gtk/gdk/win32/gdkcursor-win32.c

1510 lines
41 KiB
C
Raw Normal View History

1999-11-11 22:01:55 +00:00
/* GDK - The GIMP Drawing Kit
* Copyright (C) 1995-1997 Peter Mattis, Spencer Kimball and Josh MacDonald
Massive changes. Too many to list here, but I'll try a summary: 2002-02-17 Tor Lillqvist <tml@iki.fi> * gdk/win32/*.c: Massive changes. Too many to list here, but I'll try a summary: 1) Unify GdkPixmap and GdkImage implementation: For each GdkPixmap, allocate a GdkImage, and vice versa. GdkPixmapImplWin32Data has a pointer to the GdkImage. GdkImage::windowing_data is a pointer to the GdkPixmap. This simplifies many pixmap and image related functions a lot, and reduces duplicated code snippets. For instance, there is only one place in gdk/win32 where CreateDIBSection() is called, in the function _gdk_win32_new_pixmap(). Converting a bitmap (GdkPixmap) to a Windows region is almost trivial, with the bitmap bits being readily accessible in the associated GdkImage. All blitting between GdkPixmaps, GdkWindows and GdkImages goes through handled the _gdk_win32_blit() function, which calls different functions to handle the cases of blitting from pixmaps, inside windows (scrolling), or from windows, which all require somewhat different handling. 2) Support 256-color mode. This has long been very broken, now it works more or less OK. Keep the logical palette for each colormap as small as possible while allocating and freeing colors. Select and realize the logical palette associated with a GdkColormap into a DC before drawing or blitting. When the display is in 256-color mode, make it possible for the user to override the size of the palette(s) used with either the GDK_WIN32_MAX_COLORS environment variable, or a -max-colors command line option. It is possible to reduce the palette size all the way down to using just the 16 static colors (which causes the system visual to be of type GDK_VISUAL_STATIC_COLOR. This could possibly be useful if one desperately wants to avoid color flashing. (Note that in order for this to work properly, an as of yet not commited fix to gdkrgb.c is needed.) Handle the palette messages. On WM_PALETTECHANGED, call UpdateColors() for the given window hierarchy. Do this only if a window in some other top-level window hierarchy caused the palette change (realized a palette). Do this max five times in a row (an arbitrarily chosen limit), though, otherwise redraw by generating expose events. On WM_QUERYNEWPALETTE, cause a redraw of the whole window hierarchy by generating GDK_EXPOSE events. 3) Code cleanup in general. For instance, remove the "emulated" X11 structs ColormapStruct, Visual and XStandardColormap. Use the new GDK_DEBUG_* flags for debugging output in the relevant source files. Remove the unused colormap hash table in gdkcolor-win32.c 4) Plug some resource leaks. 2002-02-14 Tor Lillqvist <tml@iki.fi> * gdk/win32/gdkdnd-win32.c (gdk_dropfiles_filter): Use g_filename_to_uri() to actually create legal URIs in the text/uri-list data.
2002-02-17 00:25:05 +00:00
* Copyright (C) 1998-2002 Tor Lillqvist
1999-11-11 22:01:55 +00:00
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
1999-11-11 22:01:55 +00:00
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
1999-11-11 22:01:55 +00:00
*
* You should have received a copy of the GNU Lesser General Public
2012-02-27 13:01:10 +00:00
* License along with this library. If not, see <http://www.gnu.org/licenses/>.
1999-11-11 22:01:55 +00:00
*/
#include "config.h"
#include "gdkdisplay.h"
1999-11-11 22:01:55 +00:00
#include "gdkcursor.h"
#include "gdkwin32.h"
#include "gdktextureprivate.h"
1999-11-11 22:01:55 +00:00
#include "gdkdisplay-win32.h"
#include "xcursors.h"
#include <stdint.h>
static struct {
char *name;
char *id;
} default_cursors[] = {
/* -- Win32 cursor names: -- */
{ "appstarting", IDC_APPSTARTING },
{ "arrow", IDC_ARROW },
{ "cross", IDC_CROSS },
{ "hand", IDC_HAND },
{ "help", IDC_HELP },
{ "ibeam", IDC_IBEAM },
/* -- X11 cursor names: -- */
{ "left_ptr_watch", IDC_APPSTARTING },
{ "sizeall", IDC_SIZEALL },
{ "sizenesw", IDC_SIZENESW },
{ "sizens", IDC_SIZENS },
{ "sizenwse", IDC_SIZENWSE },
{ "sizewe", IDC_SIZEWE },
{ "uparrow", IDC_UPARROW },
{ "wait", IDC_WAIT },
/* -- CSS cursor names: -- */
{ "default", IDC_ARROW },
{ "pointer", IDC_HAND },
{ "progress", IDC_APPSTARTING },
{ "crosshair", IDC_CROSS },
{ "text", IDC_IBEAM },
{ "move", IDC_SIZEALL },
{ "not-allowed", IDC_NO },
{ "all-scroll", IDC_SIZEALL },
{ "ew-resize", IDC_SIZEWE },
{ "e-resize", IDC_SIZEWE },
{ "w-resize", IDC_SIZEWE },
{ "col-resize", IDC_SIZEWE },
{ "ns-resize", IDC_SIZENS },
{ "n-resize", IDC_SIZENS },
{ "s-resize", IDC_SIZENS },
{ "row-resize", IDC_SIZENS },
{ "nesw-resize", IDC_SIZENESW },
{ "ne-resize", IDC_SIZENESW },
{ "sw-resize", IDC_SIZENESW },
2015-08-14 12:12:01 +00:00
{ "nwse-resize", IDC_SIZENWSE },
{ "nw-resize", IDC_SIZENWSE },
{ "se-resize", IDC_SIZENWSE }
};
GDK W32: New cursor class Instead of now-unused GdkWin32Cursor class (a subclass of GdkCursor), add a stand-alone GdkWin32HCursor class that is a wrapper around HCURSOR handle. On creation it's given a display instance, a HCURSOR handle and a boolean that indicates whether the HCURSOR handle can or cannot be destroyed (this depends on how the handle was obtained). That information is stored in a hash table inside the GdkWin32Display singleton, each entry of that table has reference count. When the GdkWin32HCursor object is finalized, it reduces the reference count on the table entry in the GdkWin32Display. When it's created, it either adds such an entry or refs an existing one. This way two pieces of code (or the same piece of code called multiple times) that independently obtain the same HCURSOR from the OS will get to different GdkWin32HCursor instances, but GdkWin32Display will know that both use the same handle. Once the reference count reaches 0 on the table entry, it is freed and the handle (if destroyable) is put on the destruction list, and an idle destruction function is queued. If the same handle is once again registered for use before the idle destructior is invoked (this happens, for example, when an old cursor is destroyed and then replaced with a new one), the handle gets removed from the destruction list. The destructor just calls DestroyCursor() on each handle, calling SetCursor(NULL) before doing that when the handle is in use. This ensures that SetCursor(NULL) (which will cause cursor to disappear, which is bad by itself, and which will also cause flickering if the cursor is set to a non-NULL again shortly afterward) is almost never called, unless GTK messes up and keeps using a cursor beyond its lifetime. This scheme also ensures that non-destructable cursors are not destroyed. It's also possible to call _gdk_win32_display_hcursor_ref() and _gdk_win32_display_hcursor_unref() manually instead of creating GdkWin32HCursor objects, but that is not recommended.
2018-03-29 23:38:05 +00:00
typedef struct _GdkWin32HCursorTableEntry GdkWin32HCursorTableEntry;
struct _GdkWin32HCursorTableEntry
{
HCURSOR handle;
guint64 refcount;
gboolean destroyable;
};
struct _GdkWin32HCursor
{
GObject parent_instance;
/* Do not do any modifications to the handle
* (i.e. do not call DestroyCursor() on it).
