gtk/gdk/x11/gdkglcontext-x11.c

1367 lines
40 KiB
C
Raw Normal View History

gdk: Add support for OpenGL This adds the new type GdkGLContext that wraps an OpenGL context for a particular native window. It also adds support for the gdk paint machinery to use OpenGL to draw everything. As soon as anyone creates a GL context for a native window we create a "paint context" for that GdkWindow and switch to using GL for painting it. This commit contains only an implementation for X11 (using GLX). The way painting works is that all client gl contexts draw into offscreen buffers rather than directly to the back buffer, and the way something gets onto the window is by using gdk_cairo_draw_from_gl() to draw part of that buffer onto the draw cairo context. As a fallback (if we're doing redirected drawing or some effect like a cairo_push_group()) we read back the gl buffer into memory and composite using cairo. This means that GL rendering works in all cases, including rendering to a PDF. However, this is not particularly fast. In the *typical* case, where we're drawing directly to the window in the regular paint loop we hit the fast path. The fast path uses opengl to draw the buffer to the window back buffer, either by blitting or texturing. Then we track the region that was drawn, and when the draw ends we paint the normal cairo surface to the window (using texture-from-pixmap in the X11 case, or texture from cairo image otherwise) in the regions where there is no gl painted. There are some complexities wrt layering of gl and cairo areas though: * We track via gdk_window_mark_paint_from_clip() whenever gtk is painting over a region we previously rendered with opengl (flushed_region). This area (needs_blend_region) is blended rather than copied at the end of the frame. * If we're drawing a gl texture with alpha we first copy the current cairo_surface inside the target region to the back buffer before we blend over it. These two operations allow us full stacking of transparent gl and cairo regions.
2014-10-09 08:45:44 +00:00
/* GDK - The GIMP Drawing Kit
*
* gdkglcontext-x11.c: X11 specific OpenGL wrappers
*
* Copyright © 2014 Emmanuele Bassi
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library. If not, see <http://www.gnu.org/licenses/>.
*/
#include "config.h"
#include "gdkglcontext-x11.h"
#include "gdkdisplay-x11.h"
#include "gdkscreen-x11.h"
#include "gdkx11display.h"
#include "gdkx11glcontext.h"
#include "gdkx11screen.h"
#include "gdkx11window.h"
#include "gdkx11visual.h"
#include "gdkvisualprivate.h"
#include "gdkx11property.h"
#include <X11/Xatom.h>
gdk: Add support for OpenGL This adds the new type GdkGLContext that wraps an OpenGL context for a particular native window. It also adds support for the gdk paint machinery to use OpenGL to draw everything. As soon as anyone creates a GL context for a native window we create a "paint context" for that GdkWindow and switch to using GL for painting it. This commit contains only an implementation for X11 (using GLX). The way painting works is that all client gl contexts draw into offscreen buffers rather than directly to the back buffer, and the way something gets onto the window is by using gdk_cairo_draw_from_gl() to draw part of that buffer onto the draw cairo context. As a fallback (if we're doing redirected drawing or some effect like a cairo_push_group()) we read back the gl buffer into memory and composite using cairo. This means that GL rendering works in all cases, including rendering to a PDF. However, this is not particularly fast. In the *typical* case, where we're drawing directly to the window in the regular paint loop we hit the fast path. The fast path uses opengl to draw the buffer to the window back buffer, either by blitting or texturing. Then we track the region that was drawn, and when the draw ends we paint the normal cairo surface to the window (using texture-from-pixmap in the X11 case, or texture from cairo image otherwise) in the regions where there is no gl painted. There are some complexities wrt layering of gl and cairo areas though: * We track via gdk_window_mark_paint_from_clip() whenever gtk is painting over a region we previously rendered with opengl (flushed_region). This area (needs_blend_region) is blended rather than copied at the end of the frame. * If we're drawing a gl texture with alpha we first copy the current cairo_surface inside the target region to the back buffer before we blend over it. These two operations allow us full stacking of transparent gl and cairo regions.
2014-10-09 08:45:44 +00:00
#include "gdkinternals.h"
#include "gdkintl.h"
#include <cairo/cairo-xlib.h>
#include <epoxy/glx.h>
gdk: Add support for OpenGL This adds the new type GdkGLContext that wraps an OpenGL context for a particular native window. It also adds support for the gdk paint machinery to use OpenGL to draw everything. As soon as anyone creates a GL context for a native window we create a "paint context" for that GdkWindow and switch to using GL for painting it. This commit contains only an implementation for X11 (using GLX). The way painting works is that all client gl contexts draw into offscreen buffers rather than directly to the back buffer, and the way something gets onto the window is by using gdk_cairo_draw_from_gl() to draw part of that buffer onto the draw cairo context. As a fallback (if we're doing redirected drawing or some effect like a cairo_push_group()) we read back the gl buffer into memory and composite using cairo. This means that GL rendering works in all cases, including rendering to a PDF. However, this is not particularly fast. In the *typical* case, where we're drawing directly to the window in the regular paint loop we hit the fast path. The fast path uses opengl to draw the buffer to the window back buffer, either by blitting or texturing. Then we track the region that was drawn, and when the draw ends we paint the normal cairo surface to the window (using texture-from-pixmap in the X11 case, or texture from cairo image otherwise) in the regions where there is no gl painted. There are some complexities wrt layering of gl and cairo areas though: * We track via gdk_window_mark_paint_from_clip() whenever gtk is painting over a region we previously rendered with opengl (flushed_region). This area (needs_blend_region) is blended rather than copied at the end of the frame. * If we're drawing a gl texture with alpha we first copy the current cairo_surface inside the target region to the back buffer before we blend over it. These two operations allow us full stacking of transparent gl and cairo regions.
2014-10-09 08:45:44 +00:00
G_DEFINE_TYPE (GdkX11GLContext, gdk_x11_gl_context, GDK_TYPE_GL_CONTEXT)
typedef struct {
GdkDisplay *display;
GLXDrawable glx_drawable;
Window dummy_xwin;
GLXWindow dummy_glx;
gdk: Add support for OpenGL This adds the new type GdkGLContext that wraps an OpenGL context for a particular native window. It also adds support for the gdk paint machinery to use OpenGL to draw everything. As soon as anyone creates a GL context for a native window we create a "paint context" for that GdkWindow and switch to using GL for painting it. This commit contains only an implementation for X11 (using GLX). The way painting works is that all client gl contexts draw into offscreen buffers rather than directly to the back buffer, and the way something gets onto the window is by using gdk_cairo_draw_from_gl() to draw part of that buffer onto the draw cairo context. As a fallback (if we're doing redirected drawing or some effect like a cairo_push_group()) we read back the gl buffer into memory and composite using cairo. This means that GL rendering works in all cases, including rendering to a PDF. However, this is not particularly fast. In the *typical* case, where we're drawing directly to the window in the regular paint loop we hit the fast path. The fast path uses opengl to draw the buffer to the window back buffer, either by blitting or texturing. Then we track the region that was drawn, and when the draw ends we paint the normal cairo surface to the window (using texture-from-pixmap in the X11 case, or texture from cairo image otherwise) in the regions where there is no gl painted. There are some complexities wrt layering of gl and cairo areas though: * We track via gdk_window_mark_paint_from_clip() whenever gtk is painting over a region we previously rendered with opengl (flushed_region). This area (needs_blend_region) is blended rather than copied at the end of the frame. * If we're drawing a gl texture with alpha we first copy the current cairo_surface inside the target region to the back buffer before we blend over it. These two operations allow us full stacking of transparent gl and cairo regions.
2014-10-09 08:45:44 +00:00
guint32 last_frame_counter;
} DrawableInfo;
static void
drawable_info_free (gpointer data_)
{
DrawableInfo *data = data_;
Display *dpy;
gdk: Add support for OpenGL This adds the new type GdkGLContext that wraps an OpenGL context for a particular native window. It also adds support for the gdk paint machinery to use OpenGL to draw everything. As soon as anyone creates a GL context for a native window we create a "paint context" for that GdkWindow and switch to using GL for painting it. This commit contains only an implementation for X11 (using GLX). The way painting works is that all client gl contexts draw into offscreen buffers rather than directly to the back buffer, and the way something gets onto the window is by using gdk_cairo_draw_from_gl() to draw part of that buffer onto the draw cairo context. As a fallback (if we're doing redirected drawing or some effect like a cairo_push_group()) we read back the gl buffer into memory and composite using cairo. This means that GL rendering works in all cases, including rendering to a PDF. However, this is not particularly fast. In the *typical* case, where we're drawing directly to the window in the regular paint loop we hit the fast path. The fast path uses opengl to draw the buffer to the window back buffer, either by blitting or texturing. Then we track the region that was drawn, and when the draw ends we paint the normal cairo surface to the window (using texture-from-pixmap in the X11 case, or texture from cairo image otherwise) in the regions where there is no gl painted. There are some complexities wrt layering of gl and cairo areas though: * We track via gdk_window_mark_paint_from_clip() whenever gtk is painting over a region we previously rendered with opengl (flushed_region). This area (needs_blend_region) is blended rather than copied at the end of the frame. * If we're drawing a gl texture with alpha we first copy the current cairo_surface inside the target region to the back buffer before we blend over it. These two operations allow us full stacking of transparent gl and cairo regions.
2014-10-09 08:45:44 +00:00
gdk_x11_display_error_trap_push (data->display);
dpy = gdk_x11_display_get_xdisplay (data->display);
if (data->glx_drawable)
glXDestroyWindow (dpy, data->glx_drawable);
if (data->dummy_glx)
glXDestroyWindow (dpy, data->dummy_glx);
if (data->dummy_xwin)
XDestroyWindow (dpy, data->dummy_xwin);
gdk: Add support for OpenGL This adds the new type GdkGLContext that wraps an OpenGL context for a particular native window. It also adds support for the gdk paint machinery to use OpenGL to draw everything. As soon as anyone creates a GL context for a native window we create a "paint context" for that GdkWindow and switch to using GL for painting it. This commit contains only an implementation for X11 (using GLX). The way painting works is that all client gl contexts draw into offscreen buffers rather than directly to the back buffer, and the way something gets onto the window is by using gdk_cairo_draw_from_gl() to draw part of that buffer onto the draw cairo context. As a fallback (if we're doing redirected drawing or some effect like a cairo_push_group()) we read back the gl buffer into memory and composite using cairo. This means that GL rendering works in all cases, including rendering to a PDF. However, this is not particularly fast. In the *typical* case, where we're drawing directly to the window in the regular paint loop we hit the fast path. The fast path uses opengl to draw the buffer to the window back buffer, either by blitting or texturing. Then we track the region that was drawn, and when the draw ends we paint the normal cairo surface to the window (using texture-from-pixmap in the X11 case, or texture from cairo image otherwise) in the regions where there is no gl painted. There are some complexities wrt layering of gl and cairo areas though: * We track via gdk_window_mark_paint_from_clip() whenever gtk is painting over a region we previously rendered with opengl (flushed_region). This area (needs_blend_region) is blended rather than copied at the end of the frame. * If we're drawing a gl texture with alpha we first copy the current cairo_surface inside the target region to the back buffer before we blend over it. These two operations allow us full stacking of transparent gl and cairo regions.
