect_t *res)
{
float x1min, y1min, x2min, y2min;
float x1max, y1max, x2max, y2max;
float size, size2;
graphene_rect_t r;
/* Assumes both rects are already normalized, as they usually are */
size = r1->size.width * r1->size.height;
size2 = r2->size.width * r2->size.height;
if (size >= size2)
{
r = *r1;
}
else
{
r = *r2;
size = size2;
}
x1min = MIN (r1->origin.x, r2->origin.x);
y1min = MIN (r1->origin.y, r2->origin.y);
x1max = MAX (r1->origin.x, r2->origin.x);
y1max = MAX (r1->origin.y, r2->origin.y);
x2min = MIN (r1->origin.x + r1->size.width, r2->origin.x + r2->size.width);
y2min = MIN (r1->origin.y + r1->size.height, r2->origin.y + r2->size.height);
x2max = MAX (r1->origin.x + r1->size.width, r2->origin.x + r2->size.width);
y2max = MAX (r1->origin.y + r1->size.height, r2->origin.y + r2->size.height);
if (x2min >= x1max && y2min >= y1max)
{
float w, h;
w = x2min - x1max;
h = y2max - y1min;
size2 = w * h;
if (size2 > size)
{
r = GRAPHENE_RECT_INIT (x1max, y1min, w, h);
size = size2;
}
w = x2max - x1min;
h = y2min - y1max;
size2 = w * h;
if (size2 > size)
{
r = GRAPHENE_RECT_INIT (x1min, y1max, w, h);
size = size2;
}
}
*res = r;
}
/**
* gsk_rect_snap_to_grid:
* @src: rectangle to snap
* @grid_scale: the scale of the grid
* @grid_offset: the offset of the grid
* @dest: target to snap to. Can be identical to source
*
* Snaps @src to the grid specified by the given scale
* and offset.
* Grid points to snap to will be at the given offset and
* then spaced apart by the inverse of the given scale,
* ie an offset of 0.5 and a scale of 3 will snap to
* (..., 0.1667, 0.5, 0.8333, 1.1667, 1.5, ...).
*
* Snapping is done by growing the rectangle.
*
* Note that floating point rounding issues might result
* in the snapping not being perfectly exact.
**/
static inline void
gsk_rect_snap_to_grid (const graphene_rect_t *src,
const graphene_vec2_t *grid_scale,
const graphene_point_t *grid_offset,
graphene_rect_t *dest)
{
float x, y, xscale, yscale;
xscale = graphene_vec2_get_x (grid_scale);
yscale = graphene_vec2_get_y (grid_scale);
x = floorf ((src->origin.x + grid_offset->x) * xscale);
y = floorf ((src->origin.y + grid_offset->y) * yscale);
*dest = GRAPHENE_RECT_INIT (
x / xscale - grid_offset->x,
y / yscale - grid_offset->y,
(ceilf ((src->origin.x + grid_offset->x + src->size.width) * xscale) - x) / xscale,
(ceilf ((src->origin.y + grid_offset->y + src->size.height) * yscale) - y) / yscale);
}
static inline gboolean G_GNUC_PURE
gsk_rect_is_empty (const graphene_rect_t *rect)
{
return rect->size.width == 0 || rect->size.height == 0;
}
static inline void
gsk_rect_to_float (const graphene_rect_t *rect,
float values[4])
{
values[0] = rect->origin.x;
values[1] = rect->origin.y;
values[2] = rect->size.width;
values[3] = rect->size.height;
}
static inline void
gsk_rect_to_cairo_grow (const graphene_rect_t *graphene,
cairo_rectangle_int_t *cairo)
{
cairo->x = floorf (graphene->origin.x);
cairo->y = floorf (graphene->origin.y);
cairo->width = ceilf (graphene->origin.x + graphene->size.width) - cairo->x;
cairo->height = ceilf (graphene->origin.y + graphene->size.height) - cairo->y;
}
static inline void
gsk_rect_to_cairo_shrink (const graphene_rect_t *graphene,
cairo_rectangle_int_t *cairo)
{
cairo->x = ceilf (graphene->origin.x);
cairo->y = ceilf (graphene->origin.y);
cairo->width = floorf (graphene->origin.x + graphene->size.width) - cairo->x;
cairo->height = floorf (graphene->origin.y + graphene->size.height) - cairo->y;
}
2023-11-13 07:17:40 +00:00
static inline gboolean
gsk_rect_equal (const graphene_rect_t *r1,
const graphene_rect_t *r2)
{
return r1->origin.x == r2->origin.x &&
r1->origin.y == r2->origin.y &&
r1->size.width == r2->size.width &&
r1->size.height == r2->size.height;
}
static inline void
gsk_gpu_rect_to_float (const graphene_rect_t *rect,
const graphene_point_t *offset,
float values[4])
{
values[0] = rect->origin.x + offset->x;
values[1] = rect->origin.y + offset->y;
values[2] = rect->size.width;
values[3] = rect->size.height;
}
static inline void
gsk_rect_round_larger (graphene_rect_t *rect)
{
float x = floor (rect->origin.x);
float y = floor (rect->origin.y);
*rect = GRAPHENE_RECT_INIT (x, y,
ceil (rect->origin.x + rect->size.width) - x,
ceil (rect->origin.y + rect->size.height) - y);
}
static inline void
gsk_rect_scale (const graphene_rect_t *r,
float sx,
float sy,
graphene_rect_t *res)
{
if (G_UNLIKELY (sx < 0 || sy < 0))
{
graphene_rect_scale (r, sx, sy, res);
return;
}
res->origin.x = r->origin.x * sx;
res->origin.y = r->origin.y * sy;
res->size.width = r->size.width * sx;
res->size.height = r->size.height * sy;
}
static inline void
gsk_rect_normalize (graphene_rect_t *r)
{
if (r->size.width < 0.f)
{
float size = fabsf (r->size.width);
r->origin.x -= size;
r->size.width = size;
}
if (r->size.height < 0.f)
{
float size = fabsf (r->size.height);
r->origin.y -= size;
r->size.height = size;
}
}
static inline void
gsk_rect_dihedral (const graphene_rect_t *src,
GdkDihedral dihedral,
graphene_rect_t *res)
{
float xx, xy, yx, yy;
gdk_dihedral_get_mat2 (dihedral, &xx, &xy, &yx, &yy);
graphene_rect_init (res,
(xx * src->origin.x + xy * src->origin.y),
(yx * src->origin.x + yy * src->origin.y),
(xx * src->size.width + xy * src->size.height),
(yx * src->size.width + yy * src->size.height));
gsk_rect_normalize (res);
}