* It's a "read-only" copy, the original is
* stored in the display instance */
GDK W32: New cursor class Instead of now-unused GdkWin32Cursor class (a subclass of GdkCursor), add a stand-alone GdkWin32HCursor class that is a wrapper around HCURSOR handle. On creation it's given a display instance, a HCURSOR handle and a boolean that indicates whether the HCURSOR handle can or cannot be destroyed (this depends on how the handle was obtained). That information is stored in a hash table inside the GdkWin32Display singleton, each entry of that table has reference count. When the GdkWin32HCursor object is finalized, it reduces the reference count on the table entry in the GdkWin32Display. When it's created, it either adds such an entry or refs an existing one. This way two pieces of code (or the same piece of code called multiple times) that independently obtain the same HCURSOR from the OS will get to different GdkWin32HCursor instances, but GdkWin32Display will know that both use the same handle. Once the reference count reaches 0 on the table entry, it is freed and the handle (if destroyable) is put on the destruction list, and an idle destruction function is queued. If the same handle is once again registered for use before the idle destructior is invoked (this happens, for example, when an old cursor is destroyed and then replaced with a new one), the handle gets removed from the destruction list. The destructor just calls DestroyCursor() on each handle, calling SetCursor(NULL) before doing that when the handle is in use. This ensures that SetCursor(NULL) (which will cause cursor to disappear, which is bad by itself, and which will also cause flickering if the cursor is set to a non-NULL again shortly afterward) is almost never called, unless GTK messes up and keeps using a cursor beyond its lifetime. This scheme also ensures that non-destructable cursors are not destroyed. It's also possible to call _gdk_win32_display_hcursor_ref() and _gdk_win32_display_hcursor_unref() manually instead of creating GdkWin32HCursor objects, but that is not recommended.
2018-03-29 23:38:05 +00:00
HANDLE readonly_handle;
/* This is a way to access the real handle
* stored in the display.
* TODO: make it a weak reference */
GDK W32: New cursor class Instead of now-unused GdkWin32Cursor class (a subclass of GdkCursor), add a stand-alone GdkWin32HCursor class that is a wrapper around HCURSOR handle. On creation it's given a display instance, a HCURSOR handle and a boolean that indicates whether the HCURSOR handle can or cannot be destroyed (this depends on how the handle was obtained). That information is stored in a hash table inside the GdkWin32Display singleton, each entry of that table has reference count. When the GdkWin32HCursor object is finalized, it reduces the reference count on the table entry in the GdkWin32Display. When it's created, it either adds such an entry or refs an existing one. This way two pieces of code (or the same piece of code called multiple times) that independently obtain the same HCURSOR from the OS will get to different GdkWin32HCursor instances, but GdkWin32Display will know that both use the same handle. Once the reference count reaches 0 on the table entry, it is freed and the handle (if destroyable) is put on the destruction list, and an idle destruction function is queued. If the same handle is once again registered for use before the idle destructior is invoked (this happens, for example, when an old cursor is destroyed and then replaced with a new one), the handle gets removed from the destruction list. The destructor just calls DestroyCursor() on each handle, calling SetCursor(NULL) before doing that when the handle is in use. This ensures that SetCursor(NULL) (which will cause cursor to disappear, which is bad by itself, and which will also cause flickering if the cursor is set to a non-NULL again shortly afterward) is almost never called, unless GTK messes up and keeps using a cursor beyond its lifetime. This scheme also ensures that non-destructable cursors are not destroyed. It's also possible to call _gdk_win32_display_hcursor_ref() and _gdk_win32_display_hcursor_unref() manually instead of creating GdkWin32HCursor objects, but that is not recommended.
2018-03-29 23:38:05 +00:00
GdkWin32Display *display;
/* A copy of the "destoyable" attribute of
* the handle */
GDK W32: New cursor class Instead of now-unused GdkWin32Cursor class (a subclass of GdkCursor), add a stand-alone GdkWin32HCursor class that is a wrapper around HCURSOR handle. On creation it's given a display instance, a HCURSOR handle and a boolean that indicates whether the HCURSOR handle can or cannot be destroyed (this depends on how the handle was obtained). That information is stored in a hash table inside the GdkWin32Display singleton, each entry of that table has reference count. When the GdkWin32HCursor object is finalized, it reduces the reference count on the table entry in the GdkWin32Display. When it's created, it either adds such an entry or refs an existing one. This way two pieces of code (or the same piece of code called multiple times) that independently obtain the same HCURSOR from the OS will get to different GdkWin32HCursor instances, but GdkWin32Display will know that both use the same handle. Once the reference count reaches 0 on the table entry, it is freed and the handle (if destroyable) is put on the destruction list, and an idle destruction function is queued. If the same handle is once again registered for use before the idle destructior is invoked (this happens, for example, when an old cursor is destroyed and then replaced with a new one), the handle gets removed from the destruction list. The destructor just calls DestroyCursor() on each handle, calling SetCursor(NULL) before doing that when the handle is in use. This ensures that SetCursor(NULL) (which will cause cursor to disappear, which is bad by itself, and which will also cause flickering if the cursor is set to a non-NULL again shortly afterward) is almost never called, unless GTK messes up and keeps using a cursor beyond its lifetime. This scheme also ensures that non-destructable cursors are not destroyed. It's also possible to call _gdk_win32_display_hcursor_ref() and _gdk_win32_display_hcursor_unref() manually instead of creating GdkWin32HCursor objects, but that is not recommended.
2018-03-29 23:38:05 +00:00
gboolean readonly_destroyable;
};
struct _GdkWin32HCursorClass
{
GObjectClass parent_class;
};
enum
{
PROP_0,
PROP_DISPLAY,
PROP_HANDLE,
PROP_DESTROYABLE,
NUM_PROPERTIES
};
G_DEFINE_TYPE (GdkWin32HCursor, gdk_win32_hcursor, G_TYPE_OBJECT)
static void
gdk_win32_hcursor_init (GdkWin32HCursor *win32_hcursor)
{
}
static void
gdk_win32_hcursor_finalize (GObject *gobject)
{
GdkWin32HCursor *win32_hcursor = GDK_WIN32_HCURSOR (gobject);
if (win32_hcursor->display)
_gdk_win32_display_hcursor_unref (win32_hcursor->display, win32_hcursor->readonly_handle);
g_clear_object (&win32_hcursor->display);
G_OBJECT_CLASS (gdk_win32_hcursor_parent_class)->finalize (G_OBJECT (win32_hcursor));
}
static void
gdk_win32_hcursor_set_property (GObject *object,
guint prop_id,
const GValue *value,
GParamSpec *pspec)
{
GdkWin32HCursor *win32_hcursor;
win32_hcursor = GDK_WIN32_HCURSOR (object);
switch (prop_id)
{
case PROP_DISPLAY:
g_set_object (&win32_hcursor->display, g_value_get_object (value));
break;
case PROP_DESTROYABLE:
win32_hcursor->readonly_destroyable = g_value_get_boolean (value);
break;
case PROP_HANDLE:
win32_hcursor->readonly_handle = g_value_get_pointer (value);
break;
default:
G_OBJECT_WARN_INVALID_PROPERTY_ID (object, prop_id, pspec);
break;
}
}
static void
gdk_win32_hcursor_get_property (GObject *object,
guint prop_id,
GValue *value,
GParamSpec *pspec)
{
GdkWin32HCursor *win32_hcursor;
win32_hcursor = GDK_WIN32_HCURSOR (object);
switch (prop_id)
{
case PROP_DISPLAY:
g_value_set_object (value, win32_hcursor->display);
break;
case PROP_DESTROYABLE:
g_value_set_boolean (value, win32_hcursor->readonly_destroyable);
break;
case PROP_HANDLE:
g_value_set_pointer (value, win32_hcursor->readonly_handle);
break;
default:
G_OBJECT_WARN_INVALID_PROPERTY_ID (object, prop_id, pspec);
break;
}
}
static void
gdk_win32_hcursor_constructed (GObject *object)
{
GdkWin32HCursor *win32_hcursor;
win32_hcursor = GDK_WIN32_HCURSOR (object);
g_assert_nonnull (win32_hcursor->display);
g_assert_nonnull (win32_hcursor->readonly_handle);
_gdk_win32_display_hcursor_ref (win32_hcursor->display,
win32_hcursor->readonly_handle,
win32_hcursor->readonly_destroyable);
}
static GParamSpec *hcursor_props[NUM_PROPERTIES] = { NULL, };
static void
gdk_win32_hcursor_class_init (GdkWin32HCursorClass *klass)
{
GObjectClass *object_class = G_OBJECT_CLASS (klass);
object_class->finalize = gdk_win32_hcursor_finalize;
object_class->constructed = gdk_win32_hcursor_constructed;
object_class->get_property = gdk_win32_hcursor_get_property;
object_class->set_property = gdk_win32_hcursor_set_property;
hcursor_props[PROP_DISPLAY] =
g_param_spec_object ("display", NULL, NULL,
GDK W32: New cursor class Instead of now-unused GdkWin32Cursor class (a subclass of GdkCursor), add a stand-alone GdkWin32HCursor class that is a wrapper around HCURSOR handle. On creation it's given a display instance, a HCURSOR handle and a boolean that indicates whether the HCURSOR handle can or cannot be destroyed (this depends on how the handle was obtained). That information is stored in a hash table inside the GdkWin32Display singleton, each entry of that table has reference count. When the GdkWin32HCursor object is finalized, it reduces the reference count on the table entry in the GdkWin32Display. When it's created, it either adds such an entry or refs an existing one. This way two pieces of code (or the same piece of code called multiple times) that independently obtain the same HCURSOR from the OS will get to different GdkWin32HCursor instances, but GdkWin32Display will know that both use the same handle. Once the reference count reaches 0 on the table entry, it is freed and the handle (if destroyable) is put on the destruction list, and an idle destruction function is queued. If the same handle is once again registered for use before the idle destructior is invoked (this happens, for example, when an old cursor is destroyed and then replaced with a new one), the handle gets removed from the destruction list. The destructor just calls DestroyCursor() on each handle, calling SetCursor(NULL) before doing that when the handle is in use. This ensures that SetCursor(NULL) (which will cause cursor to disappear, which is bad by itself, and which will also cause flickering if the cursor is set to a non-NULL again shortly afterward) is almost never called, unless GTK messes up and keeps using a cursor beyond its lifetime. This scheme also ensures that non-destructable cursors are not destroyed. It's also possible to call _gdk_win32_display_hcursor_ref() and _gdk_win32_display_hcursor_unref() manually instead of creating GdkWin32HCursor objects, but that is not recommended.