2014-10-09 08:45:44 +00:00
gdk_x11_display_error_trap_pop_ignored (data->display);
g_slice_free (DrawableInfo, data);
}
static DrawableInfo *
get_glx_drawable_info (GdkWindow *window)
{
return g_object_get_data (G_OBJECT (window), "-gdk-x11-window-glx-info");
}
static void
set_glx_drawable_info (GdkWindow *window,
DrawableInfo *info)
{
g_object_set_data_full (G_OBJECT (window), "-gdk-x11-window-glx-info",
info,
drawable_info_free);
}
static void
maybe_wait_for_vblank (GdkDisplay *display,
GLXDrawable drawable)
{
GdkX11Display *display_x11 = GDK_X11_DISPLAY (display);
Display *dpy = gdk_x11_display_get_xdisplay (display);
if (display_x11->has_glx_sync_control)
{
gint64 ust, msc, sbc;
glXGetSyncValuesOML (dpy, drawable, &ust, &msc, &sbc);
glXWaitForMscOML (dpy, drawable,
0, 2, (msc + 1) % 2,
&ust, &msc, &sbc);
}
else if (display_x11->has_glx_video_sync)
{
guint32 current_count;
glXGetVideoSyncSGI (&current_count);
glXWaitVideoSyncSGI (2, (current_count + 1) % 2, &current_count);
}
}
void
gdk_x11_window_invalidate_for_new_frame (GdkWindow *window,
cairo_region_t *update_area)
{
cairo_rectangle_int_t window_rect;
GdkDisplay *display = gdk_window_get_display (window);
GdkX11Display *display_x11 = GDK_X11_DISPLAY (display);
Display *dpy = gdk_x11_display_get_xdisplay (display);
GdkX11GLContext *context_x11;
unsigned int buffer_age;
gboolean invalidate_all;
/* Minimal update is ok if we're not drawing with gl */
if (window->gl_paint_context == NULL)
return;
context_x11 = GDK_X11_GL_CONTEXT (window->gl_paint_context);
buffer_age = 0;
context_x11->do_blit_swap = FALSE;
if (display_x11->has_glx_buffer_age)
{
gdk_gl_context_make_current (window->gl_paint_context);
glXQueryDrawable(dpy, context_x11->drawable,
GLX_BACK_BUFFER_AGE_EXT, &buffer_age);
}
gdk: Add support for OpenGL This adds the new type GdkGLContext that wraps an OpenGL context for a particular native window. It also adds support for the gdk paint machinery to use OpenGL to draw everything. As soon as anyone creates a GL context for a native window we create a "paint context" for that GdkWindow and switch to using GL for painting it. This commit contains only an implementation for X11 (using GLX). The way painting works is that all client gl contexts draw into offscreen buffers rather than directly to the back buffer, and the way something gets onto the window is by using gdk_cairo_draw_from_gl() to draw part of that buffer onto the draw cairo context. As a fallback (if we're doing redirected drawing or some effect like a cairo_push_group()) we read back the gl buffer into memory and composite using cairo. This means that GL rendering works in all cases, including rendering to a PDF. However, this is not particularly fast. In the *typical* case, where we're drawing directly to the window in the regular paint loop we hit the fast path. The fast path uses opengl to draw the buffer to the window back buffer, either by blitting or texturing. Then we track the region that was drawn, and when the draw ends we paint the normal cairo surface to the window (using texture-from-pixmap in the X11 case, or texture from cairo image otherwise) in the regions where there is no gl painted. There are some complexities wrt layering of gl and cairo areas though: * We track via gdk_window_mark_paint_from_clip() whenever gtk is painting over a region we previously rendered with opengl (flushed_region). This area (needs_blend_region) is blended rather than copied at the end of the frame. * If we're drawing a gl texture with alpha we first copy the current cairo_surface inside the target region to the back buffer before we blend over it. These two operations allow us full stacking of transparent gl and cairo regions.
2014-10-09 08:45:44 +00:00
gdk: Add support for OpenGL This adds the new type GdkGLContext that wraps an OpenGL context for a particular native window. It also adds support for the gdk paint machinery to use OpenGL to draw everything. As soon as anyone creates a GL context for a native window we create a "paint context" for that GdkWindow and switch to using GL for painting it. This commit contains only an implementation for X11 (using GLX). The way painting works is that all client gl contexts draw into offscreen buffers rather than directly to the back buffer, and the way something gets onto the window is by using gdk_cairo_draw_from_gl() to draw part of that buffer onto the draw cairo context. As a fallback (if we're doing redirected drawing or some effect like a cairo_push_group()) we read back the gl buffer into memory and composite using cairo. This means that GL rendering works in all cases, including rendering to a PDF. However, this is not particularly fast. In the *typical* case, where we're drawing directly to the window in the regular paint loop we hit the fast path. The fast path uses opengl to draw the buffer to the window back buffer, either by blitting or texturing. Then we track the region that was drawn, and when the draw ends we paint the normal cairo surface to the window (using texture-from-pixmap in the X11 case, or texture from cairo image otherwise) in the regions where there is no gl painted. There are some complexities wrt layering of gl and cairo areas though: * We track via gdk_window_mark_paint_from_clip() whenever gtk is painting over a region we previously rendered with opengl (flushed_region). This area (needs_blend_region) is blended rather than copied at the end of the frame. * If we're drawing a gl texture with alpha we first copy the current cairo_surface inside the target region to the back buffer before we blend over it. These two operations allow us full stacking of transparent gl and cairo regions.
2014-10-09 08:45:44 +00:00
invalidate_all = FALSE;
if (buffer_age == 0 || buffer_age >= 4)
{
cairo_rectangle_int_t whole_window = { 0, 0, gdk_window_get_width (window), gdk_window_get_height (window) };
if (gdk_gl_context_has_framebuffer_blit (window->gl_paint_context) &&
cairo_region_contains_rectangle (update_area, &whole_window) != CAIRO_REGION_OVERLAP_IN)
{
context_x11->do_blit_swap = TRUE;
}
else
invalidate_all = TRUE;
}
gdk: Add support for OpenGL This adds the new type GdkGLContext that wraps an OpenGL context for a particular native window. It also adds support for the gdk paint machinery to use OpenGL to draw everything. As soon as anyone creates a GL context for a native window we create a "paint context" for that GdkWindow and switch to using GL for painting it. This commit contains only an implementation for X11 (using GLX). The way painting works is that all client gl contexts draw into offscreen buffers rather than directly to the back buffer, and the way something gets onto the window is by using gdk_cairo_draw_from_gl() to draw part of that buffer onto the draw cairo context. As a fallback (if we're doing redirected drawing or some effect like a cairo_push_group()) we read back the gl buffer into memory and composite using cairo. This means that GL rendering works in all cases, including rendering to a PDF. However, this is not particularly fast. In the *typical* case, where we're drawing directly to the window in the regular paint loop we hit the fast path. The fast path uses opengl to draw the buffer to the window back buffer, either by blitting or texturing. Then we track the region that was drawn, and when the draw ends we paint the normal cairo surface to the window (using texture-from-pixmap in the X11 case, or texture from cairo image otherwise) in the regions where there is no gl painted. There are some complexities wrt layering of gl and cairo areas though: * We track via gdk_window_mark_paint_from_clip() whenever gtk is painting over a region we previously rendered with opengl (flushed_region). This area (needs_blend_region) is blended rather than copied at the end of the frame. * If we're drawing a gl texture with alpha we first copy the current cairo_surface inside the target region to the back buffer before we blend over it. These two operations allow us full stacking of transparent gl and cairo regions.
2014-10-09 08:45:44 +00:00
else
{
if (buffer_age >= 2)
{
if (window->old_updated_area[0])
cairo_region_union (update_area, window->old_updated_area[0]);
else
invalidate_all = TRUE;
}
if (buffer_age >= 3)
{
if (window->old_updated_area[1])
cairo_region_union (update_area, window->old_updated_area[1]);
else
invalidate_all = TRUE;
}
}
if (invalidate_all)
{
window_rect.x = 0;
window_rect.y = 0;
window_rect.width = gdk_window_get_width (window);
window_rect.height = gdk_window_get_height (window);
/* If nothing else is known, repaint everything so that the back
buffer is fully up-to-date for the swapbuffer */
cairo_region_union_rectangle (update_area, &window_rect);
}
}
static void
gdk_gl_blit_region (GdkWindow *window, cairo_region_t *region)
{
int n_rects, i;
int scale = gdk_window_get_scale_factor (window);
int wh = gdk_window_get_height (window);
cairo_rectangle_int_t rect;
n_rects = cairo_region_num_rectangles (region);
for (i = 0; i < n_rects; i++)
{
cairo_region_get_rectangle (region, i, &rect);
glScissor (rect.x * scale, (wh - rect.y - rect.height) * scale, rect.width * scale, rect.height * scale);
glBlitFramebuffer (rect.x * scale, (wh - rect.y - rect.height) * scale, (rect.x + rect.width) * scale, (wh - rect.y) * scale,
rect.x * scale, (wh - rect.y - rect.height) * scale, (rect.x + rect.width) * scale, (wh - rect.y) * scale,
GL_COLOR_BUFFER_BIT, GL_NEAREST);
}
}
gdk: Add support for OpenGL This adds the new type GdkGLContext that wraps an OpenGL context for a particular native window. It also adds support for the gdk paint machinery to use OpenGL to draw everything. As soon as anyone creates a GL context for a native window we create a "paint context" for that GdkWindow and switch to using GL for painting it. This commit contains only an implementation for X11 (using GLX). The way painting works is that all client gl contexts draw into offscreen buffers rather than directly to the back buffer, and the way something gets onto the window is by using gdk_cairo_draw_from_gl() to draw part of that buffer onto the draw cairo context. As a fallback (if we're doing redirected drawing or some effect like a cairo_push_group()) we read back the gl buffer into memory and composite using cairo. This means that GL rendering works in all cases, including rendering to a PDF. However, this is not particularly fast. In the *typical* case, where we're drawing directly to the window in the regular paint loop we hit the fast path. The fast path uses opengl to draw the buffer to the window back buffer, either by blitting or texturing. Then we track the region that was drawn, and when the draw ends we paint the normal cairo surface to the window (using texture-from-pixmap in the X11 case, or texture from cairo image otherwise) in the regions where there is no gl painted. There are some complexities wrt layering of gl and cairo areas though: * We track via gdk_window_mark_paint_from_clip() whenever gtk is painting over a region we previously rendered with opengl (flushed_region). This area (needs_blend_region) is blended rather than copied at the end of the frame. * If we're drawing a gl texture with alpha we first copy the current cairo_surface inside the target region to the back buffer before we blend over it. These two operations allow us full stacking of transparent gl and cairo regions.
2014-10-09 08:45:44 +00:00
static void
gdk_x11_gl_context_end_frame (GdkGLContext *context,
cairo_region_t *painted,
cairo_region_t *damage)
gdk: Add support for OpenGL This adds the new type GdkGLContext that wraps an OpenGL context for a particular native window. It also adds support for the gdk paint machinery to use OpenGL to draw everything. As soon as anyone creates a GL context for a native window we create a "paint context" for that GdkWindow and switch to using GL for painting it. This commit contains only an implementation for X11 (using GLX). The way painting works is that all client gl contexts draw into offscreen buffers rather than directly to the back buffer, and the way something gets onto the window is by using gdk_cairo_draw_from_gl() to draw part of that buffer onto the draw cairo context. As a fallback (if we're doing redirected drawing or some effect like a cairo_push_group()) we read back the gl buffer into memory and composite using cairo. This means that GL rendering works in all cases, including rendering to a PDF. However, this is not particularly fast. In the *typical* case, where we're drawing directly to the window in the regular paint loop we hit the fast path. The fast path uses opengl to draw the buffer to the window back buffer, either by blitting or texturing. Then we track the region that was drawn, and when the draw ends we paint the normal cairo surface to the window (using texture-from-pixmap in the X11 case, or texture from cairo image otherwise) in the regions where there is no gl painted. There are some complexities wrt layering of gl and cairo areas though: * We track via gdk_window_mark_paint_from_clip() whenever gtk is painting over a region we previously rendered with opengl (flushed_region). This area (needs_blend_region) is blended rather than copied at the end of the frame. * If we're drawing a gl texture with alpha we first copy the current cairo_surface inside the target region to the back buffer before we blend over it. These two operations allow us full stacking of transparent gl and cairo regions.
2014-10-09 08:45:44 +00:00
{
GdkX11GLContext *context_x11 = GDK_X11_GL_CONTEXT (context);
GdkWindow *window = gdk_gl_context_get_window (context);
GdkDisplay *display = gdk_gl_context_get_display (context);
gdk: Add support for OpenGL This adds the new type GdkGLContext that wraps an OpenGL context for a particular native window. It also adds support for the gdk paint machinery to use OpenGL to draw everything. As soon as anyone creates a GL context for a native window we create a "paint context" for that GdkWindow and switch to using GL for painting it. This commit contains only an implementation for X11 (using GLX). The way painting works is that all client gl contexts draw into offscreen buffers rather than directly to the back buffer, and the way something gets onto the window is by using gdk_cairo_draw_from_gl() to draw part of that buffer onto the draw cairo context. As a fallback (if we're doing redirected drawing or some effect like a cairo_push_group()) we read back the gl buffer into memory and composite using cairo. This means that GL rendering works in all cases, including rendering to a PDF. However, this is not particularly fast. In the *typical* case, where we're drawing directly to the window in the regular paint loop we hit the fast path. The fast path uses opengl to draw the buffer to the window back buffer, either by blitting or texturing. Then we track the region that was drawn, and when the draw ends we paint the normal cairo surface to the window (using texture-from-pixmap in the X11 case, or texture from cairo image otherwise) in the regions where there is no gl painted. There are some complexities wrt layering of gl and cairo areas though: * We track via gdk_window_mark_paint_from_clip() whenever gtk is painting over a region we previously rendered with opengl (flushed_region). This area (needs_blend_region) is blended rather than copied at the end of the frame. * If we're drawing a gl texture with alpha we first copy the current cairo_surface inside the target region to the back buffer before we blend over it. These two operations allow us full stacking of transparent gl and cairo regions.
2014-10-09 08:45:44 +00:00
Display *dpy = gdk_x11_display_get_xdisplay (display);
GdkX11Display *display_x11 = GDK_X11_DISPLAY (display);
DrawableInfo *info;
GLXDrawable drawable;
gdk_gl_context_make_current (context);
info = get_glx_drawable_info (window);
drawable = context_x11->drawable;
GDK_NOTE (OPENGL,
g_print ("Flushing GLX buffers for drawable %lu (window: %lu), frame sync: %s\n",
(unsigned long) drawable,
(unsigned long) gdk_x11_window_get_xid (window),
context_x11->do_frame_sync ? "yes" : "no"));
/* if we are going to wait for the vertical refresh manually
* we need to flush pending redraws, and we also need to wait
* for that to finish, otherwise we are going to tear.
*
* obviously, this condition should not be hit if we have
* GLX_SGI_swap_control, and we ask the driver to do the right
* thing.
*/
if (context_x11->do_frame_sync)
{
guint32 end_frame_counter = 0;
gboolean has_counter = display_x11->has_glx_video_sync;
gboolean can_wait = display_x11->has_glx_video_sync || display_x11->has_glx_sync_control;
if (display_x11->has_glx_video_sync)
glXGetVideoSyncSGI (&end_frame_counter);
if (context_x11->do_frame_sync && !display_x11->has_glx_swap_interval)
{
glFinish ();
if (has_counter && can_wait)
{
guint32 last_counter = info != NULL ? info->last_frame_counter : 0;
if (last_counter == end_frame_counter)
maybe_wait_for_vblank (display, drawable);
}
else if (can_wait)
maybe_wait_for_vblank (display, drawable);
}
}
if (context_x11->do_blit_swap)
{
glDrawBuffer(GL_FRONT);
glReadBuffer(GL_BACK);
gdk_gl_blit_region (window, painted);
glDrawBuffer(GL_BACK);
glFlush();
if (gdk_gl_context_has_frame_terminator (context))
glFrameTerminatorGREMEDY ();
}
else
glXSwapBuffers (dpy, drawable);
gdk: Add support for OpenGL This adds the new type GdkGLContext that wraps an OpenGL context for a particular native window. It also adds support for the gdk paint machinery to use OpenGL to draw everything. As soon as anyone creates a GL context for a native window we create a "paint context" for that GdkWindow and switch to using GL for painting it. This commit contains only an implementation for X11 (using GLX). The way painting works is that all client gl contexts draw into offscreen buffers rather than directly to the back buffer, and the way something gets onto the window is by using gdk_cairo_draw_from_gl() to draw part of that buffer onto the draw cairo context. As a fallback (if we're doing redirected drawing or some effect like a cairo_push_group()) we read back the gl buffer into memory and composite using cairo. This means that GL rendering works in all cases, including rendering to a PDF. However, this is not particularly fast. In the *typical* case, where we're drawing directly to the window in the regular paint loop we hit the fast path. The fast path uses opengl to draw the buffer to the window back buffer, either by blitting or texturing. Then we track the region that was drawn, and when the draw ends we paint the normal cairo surface to the window (using texture-from-pixmap in the X11 case, or texture from cairo image otherwise) in the regions where there is no gl painted. There are some complexities wrt layering of gl and cairo areas though: * We track via gdk_window_mark_paint_from_clip() whenever gtk is painting over a region we previously rendered with opengl (flushed_region). This area (needs_blend_region) is blended rather than copied at the end of the frame. * If we're drawing a gl texture with alpha we first copy the current cairo_surface inside the target region to the back buffer before we blend over it. These two operations allow us full stacking of transparent gl and cairo regions.
2014-10-09 08:45:44 +00:00
if (context_x11->do_frame_sync && info != NULL && display_x11->has_glx_video_sync)
glXGetVideoSyncSGI (&info->last_frame_counter);
}
typedef struct {
Display *display;
GLXDrawable drawable;
gboolean y_inverted;
} GdkGLXPixmap;
static void
glx_pixmap_destroy (void *data)
{
GdkGLXPixmap *glx_pixmap = data;
glXDestroyPixmap (glx_pixmap->display, glx_pixmap->drawable);
g_slice_free (GdkGLXPixmap, glx_pixmap);
}
static GdkGLXPixmap *
glx_pixmap_get (cairo_surface_t *surface, guint texture_target)
gdk: Add support for OpenGL This adds the new type GdkGLContext that wraps an OpenGL context for a particular native window. It also adds support for the gdk paint machinery to use OpenGL to draw everything. As soon as anyone creates a GL context for a native window we create a "paint context" for that GdkWindow and switch to using GL for painting it. This commit contains only an implementation for X11 (using GLX). The way painting works is that all client gl contexts draw into offscreen buffers rather than directly to the back buffer, and the way something gets onto the window is by using gdk_cairo_draw_from_gl() to draw part of that buffer onto the draw cairo context. As a fallback (if we're doing redirected drawing or some effect like a cairo_push_group()) we read back the gl buffer into memory and composite using cairo. This means that GL rendering works in all cases, including rendering to a PDF. However, this is not particularly fast. In the *typical* case, where we're drawing directly to the window in the regular paint loop we hit the fast path. The fast path uses opengl to draw the buffer to the window back buffer, either by blitting or texturing. Then we track the region that was drawn, and when the draw ends we paint the normal cairo surface to the window (using texture-from-pixmap in the X11 case, or texture from cairo image otherwise) in the regions where there is no gl painted. There are some complexities wrt layering of gl and cairo areas though: * We track via gdk_window_mark_paint_from_clip() whenever gtk is painting over a region we previously rendered with opengl (flushed_region). This area (needs_blend_region) is blended rather than copied at the end of the frame. * If we're drawing a gl texture with alpha we first copy the current cairo_surface inside the target region to the back buffer before we blend over it. These two operations allow us full stacking of transparent gl and cairo regions.
2014-10-09 08:45:44 +00:00
{
Display *display = cairo_xlib_surface_get_display (surface);
Screen *screen = cairo_xlib_surface_get_screen (surface);
Visual *visual = cairo_xlib_surface_get_visual (surface);
gdk: Add support for OpenGL This adds the new type GdkGLContext that wraps an OpenGL context for a particular native window. It also adds support for the gdk paint machinery to use OpenGL to draw everything. As soon as anyone creates a GL context for a native window we create a "paint context" for that GdkWindow and switch to using GL for painting it. This commit contains only an implementation for X11 (using GLX). The way painting works is that all client gl contexts draw into offscreen buffers rather than directly to the back buffer, and the way something gets onto the window is by using gdk_cairo_draw_from_gl() to draw part of that buffer onto the draw cairo context. As a fallback (if we're doing redirected drawing or some effect like a cairo_push_group()) we read back the gl buffer into memory and composite using cairo. This means that GL rendering works in all cases, including rendering to a PDF. However, this is not particularly fast. In the *typical* case, where we're drawing directly to the window in the regular paint loop we hit the fast path. The fast path uses opengl to draw the buffer to the window back buffer, either by blitting or texturing. Then we track the region that was drawn, and when the draw ends we paint the normal cairo surface to the window (using texture-from-pixmap in the X11 case, or texture from cairo image otherwise) in the regions where there is no gl painted. There are some complexities wrt layering of gl and cairo areas though: * We track via gdk_window_mark_paint_from_clip() whenever gtk is painting over a region we previously rendered with opengl (flushed_region). This area (needs_blend_region) is blended rather than copied at the end of the frame. * If we're drawing a gl texture with alpha we first copy the current cairo_surface inside the target region to the back buffer before we blend over it. These two operations allow us full stacking of transparent gl and cairo regions.
2014-10-09 08:45:44 +00:00
GdkGLXPixmap *glx_pixmap;
GLXFBConfig *fbconfigs, config;
gdk: Add support for OpenGL This adds the new type GdkGLContext that wraps an OpenGL context for a particular native window. It also adds support for the gdk paint machinery to use OpenGL to draw everything. As soon as anyone creates a GL context for a native window we create a "paint context" for that GdkWindow and switch to using GL for painting it. This commit contains only an implementation for X11 (using GLX). The way painting works is that all client gl contexts draw into offscreen buffers rather than directly to the back buffer, and the way something gets onto the window is by using gdk_cairo_draw_from_gl() to draw part of that buffer onto the draw cairo context. As a fallback (if we're doing redirected drawing or some effect like a cairo_push_group()) we read back the gl buffer into memory and composite using cairo. This means that GL rendering works in all cases, including rendering to a PDF. However, this is not particularly fast. In the *typical* case, where we're drawing directly to the window in the regular paint loop we hit the fast path. The fast path uses opengl to draw the buffer to the window back buffer, either by blitting or texturing. Then we track the region that was drawn, and when the draw ends we paint the normal cairo surface to the window (using texture-from-pixmap in the X11 case, or texture from cairo image otherwise) in the regions where there is no gl painted. There are some complexities wrt layering of gl and cairo areas though: * We track via gdk_window_mark_paint_from_clip() whenever gtk is painting over a region we previously rendered with opengl (flushed_region). This area (needs_blend_region) is blended rather than copied at the end of the frame. * If we're drawing a gl texture with alpha we first copy the current cairo_surface inside the target region to the back buffer before we blend over it. These two operations allow us full stacking of transparent gl and cairo regions.
2014-10-09 08:45:44 +00:00
int nfbconfigs;
XVisualInfo *visinfo;
VisualID visualid;
gdk: Add support for OpenGL This adds the new type GdkGLContext that wraps an OpenGL context for a particular native window. It also adds support for the gdk paint machinery to use OpenGL to draw everything. As soon as anyone creates a GL context for a native window we create a "paint context" for that GdkWindow and switch to using GL for painting it. This commit contains only an implementation for X11 (using GLX). The way painting works is that all client gl contexts draw into offscreen buffers rather than directly to the back buffer, and the way something gets onto the window is by using gdk_cairo_draw_from_gl() to draw part of that buffer onto the draw cairo context. As a fallback (if we're doing redirected drawing or some effect like a cairo_push_group()) we read back the gl buffer into memory and composite using cairo. This means that GL rendering works in all cases, including rendering to a PDF. However, this is not particularly fast. In the *typical* case, where we're drawing directly to the window in the regular paint loop we hit the fast path. The fast path uses opengl to draw the buffer to the window back buffer, either by blitting or texturing. Then we track the region that was drawn, and when the draw ends we paint the normal cairo surface to the window (using texture-from-pixmap in the X11 case, or texture from cairo image otherwise) in the regions where there is no gl painted. There are some complexities wrt layering of gl and cairo areas though: * We track via gdk_window_mark_paint_from_clip() whenever gtk is painting over a region we previously rendered with opengl (flushed_region). This area (needs_blend_region) is blended rather than copied at the end of the frame. * If we're drawing a gl texture with alpha we first copy the current cairo_surface inside the target region to the back buffer before we blend over it. These two operations allow us full stacking of transparent gl and cairo regions.
2014-10-09 08:45:44 +00:00
int i, value;
gboolean y_inverted;
gboolean with_alpha;
guint target = 0;
guint format = 0;
int pixmap_attributes[] = {
GLX_TEXTURE_TARGET_EXT, 0,
GLX_TEXTURE_FORMAT_EXT, 0,
gdk: Add support for OpenGL This adds the new type GdkGLContext that wraps an OpenGL context for a particular native window. It also adds support for the gdk paint machinery to use OpenGL to draw everything. As soon as anyone creates a GL context for a native window we create a "paint context" for that GdkWindow and switch to using GL for painting it. This commit contains only an implementation for X11 (using GLX). The way painting works is that all client gl contexts draw into offscreen buffers rather than directly to the back buffer, and the way something gets onto the window is by using gdk_cairo_draw_from_gl() to draw part of that buffer onto the draw cairo context. As a fallback (if we're doing redirected drawing or some effect like a cairo_push_group()) we read back the gl buffer into memory and composite using cairo. This means that GL rendering works in all cases, including rendering to a PDF. However, this is not particularly fast. In the *typical* case, where we're drawing directly to the window in the regular paint loop we hit the fast path. The fast path uses opengl to draw the buffer to the window back buffer, either by blitting or texturing. Then we track the region that was drawn, and when the draw ends we paint the normal cairo surface to the window (using texture-from-pixmap in the X11 case, or texture from cairo image otherwise) in the regions where there is no gl painted. There are some complexities wrt layering of gl and cairo areas though: * We track via gdk_window_mark_paint_from_clip() whenever gtk is painting over a region we previously rendered with opengl (flushed_region). This area (needs_blend_region) is blended rather than copied at the end of the frame. * If we're drawing a gl texture with alpha we first copy the current cairo_surface inside the target region to the back buffer before we blend over it. These two operations allow us full stacking of transparent gl and cairo regions.