2018-03-29 23:38:05 +00:00
GDK_TYPE_DISPLAY,
G_PARAM_CONSTRUCT_ONLY | G_PARAM_READWRITE);
hcursor_props[PROP_HANDLE] =
g_param_spec_pointer ("handle", NULL, NULL,
GDK W32: New cursor class Instead of now-unused GdkWin32Cursor class (a subclass of GdkCursor), add a stand-alone GdkWin32HCursor class that is a wrapper around HCURSOR handle. On creation it's given a display instance, a HCURSOR handle and a boolean that indicates whether the HCURSOR handle can or cannot be destroyed (this depends on how the handle was obtained). That information is stored in a hash table inside the GdkWin32Display singleton, each entry of that table has reference count. When the GdkWin32HCursor object is finalized, it reduces the reference count on the table entry in the GdkWin32Display. When it's created, it either adds such an entry or refs an existing one. This way two pieces of code (or the same piece of code called multiple times) that independently obtain the same HCURSOR from the OS will get to different GdkWin32HCursor instances, but GdkWin32Display will know that both use the same handle. Once the reference count reaches 0 on the table entry, it is freed and the handle (if destroyable) is put on the destruction list, and an idle destruction function is queued. If the same handle is once again registered for use before the idle destructior is invoked (this happens, for example, when an old cursor is destroyed and then replaced with a new one), the handle gets removed from the destruction list. The destructor just calls DestroyCursor() on each handle, calling SetCursor(NULL) before doing that when the handle is in use. This ensures that SetCursor(NULL) (which will cause cursor to disappear, which is bad by itself, and which will also cause flickering if the cursor is set to a non-NULL again shortly afterward) is almost never called, unless GTK messes up and keeps using a cursor beyond its lifetime. This scheme also ensures that non-destructable cursors are not destroyed. It's also possible to call _gdk_win32_display_hcursor_ref() and _gdk_win32_display_hcursor_unref() manually instead of creating GdkWin32HCursor objects, but that is not recommended.
2018-03-29 23:38:05 +00:00
G_PARAM_CONSTRUCT_ONLY | G_PARAM_READWRITE);
hcursor_props[PROP_DESTROYABLE] =
g_param_spec_boolean ("destroyable", NULL, NULL,
GDK W32: New cursor class Instead of now-unused GdkWin32Cursor class (a subclass of GdkCursor), add a stand-alone GdkWin32HCursor class that is a wrapper around HCURSOR handle. On creation it's given a display instance, a HCURSOR handle and a boolean that indicates whether the HCURSOR handle can or cannot be destroyed (this depends on how the handle was obtained). That information is stored in a hash table inside the GdkWin32Display singleton, each entry of that table has reference count. When the GdkWin32HCursor object is finalized, it reduces the reference count on the table entry in the GdkWin32Display. When it's created, it either adds such an entry or refs an existing one. This way two pieces of code (or the same piece of code called multiple times) that independently obtain the same HCURSOR from the OS will get to different GdkWin32HCursor instances, but GdkWin32Display will know that both use the same handle. Once the reference count reaches 0 on the table entry, it is freed and the handle (if destroyable) is put on the destruction list, and an idle destruction function is queued. If the same handle is once again registered for use before the idle destructior is invoked (this happens, for example, when an old cursor is destroyed and then replaced with a new one), the handle gets removed from the destruction list. The destructor just calls DestroyCursor() on each handle, calling SetCursor(NULL) before doing that when the handle is in use. This ensures that SetCursor(NULL) (which will cause cursor to disappear, which is bad by itself, and which will also cause flickering if the cursor is set to a non-NULL again shortly afterward) is almost never called, unless GTK messes up and keeps using a cursor beyond its lifetime. This scheme also ensures that non-destructable cursors are not destroyed. It's also possible to call _gdk_win32_display_hcursor_ref() and _gdk_win32_display_hcursor_unref() manually instead of creating GdkWin32HCursor objects, but that is not recommended.
2018-03-29 23:38:05 +00:00
TRUE,
G_PARAM_CONSTRUCT_ONLY | G_PARAM_READWRITE);
g_object_class_install_properties (object_class, NUM_PROPERTIES, hcursor_props);
}
GdkWin32HCursor *
gdk_win32_hcursor_new (GdkWin32Display *display,
HCURSOR handle,
gboolean destroyable)
{
return g_object_new (GDK_TYPE_WIN32_HCURSOR,
"display", display,
"handle", handle,
"destroyable", destroyable,
NULL);
}
void
_gdk_win32_display_hcursor_ref (GdkWin32Display *display,
HCURSOR handle,
gboolean destroyable)
{
GdkWin32HCursorTableEntry *entry;
entry = g_hash_table_lookup (display->cursor_reftable, handle);
if (entry)
{
if (entry->destroyable != destroyable)
g_warning ("Destroyability metadata for cursor handle 0x%p does not match", handle);
entry->refcount += 1;
return;
}
entry = g_new0 (GdkWin32HCursorTableEntry, 1);
entry->handle = handle;
entry->destroyable = destroyable;
entry->refcount = 1;
g_hash_table_insert (display->cursor_reftable, handle, entry);
display->cursors_for_destruction = g_list_remove_all (display->cursors_for_destruction, handle);
}
static gboolean
delayed_cursor_destruction (gpointer user_data)
{
GdkWin32Display *win32_display = GDK_WIN32_DISPLAY (user_data);
HANDLE current_hcursor = GetCursor ();
GList *p;
win32_display->idle_cursor_destructor_id = 0;
for (p = win32_display->cursors_for_destruction; p; p = p->next)
{
HCURSOR handle = (HCURSOR) p->data;
if (handle == NULL)
continue;
if (current_hcursor == handle)
{
SetCursor (NULL);
current_hcursor = NULL;
}
if (!DestroyCursor (handle))
g_warning (G_STRLOC ": DestroyCursor (%p) failed: %lu", handle, GetLastError ());
}
g_list_free (win32_display->cursors_for_destruction);
win32_display->cursors_for_destruction = NULL;
return G_SOURCE_REMOVE;
}
void
_gdk_win32_display_hcursor_unref (GdkWin32Display *display,
HCURSOR handle)
{
GdkWin32HCursorTableEntry *entry;
gboolean destroyable;
entry = g_hash_table_lookup (display->cursor_reftable, handle);
if (!entry)
{
g_warning ("Trying to forget cursor handle 0x%p that is not in the table", handle);
return;
}
entry->refcount -= 1;
if (entry->refcount > 0)
return;
destroyable = entry->destroyable;
g_hash_table_remove (display->cursor_reftable, handle);
g_free (entry);
if (!destroyable)
return;
/* GDK tends to destroy a cursor first, then set a new one.
* This results in repeated oscillations between SetCursor(NULL)
* and SetCursor(hcursor). To avoid that, delay cursor destruction a bit
* to let GDK set a new one first. That way cursors are switched
* seamlessly, without a NULL cursor between them.
* If GDK sets the new cursor to the same handle the old cursor had,
* the cursor handle is taken off the destruction list.