2014-10-09 08:45:44 +00:00
None
};
if (visual == NULL)
return NULL;
with_alpha = cairo_surface_get_content (surface) == CAIRO_CONTENT_COLOR_ALPHA;
gdk: Add support for OpenGL This adds the new type GdkGLContext that wraps an OpenGL context for a particular native window. It also adds support for the gdk paint machinery to use OpenGL to draw everything. As soon as anyone creates a GL context for a native window we create a "paint context" for that GdkWindow and switch to using GL for painting it. This commit contains only an implementation for X11 (using GLX). The way painting works is that all client gl contexts draw into offscreen buffers rather than directly to the back buffer, and the way something gets onto the window is by using gdk_cairo_draw_from_gl() to draw part of that buffer onto the draw cairo context. As a fallback (if we're doing redirected drawing or some effect like a cairo_push_group()) we read back the gl buffer into memory and composite using cairo. This means that GL rendering works in all cases, including rendering to a PDF. However, this is not particularly fast. In the *typical* case, where we're drawing directly to the window in the regular paint loop we hit the fast path. The fast path uses opengl to draw the buffer to the window back buffer, either by blitting or texturing. Then we track the region that was drawn, and when the draw ends we paint the normal cairo surface to the window (using texture-from-pixmap in the X11 case, or texture from cairo image otherwise) in the regions where there is no gl painted. There are some complexities wrt layering of gl and cairo areas though: * We track via gdk_window_mark_paint_from_clip() whenever gtk is painting over a region we previously rendered with opengl (flushed_region). This area (needs_blend_region) is blended rather than copied at the end of the frame. * If we're drawing a gl texture with alpha we first copy the current cairo_surface inside the target region to the back buffer before we blend over it. These two operations allow us full stacking of transparent gl and cairo regions.
2014-10-09 08:45:44 +00:00
y_inverted = FALSE;
fbconfigs = glXGetFBConfigs (display, XScreenNumberOfScreen (screen), &nfbconfigs);
for (i = 0; i < nfbconfigs; i++)
{
visinfo = glXGetVisualFromFBConfig (display, fbconfigs[i]);
if (!visinfo)
continue;
visualid = visinfo->visualid;
XFree (visinfo);
if (visualid != XVisualIDFromVisual (visual))
continue;
gdk: Add support for OpenGL This adds the new type GdkGLContext that wraps an OpenGL context for a particular native window. It also adds support for the gdk paint machinery to use OpenGL to draw everything. As soon as anyone creates a GL context for a native window we create a "paint context" for that GdkWindow and switch to using GL for painting it. This commit contains only an implementation for X11 (using GLX). The way painting works is that all client gl contexts draw into offscreen buffers rather than directly to the back buffer, and the way something gets onto the window is by using gdk_cairo_draw_from_gl() to draw part of that buffer onto the draw cairo context. As a fallback (if we're doing redirected drawing or some effect like a cairo_push_group()) we read back the gl buffer into memory and composite using cairo. This means that GL rendering works in all cases, including rendering to a PDF. However, this is not particularly fast. In the *typical* case, where we're drawing directly to the window in the regular paint loop we hit the fast path. The fast path uses opengl to draw the buffer to the window back buffer, either by blitting or texturing. Then we track the region that was drawn, and when the draw ends we paint the normal cairo surface to the window (using texture-from-pixmap in the X11 case, or texture from cairo image otherwise) in the regions where there is no gl painted. There are some complexities wrt layering of gl and cairo areas though: * We track via gdk_window_mark_paint_from_clip() whenever gtk is painting over a region we previously rendered with opengl (flushed_region). This area (needs_blend_region) is blended rather than copied at the end of the frame. * If we're drawing a gl texture with alpha we first copy the current cairo_surface inside the target region to the back buffer before we blend over it. These two operations allow us full stacking of transparent gl and cairo regions.
2014-10-09 08:45:44 +00:00
glXGetFBConfigAttrib (display, fbconfigs[i], GLX_DRAWABLE_TYPE, &value);
if (!(value & GLX_PIXMAP_BIT))
continue;
gdk: Add support for OpenGL This adds the new type GdkGLContext that wraps an OpenGL context for a particular native window. It also adds support for the gdk paint machinery to use OpenGL to draw everything. As soon as anyone creates a GL context for a native window we create a "paint context" for that GdkWindow and switch to using GL for painting it. This commit contains only an implementation for X11 (using GLX). The way painting works is that all client gl contexts draw into offscreen buffers rather than directly to the back buffer, and the way something gets onto the window is by using gdk_cairo_draw_from_gl() to draw part of that buffer onto the draw cairo context. As a fallback (if we're doing redirected drawing or some effect like a cairo_push_group()) we read back the gl buffer into memory and composite using cairo. This means that GL rendering works in all cases, including rendering to a PDF. However, this is not particularly fast. In the *typical* case, where we're drawing directly to the window in the regular paint loop we hit the fast path. The fast path uses opengl to draw the buffer to the window back buffer, either by blitting or texturing. Then we track the region that was drawn, and when the draw ends we paint the normal cairo surface to the window (using texture-from-pixmap in the X11 case, or texture from cairo image otherwise) in the regions where there is no gl painted. There are some complexities wrt layering of gl and cairo areas though: * We track via gdk_window_mark_paint_from_clip() whenever gtk is painting over a region we previously rendered with opengl (flushed_region). This area (needs_blend_region) is blended rather than copied at the end of the frame. * If we're drawing a gl texture with alpha we first copy the current cairo_surface inside the target region to the back buffer before we blend over it. These two operations allow us full stacking of transparent gl and cairo regions.
2014-10-09 08:45:44 +00:00
glXGetFBConfigAttrib (display, fbconfigs[i],
GLX_BIND_TO_TEXTURE_TARGETS_EXT,
&value);
if (texture_target == GL_TEXTURE_2D)
{
if (value & GLX_TEXTURE_2D_BIT_EXT)
target = GLX_TEXTURE_2D_EXT;
else
continue;
}
else if (texture_target == GL_TEXTURE_RECTANGLE_ARB)
{
if (value & GLX_TEXTURE_RECTANGLE_BIT_EXT)
target = GLX_TEXTURE_RECTANGLE_EXT;
else
continue;
}
else
continue;
if (!with_alpha)
{
glXGetFBConfigAttrib (display, fbconfigs[i],
GLX_BIND_TO_TEXTURE_RGB_EXT,
&value);
if (!value)
continue;
format = GLX_TEXTURE_FORMAT_RGB_EXT;
}
else
{
glXGetFBConfigAttrib (display, fbconfigs[i],
GLX_BIND_TO_TEXTURE_RGBA_EXT,
&value);
if (!value)
continue;
format = GLX_TEXTURE_FORMAT_RGBA_EXT;
}
gdk: Add support for OpenGL This adds the new type GdkGLContext that wraps an OpenGL context for a particular native window. It also adds support for the gdk paint machinery to use OpenGL to draw everything. As soon as anyone creates a GL context for a native window we create a "paint context" for that GdkWindow and switch to using GL for painting it. This commit contains only an implementation for X11 (using GLX). The way painting works is that all client gl contexts draw into offscreen buffers rather than directly to the back buffer, and the way something gets onto the window is by using gdk_cairo_draw_from_gl() to draw part of that buffer onto the draw cairo context. As a fallback (if we're doing redirected drawing or some effect like a cairo_push_group()) we read back the gl buffer into memory and composite using cairo. This means that GL rendering works in all cases, including rendering to a PDF. However, this is not particularly fast. In the *typical* case, where we're drawing directly to the window in the regular paint loop we hit the fast path. The fast path uses opengl to draw the buffer to the window back buffer, either by blitting or texturing. Then we track the region that was drawn, and when the draw ends we paint the normal cairo surface to the window (using texture-from-pixmap in the X11 case, or texture from cairo image otherwise) in the regions where there is no gl painted. There are some complexities wrt layering of gl and cairo areas though: * We track via gdk_window_mark_paint_from_clip() whenever gtk is painting over a region we previously rendered with opengl (flushed_region). This area (needs_blend_region) is blended rather than copied at the end of the frame. * If we're drawing a gl texture with alpha we first copy the current cairo_surface inside the target region to the back buffer before we blend over it. These two operations allow us full stacking of transparent gl and cairo regions.
2014-10-09 08:45:44 +00:00
glXGetFBConfigAttrib (display, fbconfigs[i],
GLX_Y_INVERTED_EXT,
&value);
gdk: Add support for OpenGL This adds the new type GdkGLContext that wraps an OpenGL context for a particular native window. It also adds support for the gdk paint machinery to use OpenGL to draw everything. As soon as anyone creates a GL context for a native window we create a "paint context" for that GdkWindow and switch to using GL for painting it. This commit contains only an implementation for X11 (using GLX). The way painting works is that all client gl contexts draw into offscreen buffers rather than directly to the back buffer, and the way something gets onto the window is by using gdk_cairo_draw_from_gl() to draw part of that buffer onto the draw cairo context. As a fallback (if we're doing redirected drawing or some effect like a cairo_push_group()) we read back the gl buffer into memory and composite using cairo. This means that GL rendering works in all cases, including rendering to a PDF. However, this is not particularly fast. In the *typical* case, where we're drawing directly to the window in the regular paint loop we hit the fast path. The fast path uses opengl to draw the buffer to the window back buffer, either by blitting or texturing. Then we track the region that was drawn, and when the draw ends we paint the normal cairo surface to the window (using texture-from-pixmap in the X11 case, or texture from cairo image otherwise) in the regions where there is no gl painted. There are some complexities wrt layering of gl and cairo areas though: * We track via gdk_window_mark_paint_from_clip() whenever gtk is painting over a region we previously rendered with opengl (flushed_region). This area (needs_blend_region) is blended rather than copied at the end of the frame. * If we're drawing a gl texture with alpha we first copy the current cairo_surface inside the target region to the back buffer before we blend over it. These two operations allow us full stacking of transparent gl and cairo regions.
2014-10-09 08:45:44 +00:00
if (value == TRUE)
y_inverted = TRUE;
gdk: Add support for OpenGL This adds the new type GdkGLContext that wraps an OpenGL context for a particular native window. It also adds support for the gdk paint machinery to use OpenGL to draw everything. As soon as anyone creates a GL context for a native window we create a "paint context" for that GdkWindow and switch to using GL for painting it. This commit contains only an implementation for X11 (using GLX). The way painting works is that all client gl contexts draw into offscreen buffers rather than directly to the back buffer, and the way something gets onto the window is by using gdk_cairo_draw_from_gl() to draw part of that buffer onto the draw cairo context. As a fallback (if we're doing redirected drawing or some effect like a cairo_push_group()) we read back the gl buffer into memory and composite using cairo. This means that GL rendering works in all cases, including rendering to a PDF. However, this is not particularly fast. In the *typical* case, where we're drawing directly to the window in the regular paint loop we hit the fast path. The fast path uses opengl to draw the buffer to the window back buffer, either by blitting or texturing. Then we track the region that was drawn, and when the draw ends we paint the normal cairo surface to the window (using texture-from-pixmap in the X11 case, or texture from cairo image otherwise) in the regions where there is no gl painted. There are some complexities wrt layering of gl and cairo areas though: * We track via gdk_window_mark_paint_from_clip() whenever gtk is painting over a region we previously rendered with opengl (flushed_region). This area (needs_blend_region) is blended rather than copied at the end of the frame. * If we're drawing a gl texture with alpha we first copy the current cairo_surface inside the target region to the back buffer before we blend over it. These two operations allow us full stacking of transparent gl and cairo regions.
2014-10-09 08:45:44 +00:00
config = fbconfigs[i];
gdk: Add support for OpenGL This adds the new type GdkGLContext that wraps an OpenGL context for a particular native window. It also adds support for the gdk paint machinery to use OpenGL to draw everything. As soon as anyone creates a GL context for a native window we create a "paint context" for that GdkWindow and switch to using GL for painting it. This commit contains only an implementation for X11 (using GLX). The way painting works is that all client gl contexts draw into offscreen buffers rather than directly to the back buffer, and the way something gets onto the window is by using gdk_cairo_draw_from_gl() to draw part of that buffer onto the draw cairo context. As a fallback (if we're doing redirected drawing or some effect like a cairo_push_group()) we read back the gl buffer into memory and composite using cairo. This means that GL rendering works in all cases, including rendering to a PDF. However, this is not particularly fast. In the *typical* case, where we're drawing directly to the window in the regular paint loop we hit the fast path. The fast path uses opengl to draw the buffer to the window back buffer, either by blitting or texturing. Then we track the region that was drawn, and when the draw ends we paint the normal cairo surface to the window (using texture-from-pixmap in the X11 case, or texture from cairo image otherwise) in the regions where there is no gl painted. There are some complexities wrt layering of gl and cairo areas though: * We track via gdk_window_mark_paint_from_clip() whenever gtk is painting over a region we previously rendered with opengl (flushed_region). This area (needs_blend_region) is blended rather than copied at the end of the frame. * If we're drawing a gl texture with alpha we first copy the current cairo_surface inside the target region to the back buffer before we blend over it. These two operations allow us full stacking of transparent gl and cairo regions.
2014-10-09 08:45:44 +00:00
break;
}
XFree (fbconfigs);
gdk: Add support for OpenGL This adds the new type GdkGLContext that wraps an OpenGL context for a particular native window. It also adds support for the gdk paint machinery to use OpenGL to draw everything. As soon as anyone creates a GL context for a native window we create a "paint context" for that GdkWindow and switch to using GL for painting it. This commit contains only an implementation for X11 (using GLX). The way painting works is that all client gl contexts draw into offscreen buffers rather than directly to the back buffer, and the way something gets onto the window is by using gdk_cairo_draw_from_gl() to draw part of that buffer onto the draw cairo context. As a fallback (if we're doing redirected drawing or some effect like a cairo_push_group()) we read back the gl buffer into memory and composite using cairo. This means that GL rendering works in all cases, including rendering to a PDF. However, this is not particularly fast. In the *typical* case, where we're drawing directly to the window in the regular paint loop we hit the fast path. The fast path uses opengl to draw the buffer to the window back buffer, either by blitting or texturing. Then we track the region that was drawn, and when the draw ends we paint the normal cairo surface to the window (using texture-from-pixmap in the X11 case, or texture from cairo image otherwise) in the regions where there is no gl painted. There are some complexities wrt layering of gl and cairo areas though: * We track via gdk_window_mark_paint_from_clip() whenever gtk is painting over a region we previously rendered with opengl (flushed_region). This area (needs_blend_region) is blended rather than copied at the end of the frame. * If we're drawing a gl texture with alpha we first copy the current cairo_surface inside the target region to the back buffer before we blend over it. These two operations allow us full stacking of transparent gl and cairo regions.
2014-10-09 08:45:44 +00:00
if (i == nfbconfigs)
return NULL;
pixmap_attributes[1] = target;
pixmap_attributes[3] = format;
gdk: Add support for OpenGL This adds the new type GdkGLContext that wraps an OpenGL context for a particular native window. It also adds support for the gdk paint machinery to use OpenGL to draw everything. As soon as anyone creates a GL context for a native window we create a "paint context" for that GdkWindow and switch to using GL for painting it. This commit contains only an implementation for X11 (using GLX). The way painting works is that all client gl contexts draw into offscreen buffers rather than directly to the back buffer, and the way something gets onto the window is by using gdk_cairo_draw_from_gl() to draw part of that buffer onto the draw cairo context. As a fallback (if we're doing redirected drawing or some effect like a cairo_push_group()) we read back the gl buffer into memory and composite using cairo. This means that GL rendering works in all cases, including rendering to a PDF. However, this is not particularly fast. In the *typical* case, where we're drawing directly to the window in the regular paint loop we hit the fast path. The fast path uses opengl to draw the buffer to the window back buffer, either by blitting or texturing. Then we track the region that was drawn, and when the draw ends we paint the normal cairo surface to the window (using texture-from-pixmap in the X11 case, or texture from cairo image otherwise) in the regions where there is no gl painted. There are some complexities wrt layering of gl and cairo areas though: * We track via gdk_window_mark_paint_from_clip() whenever gtk is painting over a region we previously rendered with opengl (flushed_region). This area (needs_blend_region) is blended rather than copied at the end of the frame. * If we're drawing a gl texture with alpha we first copy the current cairo_surface inside the target region to the back buffer before we blend over it. These two operations allow us full stacking of transparent gl and cairo regions.
2014-10-09 08:45:44 +00:00
glx_pixmap = g_slice_new0 (GdkGLXPixmap);
glx_pixmap->y_inverted = y_inverted;
glx_pixmap->display = display;
glx_pixmap->drawable = glXCreatePixmap (display, config,
gdk: Add support for OpenGL This adds the new type GdkGLContext that wraps an OpenGL context for a particular native window. It also adds support for the gdk paint machinery to use OpenGL to draw everything. As soon as anyone creates a GL context for a native window we create a "paint context" for that GdkWindow and switch to using GL for painting it. This commit contains only an implementation for X11 (using GLX). The way painting works is that all client gl contexts draw into offscreen buffers rather than directly to the back buffer, and the way something gets onto the window is by using gdk_cairo_draw_from_gl() to draw part of that buffer onto the draw cairo context. As a fallback (if we're doing redirected drawing or some effect like a cairo_push_group()) we read back the gl buffer into memory and composite using cairo. This means that GL rendering works in all cases, including rendering to a PDF. However, this is not particularly fast. In the *typical* case, where we're drawing directly to the window in the regular paint loop we hit the fast path. The fast path uses opengl to draw the buffer to the window back buffer, either by blitting or texturing. Then we track the region that was drawn, and when the draw ends we paint the normal cairo surface to the window (using texture-from-pixmap in the X11 case, or texture from cairo image otherwise) in the regions where there is no gl painted. There are some complexities wrt layering of gl and cairo areas though: * We track via gdk_window_mark_paint_from_clip() whenever gtk is painting over a region we previously rendered with opengl (flushed_region). This area (needs_blend_region) is blended rather than copied at the end of the frame. * If we're drawing a gl texture with alpha we first copy the current cairo_surface inside the target region to the back buffer before we blend over it. These two operations allow us full stacking of transparent gl and cairo regions.
2014-10-09 08:45:44 +00:00
cairo_xlib_surface_get_drawable (surface),
pixmap_attributes);
return glx_pixmap;
}
static gboolean
gdk_x11_gl_context_texture_from_surface (GdkGLContext *paint_context,
gdk: Add support for OpenGL This adds the new type GdkGLContext that wraps an OpenGL context for a particular native window. It also adds support for the gdk paint machinery to use OpenGL to draw everything. As soon as anyone creates a GL context for a native window we create a "paint context" for that GdkWindow and switch to using GL for painting it. This commit contains only an implementation for X11 (using GLX). The way painting works is that all client gl contexts draw into offscreen buffers rather than directly to the back buffer, and the way something gets onto the window is by using gdk_cairo_draw_from_gl() to draw part of that buffer onto the draw cairo context. As a fallback (if we're doing redirected drawing or some effect like a cairo_push_group()) we read back the gl buffer into memory and composite using cairo. This means that GL rendering works in all cases, including rendering to a PDF. However, this is not particularly fast. In the *typical* case, where we're drawing directly to the window in the regular paint loop we hit the fast path. The fast path uses opengl to draw the buffer to the window back buffer, either by blitting or texturing. Then we track the region that was drawn, and when the draw ends we paint the normal cairo surface to the window (using texture-from-pixmap in the X11 case, or texture from cairo image otherwise) in the regions where there is no gl painted. There are some complexities wrt layering of gl and cairo areas though: * We track via gdk_window_mark_paint_from_clip() whenever gtk is painting over a region we previously rendered with opengl (flushed_region). This area (needs_blend_region) is blended rather than copied at the end of the frame. * If we're drawing a gl texture with alpha we first copy the current cairo_surface inside the target region to the back buffer before we blend over it. These two operations allow us full stacking of transparent gl and cairo regions.
2014-10-09 08:45:44 +00:00
cairo_surface_t *surface,
cairo_region_t *region)
{
GdkGLXPixmap *glx_pixmap;
double device_x_offset, device_y_offset;
cairo_rectangle_int_t rect;
int n_rects, i;
GdkWindow *window;
int unscaled_window_height;
gdk: Add support for OpenGL This adds the new type GdkGLContext that wraps an OpenGL context for a particular native window. It also adds support for the gdk paint machinery to use OpenGL to draw everything. As soon as anyone creates a GL context for a native window we create a "paint context" for that GdkWindow and switch to using GL for painting it. This commit contains only an implementation for X11 (using GLX). The way painting works is that all client gl contexts draw into offscreen buffers rather than directly to the back buffer, and the way something gets onto the window is by using gdk_cairo_draw_from_gl() to draw part of that buffer onto the draw cairo context. As a fallback (if we're doing redirected drawing or some effect like a cairo_push_group()) we read back the gl buffer into memory and composite using cairo. This means that GL rendering works in all cases, including rendering to a PDF. However, this is not particularly fast. In the *typical* case, where we're drawing directly to the window in the regular paint loop we hit the fast path. The fast path uses opengl to draw the buffer to the window back buffer, either by blitting or texturing. Then we track the region that was drawn, and when the draw ends we paint the normal cairo surface to the window (using texture-from-pixmap in the X11 case, or texture from cairo image otherwise) in the regions where there is no gl painted. There are some complexities wrt layering of gl and cairo areas though: * We track via gdk_window_mark_paint_from_clip() whenever gtk is painting over a region we previously rendered with opengl (flushed_region). This area (needs_blend_region) is blended rather than copied at the end of the frame. * If we're drawing a gl texture with alpha we first copy the current cairo_surface inside the target region to the back buffer before we blend over it. These two operations allow us full stacking of transparent gl and cairo regions.
2014-10-09 08:45:44 +00:00
int window_scale;
unsigned int texture_id;
gboolean use_texture_rectangle;
guint target;
gdk: Add support for OpenGL This adds the new type GdkGLContext that wraps an OpenGL context for a particular native window. It also adds support for the gdk paint machinery to use OpenGL to draw everything. As soon as anyone creates a GL context for a native window we create a "paint context" for that GdkWindow and switch to using GL for painting it. This commit contains only an implementation for X11 (using GLX). The way painting works is that all client gl contexts draw into offscreen buffers rather than directly to the back buffer, and the way something gets onto the window is by using gdk_cairo_draw_from_gl() to draw part of that buffer onto the draw cairo context. As a fallback (if we're doing redirected drawing or some effect like a cairo_push_group()) we read back the gl buffer into memory and composite using cairo. This means that GL rendering works in all cases, including rendering to a PDF. However, this is not particularly fast. In the *typical* case, where we're drawing directly to the window in the regular paint loop we hit the fast path. The fast path uses opengl to draw the buffer to the window back buffer, either by blitting or texturing. Then we track the region that was drawn, and when the draw ends we paint the normal cairo surface to the window (using texture-from-pixmap in the X11 case, or texture from cairo image otherwise) in the regions where there is no gl painted. There are some complexities wrt layering of gl and cairo areas though: * We track via gdk_window_mark_paint_from_clip() whenever gtk is painting over a region we previously rendered with opengl (flushed_region). This area (needs_blend_region) is blended rather than copied at the end of the frame. * If we're drawing a gl texture with alpha we first copy the current cairo_surface inside the target region to the back buffer before we blend over it. These two operations allow us full stacking of transparent gl and cairo regions.
2014-10-09 08:45:44 +00:00
double sx, sy;
float uscale, vscale;
GdkTexturedQuad *quads;
GdkX11Display *display_x11;
display_x11 = GDK_X11_DISPLAY (gdk_gl_context_get_display (paint_context));
if (!display_x11->has_glx_texture_from_pixmap)
return FALSE;
gdk: Add support for OpenGL This adds the new type GdkGLContext that wraps an OpenGL context for a particular native window. It also adds support for the gdk paint machinery to use OpenGL to draw everything. As soon as anyone creates a GL context for a native window we create a "paint context" for that GdkWindow and switch to using GL for painting it. This commit contains only an implementation for X11 (using GLX). The way painting works is that all client gl contexts draw into offscreen buffers rather than directly to the back buffer, and the way something gets onto the window is by using gdk_cairo_draw_from_gl() to draw part of that buffer onto the draw cairo context. As a fallback (if we're doing redirected drawing or some effect like a cairo_push_group()) we read back the gl buffer into memory and composite using cairo. This means that GL rendering works in all cases, including rendering to a PDF. However, this is not particularly fast. In the *typical* case, where we're drawing directly to the window in the regular paint loop we hit the fast path. The fast path uses opengl to draw the buffer to the window back buffer, either by blitting or texturing. Then we track the region that was drawn, and when the draw ends we paint the normal cairo surface to the window (using texture-from-pixmap in the X11 case, or texture from cairo image otherwise) in the regions where there is no gl painted. There are some complexities wrt layering of gl and cairo areas though: * We track via gdk_window_mark_paint_from_clip() whenever gtk is painting over a region we previously rendered with opengl (flushed_region). This area (needs_blend_region) is blended rather than copied at the end of the frame. * If we're drawing a gl texture with alpha we first copy the current cairo_surface inside the target region to the back buffer before we blend over it. These two operations allow us full stacking of transparent gl and cairo regions.