*/
if (g_list_find (display->cursors_for_destruction, handle) == NULL)
{
display->cursors_for_destruction = g_list_prepend (display->cursors_for_destruction, handle);
if (display->idle_cursor_destructor_id == 0)
display->idle_cursor_destructor_id = g_idle_add (delayed_cursor_destruction, display);
}
}
#ifdef gdk_win32_hcursor_get_handle
#undef gdk_win32_hcursor_get_handle
#endif
HCURSOR
gdk_win32_hcursor_get_handle (GdkWin32HCursor *cursor)
{
return cursor->readonly_handle;
}
static HCURSOR
2020-07-24 13:54:49 +00:00
hcursor_from_x_cursor (int i,
2020-07-24 18:40:36 +00:00
const char *name)
{
2020-07-24 13:54:49 +00:00
int j, x, y, ofs;
HCURSOR rv;
2020-07-24 13:54:49 +00:00
int w, h;
uint8_t *and_plane;
uint8_t *xor_plane;
w = GetSystemMetrics (SM_CXCURSOR);
h = GetSystemMetrics (SM_CYCURSOR);
Massive changes. Too many to list here, but I'll try a summary: 2002-02-17 Tor Lillqvist <tml@iki.fi> * gdk/win32/*.c: Massive changes. Too many to list here, but I'll try a summary: 1) Unify GdkPixmap and GdkImage implementation: For each GdkPixmap, allocate a GdkImage, and vice versa. GdkPixmapImplWin32Data has a pointer to the GdkImage. GdkImage::windowing_data is a pointer to the GdkPixmap. This simplifies many pixmap and image related functions a lot, and reduces duplicated code snippets. For instance, there is only one place in gdk/win32 where CreateDIBSection() is called, in the function _gdk_win32_new_pixmap(). Converting a bitmap (GdkPixmap) to a Windows region is almost trivial, with the bitmap bits being readily accessible in the associated GdkImage. All blitting between GdkPixmaps, GdkWindows and GdkImages goes through handled the _gdk_win32_blit() function, which calls different functions to handle the cases of blitting from pixmaps, inside windows (scrolling), or from windows, which all require somewhat different handling. 2) Support 256-color mode. This has long been very broken, now it works more or less OK. Keep the logical palette for each colormap as small as possible while allocating and freeing colors. Select and realize the logical palette associated with a GdkColormap into a DC before drawing or blitting. When the display is in 256-color mode, make it possible for the user to override the size of the palette(s) used with either the GDK_WIN32_MAX_COLORS environment variable, or a -max-colors command line option. It is possible to reduce the palette size all the way down to using just the 16 static colors (which causes the system visual to be of type GDK_VISUAL_STATIC_COLOR. This could possibly be useful if one desperately wants to avoid color flashing. (Note that in order for this to work properly, an as of yet not commited fix to gdkrgb.c is needed.) Handle the palette messages. On WM_PALETTECHANGED, call UpdateColors() for the given window hierarchy. Do this only if a window in some other top-level window hierarchy caused the palette change (realized a palette). Do this max five times in a row (an arbitrarily chosen limit), though, otherwise redraw by generating expose events. On WM_QUERYNEWPALETTE, cause a redraw of the whole window hierarchy by generating GDK_EXPOSE events. 3) Code cleanup in general. For instance, remove the "emulated" X11 structs ColormapStruct, Visual and XStandardColormap. Use the new GDK_DEBUG_* flags for debugging output in the relevant source files. Remove the unused colormap hash table in gdkcolor-win32.c 4) Plug some resource leaks. 2002-02-14 Tor Lillqvist <tml@iki.fi> * gdk/win32/gdkdnd-win32.c (gdk_dropfiles_filter): Use g_filename_to_uri() to actually create legal URIs in the text/uri-list data.
2002-02-17 00:25:05 +00:00
and_plane = g_malloc ((w/8) * h);
memset (and_plane, 0xff, (w/8) * h);
xor_plane = g_malloc ((w/8) * h);
memset (xor_plane, 0, (w/8) * h);
if (strcmp (name, "none") != 0)
{
#define SET_BIT(v,b) (v |= (1 << b))
#define RESET_BIT(v,b) (v &= ~(1 << b))
for (j = 0, y = 0; y < cursors[i].height && y < h ; y++)
{
ofs = (y * w) / 8;
j = y * cursors[i].width;
for (x = 0; x < cursors[i].width && x < w ; x++, j++)
{
2020-07-24 13:54:49 +00:00
int pofs = ofs + x / 8;
uint8_t data = (cursors[i].data[j/4] & (0xc0 >> (2 * (j%4)))) >> (2 * (3 - (j%4)));
2020-07-24 13:54:49 +00:00
int bit = 7 - (j % cursors[i].width) % 8;
if (data)
{
RESET_BIT (and_plane[pofs], bit);
if (data == 1)
SET_BIT (xor_plane[pofs], bit);
}
}
}
#undef SET_BIT
#undef RESET_BIT
rv = CreateCursor (NULL, cursors[i].hotx, cursors[i].hoty,
w, h, and_plane, xor_plane);
}
else
{
rv = CreateCursor (NULL, 0, 0, w, h, and_plane, xor_plane);
}
if (rv == NULL)
WIN32_API_FAILED ("CreateCursor");
Massive changes. Too many to list here, but I'll try a summary: 2002-02-17 Tor Lillqvist <tml@iki.fi> * gdk/win32/*.c: Massive changes. Too many to list here, but I'll try a summary: 1) Unify GdkPixmap and GdkImage implementation: For each GdkPixmap, allocate a GdkImage, and vice versa. GdkPixmapImplWin32Data has a pointer to the GdkImage. GdkImage::windowing_data is a pointer to the GdkPixmap. This simplifies many pixmap and image related functions a lot, and reduces duplicated code snippets. For instance, there is only one place in gdk/win32 where CreateDIBSection() is called, in the function _gdk_win32_new_pixmap(). Converting a bitmap (GdkPixmap) to a Windows region is almost trivial, with the bitmap bits being readily accessible in the associated GdkImage. All blitting between GdkPixmaps, GdkWindows and GdkImages goes through handled the _gdk_win32_blit() function, which calls different functions to handle the cases of blitting from pixmaps, inside windows (scrolling), or from windows, which all require somewhat different handling. 2) Support 256-color mode. This has long been very broken, now it works more or less OK. Keep the logical palette for each colormap as small as possible while allocating and freeing colors. Select and realize the logical palette associated with a GdkColormap into a DC before drawing or blitting. When the display is in 256-color mode, make it possible for the user to override the size of the palette(s) used with either the GDK_WIN32_MAX_COLORS environment variable, or a -max-colors command line option. It is possible to reduce the palette size all the way down to using just the 16 static colors (which causes the system visual to be of type GDK_VISUAL_STATIC_COLOR. This could possibly be useful if one desperately wants to avoid color flashing. (Note that in order for this to work properly, an as of yet not commited fix to gdkrgb.c is needed.) Handle the palette messages. On WM_PALETTECHANGED, call UpdateColors() for the given window hierarchy. Do this only if a window in some other top-level window hierarchy caused the palette change (realized a palette). Do this max five times in a row (an arbitrarily chosen limit), though, otherwise redraw by generating expose events. On WM_QUERYNEWPALETTE, cause a redraw of the whole window hierarchy by generating GDK_EXPOSE events. 3) Code cleanup in general. For instance, remove the "emulated" X11 structs ColormapStruct, Visual and XStandardColormap. Use the new GDK_DEBUG_* flags for debugging output in the relevant source files. Remove the unused colormap hash table in gdkcolor-win32.c 4) Plug some resource leaks. 2002-02-14 Tor Lillqvist <tml@iki.fi> * gdk/win32/gdkdnd-win32.c (gdk_dropfiles_filter): Use g_filename_to_uri() to actually create legal URIs in the text/uri-list data.