2014-10-09 08:45:44 +00:00
if (cairo_surface_get_type (surface) != CAIRO_SURFACE_TYPE_XLIB)
return FALSE;
use_texture_rectangle = gdk_gl_context_use_texture_rectangle (paint_context);
if (use_texture_rectangle)
target = GL_TEXTURE_RECTANGLE_ARB;
else
target = GL_TEXTURE_2D;
glx_pixmap = glx_pixmap_get (surface, target);
gdk: Add support for OpenGL This adds the new type GdkGLContext that wraps an OpenGL context for a particular native window. It also adds support for the gdk paint machinery to use OpenGL to draw everything. As soon as anyone creates a GL context for a native window we create a "paint context" for that GdkWindow and switch to using GL for painting it. This commit contains only an implementation for X11 (using GLX). The way painting works is that all client gl contexts draw into offscreen buffers rather than directly to the back buffer, and the way something gets onto the window is by using gdk_cairo_draw_from_gl() to draw part of that buffer onto the draw cairo context. As a fallback (if we're doing redirected drawing or some effect like a cairo_push_group()) we read back the gl buffer into memory and composite using cairo. This means that GL rendering works in all cases, including rendering to a PDF. However, this is not particularly fast. In the *typical* case, where we're drawing directly to the window in the regular paint loop we hit the fast path. The fast path uses opengl to draw the buffer to the window back buffer, either by blitting or texturing. Then we track the region that was drawn, and when the draw ends we paint the normal cairo surface to the window (using texture-from-pixmap in the X11 case, or texture from cairo image otherwise) in the regions where there is no gl painted. There are some complexities wrt layering of gl and cairo areas though: * We track via gdk_window_mark_paint_from_clip() whenever gtk is painting over a region we previously rendered with opengl (flushed_region). This area (needs_blend_region) is blended rather than copied at the end of the frame. * If we're drawing a gl texture with alpha we first copy the current cairo_surface inside the target region to the back buffer before we blend over it. These two operations allow us full stacking of transparent gl and cairo regions.
2014-10-09 08:45:44 +00:00
if (glx_pixmap == NULL)
return FALSE;
window = gdk_gl_context_get_window (paint_context)->impl_window;
gdk: Add support for OpenGL This adds the new type GdkGLContext that wraps an OpenGL context for a particular native window. It also adds support for the gdk paint machinery to use OpenGL to draw everything. As soon as anyone creates a GL context for a native window we create a "paint context" for that GdkWindow and switch to using GL for painting it. This commit contains only an implementation for X11 (using GLX). The way painting works is that all client gl contexts draw into offscreen buffers rather than directly to the back buffer, and the way something gets onto the window is by using gdk_cairo_draw_from_gl() to draw part of that buffer onto the draw cairo context. As a fallback (if we're doing redirected drawing or some effect like a cairo_push_group()) we read back the gl buffer into memory and composite using cairo. This means that GL rendering works in all cases, including rendering to a PDF. However, this is not particularly fast. In the *typical* case, where we're drawing directly to the window in the regular paint loop we hit the fast path. The fast path uses opengl to draw the buffer to the window back buffer, either by blitting or texturing. Then we track the region that was drawn, and when the draw ends we paint the normal cairo surface to the window (using texture-from-pixmap in the X11 case, or texture from cairo image otherwise) in the regions where there is no gl painted. There are some complexities wrt layering of gl and cairo areas though: * We track via gdk_window_mark_paint_from_clip() whenever gtk is painting over a region we previously rendered with opengl (flushed_region). This area (needs_blend_region) is blended rather than copied at the end of the frame. * If we're drawing a gl texture with alpha we first copy the current cairo_surface inside the target region to the back buffer before we blend over it. These two operations allow us full stacking of transparent gl and cairo regions.
2014-10-09 08:45:44 +00:00
window_scale = gdk_window_get_scale_factor (window);
gdk_window_get_unscaled_size (window, NULL, &unscaled_window_height);
gdk: Add support for OpenGL This adds the new type GdkGLContext that wraps an OpenGL context for a particular native window. It also adds support for the gdk paint machinery to use OpenGL to draw everything. As soon as anyone creates a GL context for a native window we create a "paint context" for that GdkWindow and switch to using GL for painting it. This commit contains only an implementation for X11 (using GLX). The way painting works is that all client gl contexts draw into offscreen buffers rather than directly to the back buffer, and the way something gets onto the window is by using gdk_cairo_draw_from_gl() to draw part of that buffer onto the draw cairo context. As a fallback (if we're doing redirected drawing or some effect like a cairo_push_group()) we read back the gl buffer into memory and composite using cairo. This means that GL rendering works in all cases, including rendering to a PDF. However, this is not particularly fast. In the *typical* case, where we're drawing directly to the window in the regular paint loop we hit the fast path. The fast path uses opengl to draw the buffer to the window back buffer, either by blitting or texturing. Then we track the region that was drawn, and when the draw ends we paint the normal cairo surface to the window (using texture-from-pixmap in the X11 case, or texture from cairo image otherwise) in the regions where there is no gl painted. There are some complexities wrt layering of gl and cairo areas though: * We track via gdk_window_mark_paint_from_clip() whenever gtk is painting over a region we previously rendered with opengl (flushed_region). This area (needs_blend_region) is blended rather than copied at the end of the frame. * If we're drawing a gl texture with alpha we first copy the current cairo_surface inside the target region to the back buffer before we blend over it. These two operations allow us full stacking of transparent gl and cairo regions.
2014-10-09 08:45:44 +00:00
sx = sy = 1;
cairo_surface_get_device_scale (window->current_paint.surface, &sx, &sy);
cairo_surface_get_device_offset (surface,
&device_x_offset, &device_y_offset);
/* Ensure all the X stuff are synced before we read it back via texture-from-pixmap */
glXWaitX();
glGenTextures (1, &texture_id);
glBindTexture (target, texture_id);
glTexParameteri (target, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri (target, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glTexParameteri (target, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameteri (target, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
gdk: Add support for OpenGL This adds the new type GdkGLContext that wraps an OpenGL context for a particular native window. It also adds support for the gdk paint machinery to use OpenGL to draw everything. As soon as anyone creates a GL context for a native window we create a "paint context" for that GdkWindow and switch to using GL for painting it. This commit contains only an implementation for X11 (using GLX). The way painting works is that all client gl contexts draw into offscreen buffers rather than directly to the back buffer, and the way something gets onto the window is by using gdk_cairo_draw_from_gl() to draw part of that buffer onto the draw cairo context. As a fallback (if we're doing redirected drawing or some effect like a cairo_push_group()) we read back the gl buffer into memory and composite using cairo. This means that GL rendering works in all cases, including rendering to a PDF. However, this is not particularly fast. In the *typical* case, where we're drawing directly to the window in the regular paint loop we hit the fast path. The fast path uses opengl to draw the buffer to the window back buffer, either by blitting or texturing. Then we track the region that was drawn, and when the draw ends we paint the normal cairo surface to the window (using texture-from-pixmap in the X11 case, or texture from cairo image otherwise) in the regions where there is no gl painted. There are some complexities wrt layering of gl and cairo areas though: * We track via gdk_window_mark_paint_from_clip() whenever gtk is painting over a region we previously rendered with opengl (flushed_region). This area (needs_blend_region) is blended rather than copied at the end of the frame. * If we're drawing a gl texture with alpha we first copy the current cairo_surface inside the target region to the back buffer before we blend over it. These two operations allow us full stacking of transparent gl and cairo regions.
2014-10-09 08:45:44 +00:00
glXBindTexImageEXT (glx_pixmap->display, glx_pixmap->drawable,
GLX_FRONT_LEFT_EXT, NULL);
glEnable (GL_SCISSOR_TEST);
gdk: Add support for OpenGL This adds the new type GdkGLContext that wraps an OpenGL context for a particular native window. It also adds support for the gdk paint machinery to use OpenGL to draw everything. As soon as anyone creates a GL context for a native window we create a "paint context" for that GdkWindow and switch to using GL for painting it. This commit contains only an implementation for X11 (using GLX). The way painting works is that all client gl contexts draw into offscreen buffers rather than directly to the back buffer, and the way something gets onto the window is by using gdk_cairo_draw_from_gl() to draw part of that buffer onto the draw cairo context. As a fallback (if we're doing redirected drawing or some effect like a cairo_push_group()) we read back the gl buffer into memory and composite using cairo. This means that GL rendering works in all cases, including rendering to a PDF. However, this is not particularly fast. In the *typical* case, where we're drawing directly to the window in the regular paint loop we hit the fast path. The fast path uses opengl to draw the buffer to the window back buffer, either by blitting or texturing. Then we track the region that was drawn, and when the draw ends we paint the normal cairo surface to the window (using texture-from-pixmap in the X11 case, or texture from cairo image otherwise) in the regions where there is no gl painted. There are some complexities wrt layering of gl and cairo areas though: * We track via gdk_window_mark_paint_from_clip() whenever gtk is painting over a region we previously rendered with opengl (flushed_region). This area (needs_blend_region) is blended rather than copied at the end of the frame. * If we're drawing a gl texture with alpha we first copy the current cairo_surface inside the target region to the back buffer before we blend over it. These two operations allow us full stacking of transparent gl and cairo regions.
2014-10-09 08:45:44 +00:00
n_rects = cairo_region_num_rectangles (region);
quads = g_new (GdkTexturedQuad, n_rects);
#define FLIP_Y(_y) (unscaled_window_height - (_y))
cairo_region_get_extents (region, &rect);
glScissor (rect.x * window_scale, FLIP_Y((rect.y + rect.height) * window_scale),
rect.width * window_scale, rect.height * window_scale);
gdk: Add support for OpenGL This adds the new type GdkGLContext that wraps an OpenGL context for a particular native window. It also adds support for the gdk paint machinery to use OpenGL to draw everything. As soon as anyone creates a GL context for a native window we create a "paint context" for that GdkWindow and switch to using GL for painting it. This commit contains only an implementation for X11 (using GLX). The way painting works is that all client gl contexts draw into offscreen buffers rather than directly to the back buffer, and the way something gets onto the window is by using gdk_cairo_draw_from_gl() to draw part of that buffer onto the draw cairo context. As a fallback (if we're doing redirected drawing or some effect like a cairo_push_group()) we read back the gl buffer into memory and composite using cairo. This means that GL rendering works in all cases, including rendering to a PDF. However, this is not particularly fast. In the *typical* case, where we're drawing directly to the window in the regular paint loop we hit the fast path. The fast path uses opengl to draw the buffer to the window back buffer, either by blitting or texturing. Then we track the region that was drawn, and when the draw ends we paint the normal cairo surface to the window (using texture-from-pixmap in the X11 case, or texture from cairo image otherwise) in the regions where there is no gl painted. There are some complexities wrt layering of gl and cairo areas though: * We track via gdk_window_mark_paint_from_clip() whenever gtk is painting over a region we previously rendered with opengl (flushed_region). This area (needs_blend_region) is blended rather than copied at the end of the frame. * If we're drawing a gl texture with alpha we first copy the current cairo_surface inside the target region to the back buffer before we blend over it. These two operations allow us full stacking of transparent gl and cairo regions.
2014-10-09 08:45:44 +00:00
for (i = 0; i < n_rects; i++)
{
int src_x, src_y, src_height, src_width;
cairo_region_get_rectangle (region, i, &rect);
src_x = rect.x * sx + device_x_offset;
src_y = rect.y * sy + device_y_offset;
src_width = rect.width * sx;
src_height = rect.height * sy;
if (use_texture_rectangle)
{
uscale = 1.0;
vscale = 1.0;
}
else
{
uscale = 1.0 / cairo_xlib_surface_get_width (surface);
vscale = 1.0 / cairo_xlib_surface_get_height (surface);
}
{
GdkTexturedQuad quad = {
rect.x * window_scale, FLIP_Y(rect.y * window_scale),
(rect.x + rect.width) * window_scale, FLIP_Y((rect.y + rect.height) * window_scale),
uscale * src_x, vscale * src_y,
uscale * (src_x + src_width), vscale * (src_y + src_height),
};
quads[i] = quad;
}
gdk: Add support for OpenGL This adds the new type GdkGLContext that wraps an OpenGL context for a particular native window. It also adds support for the gdk paint machinery to use OpenGL to draw everything. As soon as anyone creates a GL context for a native window we create a "paint context" for that GdkWindow and switch to using GL for painting it. This commit contains only an implementation for X11 (using GLX). The way painting works is that all client gl contexts draw into offscreen buffers rather than directly to the back buffer, and the way something gets onto the window is by using gdk_cairo_draw_from_gl() to draw part of that buffer onto the draw cairo context. As a fallback (if we're doing redirected drawing or some effect like a cairo_push_group()) we read back the gl buffer into memory and composite using cairo. This means that GL rendering works in all cases, including rendering to a PDF. However, this is not particularly fast. In the *typical* case, where we're drawing directly to the window in the regular paint loop we hit the fast path. The fast path uses opengl to draw the buffer to the window back buffer, either by blitting or texturing. Then we track the region that was drawn, and when the draw ends we paint the normal cairo surface to the window (using texture-from-pixmap in the X11 case, or texture from cairo image otherwise) in the regions where there is no gl painted. There are some complexities wrt layering of gl and cairo areas though: * We track via gdk_window_mark_paint_from_clip() whenever gtk is painting over a region we previously rendered with opengl (flushed_region). This area (needs_blend_region) is blended rather than copied at the end of the frame. * If we're drawing a gl texture with alpha we first copy the current cairo_surface inside the target region to the back buffer before we blend over it. These two operations allow us full stacking of transparent gl and cairo regions.
2014-10-09 08:45:44 +00:00
}
#undef FLIP_Y
gdk_gl_texture_quads (paint_context, target, n_rects, quads);
g_free (quads);
glDisable (GL_SCISSOR_TEST);
gdk: Add support for OpenGL This adds the new type GdkGLContext that wraps an OpenGL context for a particular native window. It also adds support for the gdk paint machinery to use OpenGL to draw everything. As soon as anyone creates a GL context for a native window we create a "paint context" for that GdkWindow and switch to using GL for painting it. This commit contains only an implementation for X11 (using GLX). The way painting works is that all client gl contexts draw into offscreen buffers rather than directly to the back buffer, and the way something gets onto the window is by using gdk_cairo_draw_from_gl() to draw part of that buffer onto the draw cairo context. As a fallback (if we're doing redirected drawing or some effect like a cairo_push_group()) we read back the gl buffer into memory and composite using cairo. This means that GL rendering works in all cases, including rendering to a PDF. However, this is not particularly fast. In the *typical* case, where we're drawing directly to the window in the regular paint loop we hit the fast path. The fast path uses opengl to draw the buffer to the window back buffer, either by blitting or texturing. Then we track the region that was drawn, and when the draw ends we paint the normal cairo surface to the window (using texture-from-pixmap in the X11 case, or texture from cairo image otherwise) in the regions where there is no gl painted. There are some complexities wrt layering of gl and cairo areas though: * We track via gdk_window_mark_paint_from_clip() whenever gtk is painting over a region we previously rendered with opengl (flushed_region). This area (needs_blend_region) is blended rather than copied at the end of the frame. * If we're drawing a gl texture with alpha we first copy the current cairo_surface inside the target region to the back buffer before we blend over it. These two operations allow us full stacking of transparent gl and cairo regions.
2014-10-09 08:45:44 +00:00
glXReleaseTexImageEXT (glx_pixmap->display, glx_pixmap->drawable,
GLX_FRONT_LEFT_EXT);
glDeleteTextures (1, &texture_id);
glx_pixmap_destroy(glx_pixmap);
return TRUE;
}
static XVisualInfo *
find_xvisinfo_for_fbconfig (GdkDisplay *display,
GLXFBConfig config)
{
Display *dpy = gdk_x11_display_get_xdisplay (display);
return glXGetVisualFromFBConfig (dpy, config);
}
static GLXContext
create_gl3_context (GdkDisplay *display,
GLXFBConfig config,
GdkGLContext *share,
int profile,
int flags,
int major,
int minor)
{
int attrib_list[] = {
GLX_CONTEXT_PROFILE_MASK_ARB, profile,
GLX_CONTEXT_MAJOR_VERSION_ARB, major,
GLX_CONTEXT_MINOR_VERSION_ARB, minor,
GLX_CONTEXT_FLAGS_ARB, flags,
None,
};
GLXContext res;
GdkX11GLContext *share_x11 = NULL;
if (share != NULL)
share_x11 = GDK_X11_GL_CONTEXT (share);
gdk_x11_display_error_trap_push (display);
res = glXCreateContextAttribsARB (gdk_x11_display_get_xdisplay (display),
config,
share_x11 != NULL ? share_x11->glx_context : NULL,
True,
attrib_list);
if (gdk_x11_display_error_trap_pop (display))
return NULL;
return res;
}
static GLXContext
create_legacy_context (GdkDisplay *display,
GLXFBConfig config,
GdkGLContext *share)
{
GdkX11GLContext *share_x11 = NULL;
GLXContext res;
if (share != NULL)
share_x11 = GDK_X11_GL_CONTEXT (share);
gdk_x11_display_error_trap_push (display);
res = glXCreateNewContext (gdk_x11_display_get_xdisplay (display),
config,
GLX_RGBA_TYPE,
share_x11 != NULL ? share_x11->glx_context : NULL,
TRUE);
if (gdk_x11_display_error_trap_pop (display))
return NULL;
return res;
}
static gboolean
gdk_x11_gl_context_realize (GdkGLContext *context,
GError **error)
{
GdkDisplay *display;
GdkX11GLContext *context_x11;
GLXWindow drawable;
XVisualInfo *xvisinfo;
Display *dpy;
DrawableInfo *info;
GdkGLContext *share;
GdkWindow *window;
gboolean debug_bit, compat_bit, legacy_bit;
int major, minor, flags;
window = gdk_gl_context_get_window (context);
display = gdk_window_get_display (window);
dpy = gdk_x11_display_get_xdisplay (display);
context_x11 = GDK_X11_GL_CONTEXT (context);
share = gdk_gl_context_get_shared_context (context);
gdk_gl_context_get_required_version (context, &major, &minor);
debug_bit = gdk_gl_context_get_debug_enabled (context);
compat_bit = gdk_gl_context_get_forward_compatible (context);
/* If there is no glXCreateContextAttribsARB() then we default to legacy */
legacy_bit = !GDK_X11_DISPLAY (display)->has_glx_create_context ||
(_gdk_gl_flags & GDK_GL_LEGACY) != 0;
/* We cannot share legacy contexts with core profile ones, so the
* shared context is the one that decides if we're going to create
* a legacy context or not.
*/
if (share != NULL && gdk_gl_context_is_legacy (share))
legacy_bit = TRUE;
flags = 0;
if (debug_bit)
flags |= GLX_CONTEXT_DEBUG_BIT_ARB;
if (compat_bit)
flags |= GLX_CONTEXT_FORWARD_COMPATIBLE_BIT_ARB;
GDK_NOTE (OPENGL,
g_print ("Creating core GLX context (version:%d.%d, debug:%s, forward:%s, legacy:%s)\n",
major, minor,
debug_bit ? "yes" : "no",
compat_bit ? "yes" : "no",
legacy_bit ? "yes" : "no"));
/* If we have access to GLX_ARB_create_context_profile then we can ask for
* a compatibility profile; if we don't, then we have to fall back to the
* old GLX 1.3 API.
*/
if (legacy_bit && !GDK_X11_DISPLAY (display)->has_glx_create_context)
{
GDK_NOTE (OPENGL, g_print ("Creating legacy GL context on request\n"));
context_x11->glx_context = create_legacy_context (display, context_x11->glx_config, share);
}
else
{
int profile = legacy_bit ? GLX_CONTEXT_COMPATIBILITY_PROFILE_BIT_ARB
: GLX_CONTEXT_CORE_PROFILE_BIT_ARB;
/* We need to tweak the version, otherwise we may end up requesting
* a compatibility context with a minimum version of 3.2, which is
* an error
*/
if (legacy_bit)
{
major = 3;
minor = 0;
}
GDK_NOTE (OPENGL, g_print ("Creating GL3 context\n"));
context_x11->glx_context = create_gl3_context (display,
context_x11->glx_config,
share,
profile, flags, major, minor);
/* Fall back to legacy in case the GL3 context creation failed */
if (context_x11->glx_context == NULL)
{
GDK_NOTE (OPENGL, g_print ("Creating fallback legacy context\n"));
context_x11->glx_context = create_legacy_context (display, context_x11->glx_config, share);
legacy_bit = TRUE;
}
}
if (context_x11->glx_context == NULL)
{
g_set_error_literal (error, GDK_GL_ERROR,
GDK_GL_ERROR_NOT_AVAILABLE,
_("Unable to create a GL context"));
return FALSE;
}
/* Ensure that any other context is created with a legacy bit set */
gdk_gl_context_set_is_legacy (context, legacy_bit);
xvisinfo = find_xvisinfo_for_fbconfig (display, context_x11->glx_config);
info = get_glx_drawable_info (window->impl_window);
if (info == NULL)
{
XSetWindowAttributes attrs;
unsigned long mask;
gdk_x11_display_error_trap_push (display);
info = g_slice_new0 (DrawableInfo);
info->display = display;
info->last_frame_counter = 0;
attrs.override_redirect = True;
attrs.colormap = XCreateColormap (dpy, DefaultRootWindow (dpy), xvisinfo->visual, AllocNone);
attrs.border_pixel = 0;
mask = CWOverrideRedirect | CWColormap | CWBorderPixel;
info->dummy_xwin = XCreateWindow (dpy, DefaultRootWindow (dpy),
-100, -100, 1, 1,
0,
xvisinfo->depth,
CopyFromParent,
xvisinfo->visual,
mask,
&attrs);
XMapWindow(dpy, info->dummy_xwin);
if (GDK_X11_DISPLAY (display)->glx_version >= 13)
{
info->glx_drawable = glXCreateWindow (dpy, context_x11->glx_config,
gdk_x11_window_get_xid (window->impl_window),
NULL);
info->dummy_glx = glXCreateWindow (dpy, context_x11->glx_config, info->dummy_xwin, NULL);
}
if (gdk_x11_display_error_trap_pop (display))
{
g_set_error_literal (error, GDK_GL_ERROR,
GDK_GL_ERROR_NOT_AVAILABLE,
_("Unable to create a GL context"));
XFree (xvisinfo);
drawable_info_free (info);
glXDestroyContext (dpy, context_x11->glx_context);
context_x11->glx_context = NULL;
return FALSE;
}
set_glx_drawable_info (window->impl_window, info);
}
XFree (xvisinfo);
if (context_x11->is_attached)
drawable = info->glx_drawable ? info->glx_drawable : gdk_x11_window_get_xid (window->impl_window);
else
drawable = info->dummy_glx ? info->dummy_glx : info->dummy_xwin;
context_x11->is_direct = glXIsDirect (dpy, context_x11->glx_context);
context_x11->drawable = drawable;
GDK_NOTE (OPENGL,
g_print ("Realized GLX context[%p], %s\n",
context_x11->glx_context,
context_x11->is_direct ? "direct" : "indirect"));
return TRUE;
}
static void
gdk_x11_gl_context_dispose (GObject *gobject)
{
GdkX11GLContext *context_x11 = GDK_X11_GL_CONTEXT (gobject);
if (context_x11->glx_context != NULL)
{
GdkGLContext *context = GDK_GL_CONTEXT (gobject);
GdkDisplay *display = gdk_gl_context_get_display (context);
Display *dpy = gdk_x11_display_get_xdisplay (display);
if (glXGetCurrentContext () == context_x11->glx_context)
glXMakeContextCurrent (dpy, None, None, NULL);
GDK_NOTE (OPENGL, g_print ("Destroying GLX context\n"));
glXDestroyContext (dpy, context_x11->glx_context);
context_x11->glx_context = NULL;
}
G_OBJECT_CLASS (gdk_x11_gl_context_parent_class)->dispose (gobject);
}
gdk: Add support for OpenGL This adds the new type GdkGLContext that wraps an OpenGL context for a particular native window. It also adds support for the gdk paint machinery to use OpenGL to draw everything. As soon as anyone creates a GL context for a native window we create a "paint context" for that GdkWindow and switch to using GL for painting it. This commit contains only an implementation for X11 (using GLX). The way painting works is that all client gl contexts draw into offscreen buffers rather than directly to the back buffer, and the way something gets onto the window is by using gdk_cairo_draw_from_gl() to draw part of that buffer onto the draw cairo context. As a fallback (if we're doing redirected drawing or some effect like a cairo_push_group()) we read back the gl buffer into memory and composite using cairo. This means that GL rendering works in all cases, including rendering to a PDF. However, this is not particularly fast. In the *typical* case, where we're drawing directly to the window in the regular paint loop we hit the fast path. The fast path uses opengl to draw the buffer to the window back buffer, either by blitting or texturing. Then we track the region that was drawn, and when the draw ends we paint the normal cairo surface to the window (using texture-from-pixmap in the X11 case, or texture from cairo image otherwise) in the regions where there is no gl painted. There are some complexities wrt layering of gl and cairo areas though: * We track via gdk_window_mark_paint_from_clip() whenever gtk is painting over a region we previously rendered with opengl (flushed_region). This area (needs_blend_region) is blended rather than copied at the end of the frame. * If we're drawing a gl texture with alpha we first copy the current cairo_surface inside the target region to the back buffer before we blend over it. These two operations allow us full stacking of transparent gl and cairo regions.