2002-02-17 00:25:05 +00:00
g_free (and_plane);
g_free (xor_plane);
return rv;
}
1999-11-11 22:01:55 +00:00
static GdkWin32HCursor *
win32_cursor_create_win32hcursor (GdkWin32Display *display,
Win32Cursor *cursor,
2020-07-24 18:40:36 +00:00
const char *name)
{
GdkWin32HCursor *result;
switch (cursor->load_type)
{
case GDK_WIN32_CURSOR_LOAD_FROM_FILE:
result = gdk_win32_hcursor_new (display,
LoadImageW (NULL,
cursor->resource_name,
IMAGE_CURSOR,
cursor->width,
cursor->height,
cursor->load_flags),
cursor->load_flags & LR_SHARED ? FALSE : TRUE);
break;
case GDK_WIN32_CURSOR_LOAD_FROM_RESOURCE_NULL:
result = gdk_win32_hcursor_new (display,
LoadImageA (NULL,
2020-07-24 18:40:36 +00:00
(const char *) cursor->resource_name,
IMAGE_CURSOR,
cursor->width,
cursor->height,
cursor->load_flags),
cursor->load_flags & LR_SHARED ? FALSE : TRUE);
break;
case GDK_WIN32_CURSOR_LOAD_FROM_RESOURCE_THIS:
result = gdk_win32_hcursor_new (display,
LoadImageA (GetModuleHandle (NULL),
2020-07-24 18:40:36 +00:00
(const char *) cursor->resource_name,
IMAGE_CURSOR,
cursor->width,
cursor->height,
cursor->load_flags),
cursor->load_flags & LR_SHARED ? FALSE : TRUE);
break;
case GDK_WIN32_CURSOR_LOAD_FROM_RESOURCE_GTK:
result = gdk_win32_hcursor_new (display,
LoadImageA (this_module (),
2020-07-24 18:40:36 +00:00
(const char *) cursor->resource_name,
IMAGE_CURSOR,
cursor->width,
cursor->height,
cursor->load_flags),
cursor->load_flags & LR_SHARED ? FALSE : TRUE);
break;
case GDK_WIN32_CURSOR_CREATE:
result = gdk_win32_hcursor_new (display,
hcursor_from_x_cursor (cursor->xcursor_number,
name),
TRUE);
break;
default:
result = NULL;
}
return result;
}
static Win32Cursor *
win32_cursor_new (GdkWin32CursorLoadType load_type,
gpointer resource_name,
2020-07-24 13:54:49 +00:00
int width,
int height,
guint load_flags,
2020-07-24 13:54:49 +00:00
int xcursor_number)
{
Win32Cursor *result;
result = g_new (Win32Cursor, 1);
result->load_type = load_type;
result->resource_name = resource_name;
result->width = width;
result->height = height;
result->load_flags = load_flags;
result->xcursor_number = xcursor_number;
return result;
}
static void
win32_cursor_destroy (gpointer data)
{
Win32Cursor *cursor = data;
/* resource_name could be a resource ID (uint16_t stored as a pointer),
* which shouldn't be freed.
*/
if (cursor->load_type == GDK_WIN32_CURSOR_LOAD_FROM_FILE)
g_free (cursor->resource_name);
g_free (cursor);
}
static void
win32_cursor_theme_load_from (Win32CursorTheme *theme,
2020-07-24 13:54:49 +00:00
int size,
2020-07-24 18:40:36 +00:00
const char *dir)
{
GDir *gdir;
2020-07-24 18:40:36 +00:00
const char *filename;
HCURSOR hcursor;
gdir = g_dir_open (dir, 0, NULL);
if (gdir == NULL)
return;
while ((filename = g_dir_read_name (gdir)) != NULL)
{
2020-07-24 18:40:36 +00:00
char *fullname;
gunichar2 *filenamew;
2020-07-24 18:40:36 +00:00
char *cursor_name;
char *dot;
Win32Cursor *cursor;
fullname = g_build_filename (dir, filename, NULL);
filenamew = g_utf8_to_utf16 (fullname, -1, NULL, NULL, NULL);
g_free (fullname);
if (filenamew == NULL)
continue;
hcursor = LoadImageW (NULL, filenamew, IMAGE_CURSOR, size, size,
LR_LOADFROMFILE | (size == 0 ? LR_DEFAULTSIZE : 0));
if (hcursor == NULL)
{
g_free (filenamew);
continue;
}
DestroyCursor (hcursor);
dot = strchr (filename, '.');
cursor_name = dot ? g_strndup (filename, dot - filename) : g_strdup (filename);
cursor = win32_cursor_new (GDK_WIN32_CURSOR_LOAD_FROM_FILE,
filenamew,
size,
size,
LR_LOADFROMFILE | (size == 0 ? LR_DEFAULTSIZE : 0),
0);
g_hash_table_insert (theme->named_cursors, cursor_name, cursor);
}
}
static void
win32_cursor_theme_load_from_dirs (Win32CursorTheme *theme,
2020-07-24 18:40:36 +00:00
const char *name,
2020-07-24 13:54:49 +00:00
int size)
{
2020-07-24 18:40:36 +00:00
char *theme_dir;
const char * const *dirs;
2020-07-24 13:54:49 +00:00
int i;
dirs = g_get_system_data_dirs ();
/* <prefix>/share/icons */
for (i = 0; dirs[i]; i++)
{
theme_dir = g_build_filename (dirs[i], "icons", name, "cursors", NULL);
win32_cursor_theme_load_from (theme, size, theme_dir);
g_free (theme_dir);
}
/* ~/.icons */
theme_dir = g_build_filename (g_get_home_dir (), "icons", name, "cursors", NULL);
win32_cursor_theme_load_from (theme, size, theme_dir);
g_free (theme_dir);
}
static void
win32_cursor_theme_load_system (Win32CursorTheme *theme,
2020-07-24 13:54:49 +00:00
int size)
{
2020-07-24 13:54:49 +00:00
int i;
HCURSOR shared_hcursor;
HCURSOR x_hcursor;
Win32Cursor *cursor;
for (i = 0; i < G_N_ELEMENTS (cursors); i++)
{
if (cursors[i].name == NULL)
break;
shared_hcursor = NULL;
x_hcursor = NULL;
/* Prefer W32 cursors */
if (cursors[i].builtin)
shared_hcursor = LoadImageA (NULL, cursors[i].builtin, IMAGE_CURSOR,
size, size,
LR_SHARED | (size == 0 ? LR_DEFAULTSIZE : 0));
/* Fall back to X cursors, but only if we've got no theme cursor */
if (shared_hcursor == NULL && g_hash_table_lookup (theme->named_cursors, cursors[i].name) == NULL)
x_hcursor = hcursor_from_x_cursor (i, cursors[i].name);
if (shared_hcursor == NULL && x_hcursor == NULL)
continue;
else if (x_hcursor != NULL)
DestroyCursor (x_hcursor);
cursor = win32_cursor_new (shared_hcursor ? GDK_WIN32_CURSOR_LOAD_FROM_RESOURCE_NULL : GDK_WIN32_CURSOR_CREATE,
(gpointer) cursors[i].builtin,
size,
size,
LR_SHARED | (size == 0 ? LR_DEFAULTSIZE : 0),
x_hcursor ? i : 0);
g_hash_table_insert (theme->named_cursors,
g_strdup (cursors[i].name),
cursor);
}
for (i = 0; i < G_N_ELEMENTS (default_cursors); i++)
{
if (default_cursors[i].name == NULL)
break;
shared_hcursor = LoadImageA (NULL, default_cursors[i].id, IMAGE_CURSOR, size, size,
LR_SHARED | (size == 0 ? LR_DEFAULTSIZE : 0));
if (shared_hcursor == NULL)
continue;
cursor = win32_cursor_new (GDK_WIN32_CURSOR_LOAD_FROM_RESOURCE_NULL,
(gpointer) default_cursors[i].id,
size,
size,
LR_SHARED | (size == 0 ? LR_DEFAULTSIZE : 0),
0);
g_hash_table_insert (theme->named_cursors,
g_strdup (default_cursors[i].name),
cursor);
}
}
Win32CursorTheme *
2020-07-24 18:40:36 +00:00
win32_cursor_theme_load (const char *name,
2020-07-24 13:54:49 +00:00
int size)
{
Win32CursorTheme *result = g_new0 (Win32CursorTheme, 1);
result->named_cursors = g_hash_table_new_full (g_str_hash,
g_str_equal,
g_free,
win32_cursor_destroy);
if (strcmp (name, "system") == 0)
{
win32_cursor_theme_load_from_dirs (result, "Adwaita", size);
win32_cursor_theme_load_system (result, size);
}
else
{
win32_cursor_theme_load_from_dirs (result, name, size);
}
if (g_hash_table_size (result->named_cursors) > 0)
return result;
win32_cursor_theme_destroy (result);
return NULL;
}
void
win32_cursor_theme_destroy (Win32CursorTheme *theme)
{
g_hash_table_destroy (theme->named_cursors);
g_free (theme);
}
Win32Cursor *
win32_cursor_theme_get_cursor (Win32CursorTheme *theme,
2020-07-24 18:40:36 +00:00
const char *name)
{
return g_hash_table_lookup (theme->named_cursors, name);
}
static void
gdk_win32_cursor_remove_from_cache (gpointer data, GObject *cursor)
{
GdkDisplay *display = data;
GdkWin32Display *win32_display = GDK_WIN32_DISPLAY (display);
/* Unrefs the GdkWin32HCursor value object automatically */
g_hash_table_remove (win32_display->cursors, cursor);
}
void
_gdk_win32_display_finalize_cursors (GdkWin32Display *display)
{
GHashTableIter iter;
gpointer cursor;
if (display->cursors)
{
g_hash_table_iter_init (&iter, display->cursors);
while (g_hash_table_iter_next (&iter, &cursor, NULL))
g_object_weak_unref (G_OBJECT (cursor),
gdk_win32_cursor_remove_from_cache,
GDK_DISPLAY (display));
g_hash_table_unref (display->cursors);
}
g_free (display->cursor_theme_name);
g_list_free (display->cursors_for_destruction);
display->cursors_for_destruction = NULL;
if (display->cursor_theme)
win32_cursor_theme_destroy (display->cursor_theme);
}
void
_gdk_win32_display_init_cursors (GdkWin32Display *display)
{
display->cursors = g_hash_table_new_full (gdk_cursor_hash,
gdk_cursor_equal,
NULL,
g_object_unref);
display->cursor_reftable = g_hash_table_new (NULL, NULL);
display->cursor_theme_name = g_strdup ("system");
}
/* This is where we use the names mapped to the equivalents that Windows defines by default */
static GdkWin32HCursor *
win32hcursor_idc_from_name (GdkWin32Display *display,
2020-07-24 18:40:36 +00:00
const char *name)
{
int i;
for (i = 0; i < G_N_ELEMENTS (default_cursors); i++)
{
if (strcmp (default_cursors[i].name, name) != 0)
continue;
return gdk_win32_hcursor_new (display,
LoadImageA (NULL, default_cursors[i].id, IMAGE_CURSOR, 0, 0,
LR_SHARED | LR_DEFAULTSIZE),
FALSE);
}
return NULL;
}
static GdkWin32HCursor *
win32hcursor_x_from_name (GdkWin32Display *display,
2020-07-24 18:40:36 +00:00
const char *name)
{
2020-07-24 13:54:49 +00:00
int i;
for (i = 0; i < G_N_ELEMENTS (cursors); i++)
if (cursors[i].name == NULL || strcmp (cursors[i].name, name) == 0)
return gdk_win32_hcursor_new (display, hcursor_from_x_cursor (i, name), TRUE);
return NULL;
}
static GdkWin32HCursor *
win32hcursor_from_theme (GdkWin32Display *display,
2020-07-24 18:40:36 +00:00
const char *name)
{
Win32CursorTheme *theme;
Win32Cursor *theme_cursor;
GdkWin32Display *win32_display = GDK_WIN32_DISPLAY (display);
if (name == NULL)
return NULL;
theme = _gdk_win32_display_get_cursor_theme (win32_display);
theme_cursor = win32_cursor_theme_get_cursor (theme, name);
if (theme_cursor == NULL)
return NULL;
return win32_cursor_create_win32hcursor (win32_display, theme_cursor, name);
}
static GdkWin32HCursor *
win32hcursor_from_name (GdkWin32Display *display,
2020-07-24 18:40:36 +00:00
const char *name)
{
GdkWin32HCursor *win32hcursor;
/* Try current theme first */
win32hcursor = win32hcursor_from_theme (display, name);
if (win32hcursor != NULL)
return win32hcursor;
win32hcursor = win32hcursor_idc_from_name (display, name);
if (win32hcursor != NULL)
return win32hcursor;
win32hcursor = win32hcursor_x_from_name (display, name);
return win32hcursor;
}
/* Create a blank cursor */
static GdkWin32HCursor *
create_blank_win32hcursor (GdkWin32Display *display)
{
2020-07-24 13:54:49 +00:00
int w, h;
uint8_t *and_plane, *xor_plane;
HCURSOR rv;
w = GetSystemMetrics (SM_CXCURSOR);
h = GetSystemMetrics (SM_CYCURSOR);
and_plane = g_malloc ((w/8) * h);
memset (and_plane, 0xff, (w/8) * h);
xor_plane = g_malloc ((w/8) * h);
memset (xor_plane, 0, (w/8) * h);
rv = CreateCursor (NULL, 0, 0, w, h, and_plane, xor_plane);
if (rv == NULL)
WIN32_API_FAILED ("CreateCursor");
return gdk_win32_hcursor_new (display, rv, TRUE);
}
static GdkWin32HCursor *
gdk_win32hcursor_create_for_name (GdkWin32Display *display,
2020-07-24 18:40:36 +00:00
const char *name)
{
const HINSTANCE hinstance = GetModuleHandle (NULL);
GdkWin32HCursor *win32hcursor = NULL;
/* Blank cursor case */
if (strcmp (name, "none") == 0)
return create_blank_win32hcursor (display);
win32hcursor = win32hcursor_from_name (display, name);
if (win32hcursor)
return win32hcursor;
/* Allow to load named cursor resources linked into the executable.
* Cursors obtained with LoadCursor() cannot be destroyed.
*/
return gdk_win32_hcursor_new (display, LoadCursor (hinstance, name), FALSE);
}
static HICON
pixbuf_to_hicon (GdkPixbuf *pixbuf,
gboolean is_icon,
2020-07-24 13:54:49 +00:00
int x,
int y);
static GdkWin32HCursor *
gdk_win32hcursor_create_for_texture (GdkWin32Display *display,
GdkTexture *texture,
int x,
int y)
{
cairo_surface_t *surface;
GdkPixbuf *pixbuf;
2020-07-24 13:54:49 +00:00
int width, height;
HICON icon;
surface = gdk_texture_download_surface (texture);
width = cairo_image_surface_get_width (surface);
height = cairo_image_surface_get_height (surface);
pixbuf = gdk_pixbuf_get_from_surface (surface, 0, 0, width, height);
icon = pixbuf_to_hicon (pixbuf, FALSE, x, y);
g_object_unref (pixbuf);
return gdk_win32_hcursor_new (display, (HCURSOR) icon, TRUE);
}
static gboolean
_gdk_win32_cursor_update (GdkWin32Display *win32_display,
GdkCursor *cursor,
GdkWin32HCursor *win32_hcursor,
GList **update_cursors,
GList **update_win32hcursors)
{
GdkWin32HCursor *win32hcursor_new = NULL;
Win32CursorTheme *theme;
Win32Cursor *theme_cursor;
2020-07-24 18:40:36 +00:00
const char *name = gdk_cursor_get_name (cursor);
/* Do nothing if this is not a named cursor. */
if (name == NULL)
return FALSE;
1999-11-11 22:01:55 +00:00
theme = _gdk_win32_display_get_cursor_theme (win32_display);
theme_cursor = win32_cursor_theme_get_cursor (theme, name);
1999-11-11 22:01:55 +00:00
if (theme_cursor != NULL)
win32hcursor_new = win32_cursor_create_win32hcursor (win32_display, theme_cursor, name);
if (win32hcursor_new == NULL)
{
g_warning (G_STRLOC ": Unable to load %s from the cursor theme", name);
win32hcursor_new = win32hcursor_idc_from_name (win32_display, name);
if (win32hcursor_new == NULL)
win32hcursor_new = win32hcursor_x_from_name (win32_display, name);
if (win32hcursor_new == NULL)
return FALSE;
}
if (GetCursor () == win32_hcursor->readonly_handle)
SetCursor (win32hcursor_new->readonly_handle);
/* Don't modify the hash table mid-iteration, put everything into a list
* and update the table later on.
*/
*update_cursors = g_list_prepend (*update_cursors, cursor);
*update_win32hcursors = g_list_prepend (*update_win32hcursors, win32hcursor_new);
return TRUE;
}
void
_gdk_win32_display_update_cursors (GdkWin32Display *display)
{
GHashTableIter iter;
GdkCursor *cursor;
GdkWin32HCursor *win32hcursor;
GList *update_cursors = NULL;
GList *update_win32hcursors = NULL;
g_hash_table_iter_init (&iter, display->cursors);
while (g_hash_table_iter_next (&iter, (gpointer *) &cursor, (gpointer *) &win32hcursor))
_gdk_win32_cursor_update (display, cursor, win32hcursor, &update_cursors, &update_win32hcursors);
while (update_cursors != NULL && update_win32hcursors != NULL)
{
g_hash_table_replace (display->cursors, update_cursors->data, update_win32hcursors->data);
update_cursors = g_list_delete_link (update_cursors, update_cursors);
update_win32hcursors = g_list_delete_link (update_win32hcursors, update_win32hcursors);
}
g_assert (update_cursors == NULL && update_win32hcursors == NULL);
}
GdkPixbuf *
gdk_win32_icon_to_pixbuf_libgtk_only (HICON hicon,
2020-07-24 20:32:16 +00:00
double *x_hot,
double *y_hot)
{
GdkPixbuf *pixbuf = NULL;
ICONINFO ii;
struct
{
BITMAPINFOHEADER bi;
RGBQUAD colors[2];
} bmi;
HDC hdc;
uint8_t *pixels, *bits;
2023-03-15 00:45:48 +00:00
int x, y, w, h;
gsize rowstride;
if (!GDI_CALL (GetIconInfo, (hicon, &ii)))
return NULL;
if (!(hdc = CreateCompatibleDC (NULL)))
{
WIN32_GDI_FAILED ("CreateCompatibleDC");
goto out0;
}
memset (&bmi, 0, sizeof (bmi));
bmi.bi.biSize = sizeof (bmi.bi);
if (ii.hbmColor != NULL)
{
/* Colour cursor */
gboolean no_alpha;
if (!GDI_CALL (GetDIBits, (hdc, ii.hbmColor, 0, 1, NULL, (BITMAPINFO *)&bmi, DIB_RGB_COLORS)))
goto out1;
w = bmi.bi.biWidth;
h = bmi.bi.biHeight;
bmi.bi.biBitCount = 32;
bmi.bi.biCompression = BI_RGB;
bmi.bi.biHeight = -h;
bits = g_malloc0 (4 * w * h);
/* color data */
if (!GDI_CALL (GetDIBits, (hdc, ii.hbmColor, 0, h, bits, (BITMAPINFO *)&bmi, DIB_RGB_COLORS)))
goto out2;
pixbuf = gdk_pixbuf_new (GDK_COLORSPACE_RGB, TRUE, 8, w, h);
pixels = gdk_pixbuf_get_pixels (pixbuf);
rowstride = gdk_pixbuf_get_rowstride (pixbuf);
no_alpha = TRUE;
for (y = 0; y < h; y++)
{
for (x = 0; x < w; x++)
{
pixels[2] = bits[(x+y*w) * 4];
pixels[1] = bits[(x+y*w) * 4 + 1];
pixels[0] = bits[(x+y*w) * 4 + 2];
pixels[3] = bits[(x+y*w) * 4 + 3];
if (no_alpha && pixels[3] > 0)
no_alpha = FALSE;
pixels += 4;
}
2023-03-15 00:45:48 +00:00
pixels += rowstride - w * 4;
}
/* mask */
if (no_alpha &&
GDI_CALL (GetDIBits, (hdc, ii.hbmMask, 0, h, bits, (BITMAPINFO *)&bmi, DIB_RGB_COLORS)))
{
pixels = gdk_pixbuf_get_pixels (pixbuf);
for (y = 0; y < h; y++)
{
for (x = 0; x < w; x++)
{
pixels[3] = 255 - bits[(x + y * w) * 4];
pixels += 4;
}
2023-03-15 00:45:48 +00:00
pixels += rowstride - w * 4;
}
}
}
else
{
/* B&W cursor */
int bpl;
if (!GDI_CALL (GetDIBits, (hdc, ii.hbmMask, 0, 0, NULL, (BITMAPINFO *)&bmi, DIB_RGB_COLORS)))
goto out1;
w = bmi.bi.biWidth;
h = ABS (bmi.bi.biHeight) / 2;
bits = g_malloc0 (4 * w * h);
/* masks */
if (!GDI_CALL (GetDIBits, (hdc, ii.hbmMask, 0, h*2, bits, (BITMAPINFO *)&bmi, DIB_RGB_COLORS)))
goto out2;
pixbuf = gdk_pixbuf_new (GDK_COLORSPACE_RGB, TRUE, 8, w, h);
pixels = gdk_pixbuf_get_pixels (pixbuf);
rowstride = gdk_pixbuf_get_rowstride (pixbuf);
bpl = ((w-1)/32 + 1)*4;
#if 0
for (y = 0; y < h*2; y++)
{
for (x = 0; x < w; x++)
{
2020-07-24 13:54:49 +00:00
const int bit = 7 - (x % 8);
printf ("%c ", ((bits[bpl*y+x/8])&(1<<bit)) ? ' ' : 'X');
}
printf ("\n");
}
#endif
for (y = 0; y < h; y++)
{
const uint8_t *andp, *xorp;
if (bmi.bi.biHeight < 0)
{
andp = bits + bpl*y;
xorp = bits + bpl*(h+y);
}
else
{
andp = bits + bpl*(h-y-1);
xorp = bits + bpl*(h+h-y-1);
}
for (x = 0; x < w; x++)
{
2020-07-24 13:54:49 +00:00
const int bit = 7 - (x % 8);
if ((*andp) & (1<<bit))
{
if ((*xorp) & (1<<bit))
pixels[2] = pixels[1] = pixels[0] = 0xFF;
else
pixels[2] = pixels[1] = pixels[0] = 0;
pixels[3] = 0xFF;
}
else
{
pixels[2] = pixels[1] = pixels[0] = 0;
pixels[3] = 0;
}
pixels += 4;
if (bit == 0)
{
andp++;
xorp++;
}
}
2023-03-15 00:45:48 +00:00
pixels += rowstride - w * 4;
}
}
if (x_hot)
*x_hot = ii.xHotspot;
if (y_hot)
*y_hot = ii.yHotspot;
/* release temporary resources */
out2:
g_free (bits);
out1:
DeleteDC (hdc);
out0:
DeleteObject (ii.hbmColor);
DeleteObject (ii.hbmMask);
return pixbuf;
}
/* Convert a pixbuf to an HICON (or HCURSOR). Supports alpha under
* Windows XP, thresholds alpha otherwise. Also used from
* gdksurface-win32.c for creating application icons.
*/
static HBITMAP
create_alpha_bitmap (int size,
uint8_t **outdata)
{
BITMAPV5HEADER bi;
HDC hdc;
HBITMAP hBitmap;
ZeroMemory (&bi, sizeof (BITMAPV5HEADER));
bi.bV5Size = sizeof (BITMAPV5HEADER);
bi.bV5Height = bi.bV5Width = size;
bi.bV5Planes = 1;
bi.bV5BitCount = 32;
bi.bV5Compression = BI_BITFIELDS;
/* The following mask specification specifies a supported 32 BPP
* alpha format for Windows XP (BGRA format).
*/
bi.bV5RedMask = 0x00FF0000;
bi.bV5GreenMask = 0x0000FF00;
bi.bV5BlueMask = 0x000000FF;
bi.bV5AlphaMask = 0xFF000000;
/* Create the DIB section with an alpha channel. */
hdc = GetDC (NULL);
if (!hdc)
{
WIN32_GDI_FAILED ("GetDC");
return NULL;
}
hBitmap = CreateDIBSection (hdc, (BITMAPINFO *)&bi, DIB_RGB_COLORS,
(PVOID *) outdata, NULL, (DWORD)0);
if (hBitmap == NULL)
WIN32_GDI_FAILED ("CreateDIBSection");
ReleaseDC (NULL, hdc);
return hBitmap;
}
static HBITMAP
create_color_bitmap (int size,
uint8_t **outdata,
int bits)
{
struct {
BITMAPV4HEADER bmiHeader;
RGBQUAD bmiColors[2];
} bmi;
HDC hdc;
HBITMAP hBitmap;
ZeroMemory (&bmi, sizeof (bmi));
bmi.bmiHeader.bV4Size = sizeof (BITMAPV4HEADER);
bmi.bmiHeader.bV4Height = bmi.bmiHeader.bV4Width = size;
bmi.bmiHeader.bV4Planes = 1;
bmi.bmiHeader.bV4BitCount = bits;
bmi.bmiHeader.bV4V4Compression = BI_RGB;
/* when bits is 1, these will be used.
* bmiColors[0] already zeroed from ZeroMemory()
*/
bmi.bmiColors[1].rgbBlue = 0xFF;
bmi.bmiColors[1].rgbGreen = 0xFF;
bmi.bmiColors[1].rgbRed = 0xFF;
hdc = GetDC (NULL);
if (!hdc)
{
WIN32_GDI_FAILED ("GetDC");
return NULL;
}
hBitmap = CreateDIBSection (hdc, (BITMAPINFO *)&bmi, DIB_RGB_COLORS,
(PVOID *) outdata, NULL, (DWORD)0);
if (hBitmap == NULL)
WIN32_GDI_FAILED ("CreateDIBSection");
ReleaseDC (NULL, hdc);
return hBitmap;
}
static gboolean
pixbuf_to_hbitmaps_alpha_winxp (GdkPixbuf *pixbuf,
HBITMAP *color,
HBITMAP *mask)
{
/* Based on code from
* http://www.dotnet247.com/247reference/msgs/13/66301.aspx
*/
HBITMAP hColorBitmap, hMaskBitmap;
const uint8_t *indata;
const uint8_t *inrow;
uint8_t *colordata, *colorrow, *maskdata, *maskbyte;
2020-07-24 13:54:49 +00:00
int width, height, size, i, i_offset, j, j_offset, rowstride;
guint maskstride, mask_bit;
width = gdk_pixbuf_get_width (pixbuf); /* width of icon */
height = gdk_pixbuf_get_height (pixbuf); /* height of icon */
/* The bitmaps are created square */
size = MAX (width, height);
hColorBitmap = create_alpha_bitmap (size, &colordata);
if (!hColorBitmap)
return FALSE;
hMaskBitmap = create_color_bitmap (size, &maskdata, 1);
if (!hMaskBitmap)
{
DeleteObject (hColorBitmap);
return FALSE;
}
/* MSDN says mask rows are aligned to "LONG" boundaries */
maskstride = (((size + 31) & ~31) >> 3);
indata = gdk_pixbuf_read_pixels (pixbuf);
rowstride = gdk_pixbuf_get_rowstride (pixbuf);
if (width > height)
{
i_offset = 0;
j_offset = (width - height) / 2;
}
else
{
i_offset = (height - width) / 2;
j_offset = 0;
}
for (j = 0; j < height; j++)
{
colorrow = colordata + 4*(j+j_offset)*size + 4*i_offset;
maskbyte = maskdata + (j+j_offset)*maskstride + i_offset/8;
mask_bit = (0x80 >> (i_offset % 8));
inrow = indata + (height-j-1)*rowstride;
for (i = 0; i < width; i++)
{
colorrow[4*i+0] = inrow[4*i+2];
colorrow[4*i+1] = inrow[4*i+1];
colorrow[4*i+2] = inrow[4*i+0];
colorrow[4*i+3] = inrow[4*i+3];
if (inrow[4*i+3] == 0)
maskbyte[0] |= mask_bit; /* turn ON bit */
else
maskbyte[0] &= ~mask_bit; /* turn OFF bit */
mask_bit >>= 1;
if (mask_bit == 0)
{
mask_bit = 0x80;
maskbyte++;
}
}
}
*color = hColorBitmap;
*mask = hMaskBitmap;
return TRUE;
}
static gboolean
pixbuf_to_hbitmaps_normal (GdkPixbuf *pixbuf,
HBITMAP *color,
HBITMAP *mask)
{
/* Based on code from
* http://www.dotnet247.com/247reference/msgs/13/66301.aspx
*/
HBITMAP hColorBitmap, hMaskBitmap;
const uint8_t *indata;
const uint8_t *inrow;
uint8_t *colordata, *colorrow, *maskdata, *maskbyte;
2020-07-24 13:54:49 +00:00
int width, height, size, i, i_offset, j, j_offset, rowstride, nc, bmstride;
gboolean has_alpha;
guint maskstride, mask_bit;
width = gdk_pixbuf_get_width (pixbuf); /* width of icon */
height = gdk_pixbuf_get_height (pixbuf); /* height of icon */
/* The bitmaps are created square */
size = MAX (width, height);
hColorBitmap = create_color_bitmap (size, &colordata, 24);
if (!hColorBitmap)
return FALSE;
hMaskBitmap = create_color_bitmap (size, &maskdata, 1);
if (!hMaskBitmap)
{
DeleteObject (hColorBitmap);
return FALSE;
}
/* rows are always aligned on 4-byte boundaries */
bmstride = size * 3;
if (bmstride % 4 != 0)
bmstride += 4 - (bmstride % 4);
/* MSDN says mask rows are aligned to "LONG" boundaries */
maskstride = (((size + 31) & ~31) >> 3);
indata = gdk_pixbuf_read_pixels (pixbuf);
rowstride = gdk_pixbuf_get_rowstride (pixbuf);
nc = gdk_pixbuf_get_n_channels (pixbuf);
has_alpha = gdk_pixbuf_get_has_alpha (pixbuf);
if (width > height)
{
i_offset = 0;
j_offset = (width - height) / 2;
}
else
{
i_offset = (height - width) / 2;
j_offset = 0;
}
for (j = 0; j < height; j++)
{
colorrow = colordata + (j+j_offset)*bmstride + 3*i_offset;
maskbyte = maskdata + (j+j_offset)*maskstride + i_offset/8;
mask_bit = (0x80 >> (i_offset % 8));
inrow = indata + (height-j-1)*rowstride;
for (i = 0; i < width; i++)
{
if (has_alpha && inrow[nc*i+3] < 128)
{
colorrow[3*i+0] = colorrow[3*i+1] = colorrow[3*i+2] = 0;
maskbyte[0] |= mask_bit; /* turn ON bit */
}
else
{
colorrow[3*i+0] = inrow[nc*i+2];
colorrow[3*i+1] = inrow[nc*i+1];
colorrow[3*i+2] = inrow[nc*i+0];
maskbyte[0] &= ~mask_bit; /* turn OFF bit */
}
mask_bit >>= 1;
if (mask_bit == 0)
{
mask_bit = 0x80;
maskbyte++;
}
}
}
*color = hColorBitmap;
*mask = hMaskBitmap;
return TRUE;
}
static HICON
pixbuf_to_hicon (GdkPixbuf *pixbuf,
gboolean is_icon,
2020-07-24 13:54:49 +00:00
int x,
int y)
{
ICONINFO ii;
HICON icon;
gboolean success;
if (pixbuf == NULL)
return NULL;
if (gdk_pixbuf_get_has_alpha (pixbuf))
success = pixbuf_to_hbitmaps_alpha_winxp (pixbuf, &ii.hbmColor, &ii.hbmMask);
else
success = pixbuf_to_hbitmaps_normal (pixbuf, &ii.hbmColor, &ii.hbmMask);
if (!success)
return NULL;
ii.fIcon = is_icon;
ii.xHotspot = x;
ii.yHotspot = y;
icon = CreateIconIndirect (&ii);
DeleteObject (ii.hbmColor);
DeleteObject (ii.hbmMask);
return icon;
}
/**
* gdk_win32_display_get_win32hcursor:
* @display: (type GdkWin32Display): a `GdkDisplay`
* @cursor: a `GdkCursor`
*
* Returns the Win32 HCURSOR wrapper object belonging to a `GdkCursor`,
* potentially creating the cursor object.
*
* Be aware that the returned cursor may not be unique to @cursor.
* It may for example be shared with its fallback cursor.
*
* Returns: a GdkWin32HCursor
*/
GdkWin32HCursor *
gdk_win32_display_get_win32hcursor (GdkWin32Display *display,
GdkCursor *cursor)
{
GdkWin32Display *win32_display = GDK_WIN32_DISPLAY (display);
GdkWin32HCursor *win32hcursor;
2020-07-24 18:40:36 +00:00
const char *cursor_name;
GdkCursor *fallback;
g_return_val_if_fail (cursor != NULL, NULL);
if (gdk_display_is_closed (GDK_DISPLAY (display)))
return NULL;
win32hcursor = g_hash_table_lookup (win32_display->cursors, cursor);
if (win32hcursor != NULL)
return win32hcursor;
cursor_name = gdk_cursor_get_name (cursor);
if (cursor_name)
win32hcursor = gdk_win32hcursor_create_for_name (display, cursor_name);
else
win32hcursor = gdk_win32hcursor_create_for_texture (display,
gdk_cursor_get_texture (cursor),
gdk_cursor_get_hotspot_x (cursor),
gdk_cursor_get_hotspot_y (cursor));
if (win32hcursor != NULL)
{
g_object_weak_ref (G_OBJECT (cursor), gdk_win32_cursor_remove_from_cache, display);
g_hash_table_insert (win32_display->cursors, cursor, win32hcursor);
return win32hcursor;
}
fallback = gdk_cursor_get_fallback (cursor);
if (fallback)
return gdk_win32_display_get_win32hcursor (display, fallback);
return NULL;
}