2014-10-09 08:45:44 +00:00
static void
gdk_x11_gl_context_class_init (GdkX11GLContextClass *klass)
{
GdkGLContextClass *context_class = GDK_GL_CONTEXT_CLASS (klass);
GObjectClass *gobject_class = G_OBJECT_CLASS (klass);
gdk: Add support for OpenGL This adds the new type GdkGLContext that wraps an OpenGL context for a particular native window. It also adds support for the gdk paint machinery to use OpenGL to draw everything. As soon as anyone creates a GL context for a native window we create a "paint context" for that GdkWindow and switch to using GL for painting it. This commit contains only an implementation for X11 (using GLX). The way painting works is that all client gl contexts draw into offscreen buffers rather than directly to the back buffer, and the way something gets onto the window is by using gdk_cairo_draw_from_gl() to draw part of that buffer onto the draw cairo context. As a fallback (if we're doing redirected drawing or some effect like a cairo_push_group()) we read back the gl buffer into memory and composite using cairo. This means that GL rendering works in all cases, including rendering to a PDF. However, this is not particularly fast. In the *typical* case, where we're drawing directly to the window in the regular paint loop we hit the fast path. The fast path uses opengl to draw the buffer to the window back buffer, either by blitting or texturing. Then we track the region that was drawn, and when the draw ends we paint the normal cairo surface to the window (using texture-from-pixmap in the X11 case, or texture from cairo image otherwise) in the regions where there is no gl painted. There are some complexities wrt layering of gl and cairo areas though: * We track via gdk_window_mark_paint_from_clip() whenever gtk is painting over a region we previously rendered with opengl (flushed_region). This area (needs_blend_region) is blended rather than copied at the end of the frame. * If we're drawing a gl texture with alpha we first copy the current cairo_surface inside the target region to the back buffer before we blend over it. These two operations allow us full stacking of transparent gl and cairo regions.
2014-10-09 08:45:44 +00:00
context_class->realize = gdk_x11_gl_context_realize;
context_class->end_frame = gdk_x11_gl_context_end_frame;
gdk: Add support for OpenGL This adds the new type GdkGLContext that wraps an OpenGL context for a particular native window. It also adds support for the gdk paint machinery to use OpenGL to draw everything. As soon as anyone creates a GL context for a native window we create a "paint context" for that GdkWindow and switch to using GL for painting it. This commit contains only an implementation for X11 (using GLX). The way painting works is that all client gl contexts draw into offscreen buffers rather than directly to the back buffer, and the way something gets onto the window is by using gdk_cairo_draw_from_gl() to draw part of that buffer onto the draw cairo context. As a fallback (if we're doing redirected drawing or some effect like a cairo_push_group()) we read back the gl buffer into memory and composite using cairo. This means that GL rendering works in all cases, including rendering to a PDF. However, this is not particularly fast. In the *typical* case, where we're drawing directly to the window in the regular paint loop we hit the fast path. The fast path uses opengl to draw the buffer to the window back buffer, either by blitting or texturing. Then we track the region that was drawn, and when the draw ends we paint the normal cairo surface to the window (using texture-from-pixmap in the X11 case, or texture from cairo image otherwise) in the regions where there is no gl painted. There are some complexities wrt layering of gl and cairo areas though: * We track via gdk_window_mark_paint_from_clip() whenever gtk is painting over a region we previously rendered with opengl (flushed_region). This area (needs_blend_region) is blended rather than copied at the end of the frame. * If we're drawing a gl texture with alpha we first copy the current cairo_surface inside the target region to the back buffer before we blend over it. These two operations allow us full stacking of transparent gl and cairo regions.
2014-10-09 08:45:44 +00:00
context_class->texture_from_surface = gdk_x11_gl_context_texture_from_surface;
gobject_class->dispose = gdk_x11_gl_context_dispose;
gdk: Add support for OpenGL This adds the new type GdkGLContext that wraps an OpenGL context for a particular native window. It also adds support for the gdk paint machinery to use OpenGL to draw everything. As soon as anyone creates a GL context for a native window we create a "paint context" for that GdkWindow and switch to using GL for painting it. This commit contains only an implementation for X11 (using GLX). The way painting works is that all client gl contexts draw into offscreen buffers rather than directly to the back buffer, and the way something gets onto the window is by using gdk_cairo_draw_from_gl() to draw part of that buffer onto the draw cairo context. As a fallback (if we're doing redirected drawing or some effect like a cairo_push_group()) we read back the gl buffer into memory and composite using cairo. This means that GL rendering works in all cases, including rendering to a PDF. However, this is not particularly fast. In the *typical* case, where we're drawing directly to the window in the regular paint loop we hit the fast path. The fast path uses opengl to draw the buffer to the window back buffer, either by blitting or texturing. Then we track the region that was drawn, and when the draw ends we paint the normal cairo surface to the window (using texture-from-pixmap in the X11 case, or texture from cairo image otherwise) in the regions where there is no gl painted. There are some complexities wrt layering of gl and cairo areas though: * We track via gdk_window_mark_paint_from_clip() whenever gtk is painting over a region we previously rendered with opengl (flushed_region). This area (needs_blend_region) is blended rather than copied at the end of the frame. * If we're drawing a gl texture with alpha we first copy the current cairo_surface inside the target region to the back buffer before we blend over it. These two operations allow us full stacking of transparent gl and cairo regions.
2014-10-09 08:45:44 +00:00
}
static void
gdk_x11_gl_context_init (GdkX11GLContext *self)
{
self->do_frame_sync = TRUE;
gdk: Add support for OpenGL This adds the new type GdkGLContext that wraps an OpenGL context for a particular native window. It also adds support for the gdk paint machinery to use OpenGL to draw everything. As soon as anyone creates a GL context for a native window we create a "paint context" for that GdkWindow and switch to using GL for painting it. This commit contains only an implementation for X11 (using GLX). The way painting works is that all client gl contexts draw into offscreen buffers rather than directly to the back buffer, and the way something gets onto the window is by using gdk_cairo_draw_from_gl() to draw part of that buffer onto the draw cairo context. As a fallback (if we're doing redirected drawing or some effect like a cairo_push_group()) we read back the gl buffer into memory and composite using cairo. This means that GL rendering works in all cases, including rendering to a PDF. However, this is not particularly fast. In the *typical* case, where we're drawing directly to the window in the regular paint loop we hit the fast path. The fast path uses opengl to draw the buffer to the window back buffer, either by blitting or texturing. Then we track the region that was drawn, and when the draw ends we paint the normal cairo surface to the window (using texture-from-pixmap in the X11 case, or texture from cairo image otherwise) in the regions where there is no gl painted. There are some complexities wrt layering of gl and cairo areas though: * We track via gdk_window_mark_paint_from_clip() whenever gtk is painting over a region we previously rendered with opengl (flushed_region). This area (needs_blend_region) is blended rather than copied at the end of the frame. * If we're drawing a gl texture with alpha we first copy the current cairo_surface inside the target region to the back buffer before we blend over it. These two operations allow us full stacking of transparent gl and cairo regions.
2014-10-09 08:45:44 +00:00
}
gboolean
gdk_x11_screen_init_gl (GdkScreen *screen)
gdk: Add support for OpenGL This adds the new type GdkGLContext that wraps an OpenGL context for a particular native window. It also adds support for the gdk paint machinery to use OpenGL to draw everything. As soon as anyone creates a GL context for a native window we create a "paint context" for that GdkWindow and switch to using GL for painting it. This commit contains only an implementation for X11 (using GLX). The way painting works is that all client gl contexts draw into offscreen buffers rather than directly to the back buffer, and the way something gets onto the window is by using gdk_cairo_draw_from_gl() to draw part of that buffer onto the draw cairo context. As a fallback (if we're doing redirected drawing or some effect like a cairo_push_group()) we read back the gl buffer into memory and composite using cairo. This means that GL rendering works in all cases, including rendering to a PDF. However, this is not particularly fast. In the *typical* case, where we're drawing directly to the window in the regular paint loop we hit the fast path. The fast path uses opengl to draw the buffer to the window back buffer, either by blitting or texturing. Then we track the region that was drawn, and when the draw ends we paint the normal cairo surface to the window (using texture-from-pixmap in the X11 case, or texture from cairo image otherwise) in the regions where there is no gl painted. There are some complexities wrt layering of gl and cairo areas though: * We track via gdk_window_mark_paint_from_clip() whenever gtk is painting over a region we previously rendered with opengl (flushed_region). This area (needs_blend_region) is blended rather than copied at the end of the frame. * If we're drawing a gl texture with alpha we first copy the current cairo_surface inside the target region to the back buffer before we blend over it. These two operations allow us full stacking of transparent gl and cairo regions.
2014-10-09 08:45:44 +00:00
{
GdkDisplay *display = gdk_screen_get_display (screen);
gdk: Add support for OpenGL This adds the new type GdkGLContext that wraps an OpenGL context for a particular native window. It also adds support for the gdk paint machinery to use OpenGL to draw everything. As soon as anyone creates a GL context for a native window we create a "paint context" for that GdkWindow and switch to using GL for painting it. This commit contains only an implementation for X11 (using GLX). The way painting works is that all client gl contexts draw into offscreen buffers rather than directly to the back buffer, and the way something gets onto the window is by using gdk_cairo_draw_from_gl() to draw part of that buffer onto the draw cairo context. As a fallback (if we're doing redirected drawing or some effect like a cairo_push_group()) we read back the gl buffer into memory and composite using cairo. This means that GL rendering works in all cases, including rendering to a PDF. However, this is not particularly fast. In the *typical* case, where we're drawing directly to the window in the regular paint loop we hit the fast path. The fast path uses opengl to draw the buffer to the window back buffer, either by blitting or texturing. Then we track the region that was drawn, and when the draw ends we paint the normal cairo surface to the window (using texture-from-pixmap in the X11 case, or texture from cairo image otherwise) in the regions where there is no gl painted. There are some complexities wrt layering of gl and cairo areas though: * We track via gdk_window_mark_paint_from_clip() whenever gtk is painting over a region we previously rendered with opengl (flushed_region). This area (needs_blend_region) is blended rather than copied at the end of the frame. * If we're drawing a gl texture with alpha we first copy the current cairo_surface inside the target region to the back buffer before we blend over it. These two operations allow us full stacking of transparent gl and cairo regions.
2014-10-09 08:45:44 +00:00
GdkX11Display *display_x11 = GDK_X11_DISPLAY (display);
Display *dpy;
int error_base, event_base;
int screen_num;
if (display_x11->have_glx)
return TRUE;
if (_gdk_gl_flags & GDK_GL_DISABLE)
return FALSE;
gdk: Add support for OpenGL This adds the new type GdkGLContext that wraps an OpenGL context for a particular native window. It also adds support for the gdk paint machinery to use OpenGL to draw everything. As soon as anyone creates a GL context for a native window we create a "paint context" for that GdkWindow and switch to using GL for painting it. This commit contains only an implementation for X11 (using GLX). The way painting works is that all client gl contexts draw into offscreen buffers rather than directly to the back buffer, and the way something gets onto the window is by using gdk_cairo_draw_from_gl() to draw part of that buffer onto the draw cairo context. As a fallback (if we're doing redirected drawing or some effect like a cairo_push_group()) we read back the gl buffer into memory and composite using cairo. This means that GL rendering works in all cases, including rendering to a PDF. However, this is not particularly fast. In the *typical* case, where we're drawing directly to the window in the regular paint loop we hit the fast path. The fast path uses opengl to draw the buffer to the window back buffer, either by blitting or texturing. Then we track the region that was drawn, and when the draw ends we paint the normal cairo surface to the window (using texture-from-pixmap in the X11 case, or texture from cairo image otherwise) in the regions where there is no gl painted. There are some complexities wrt layering of gl and cairo areas though: * We track via gdk_window_mark_paint_from_clip() whenever gtk is painting over a region we previously rendered with opengl (flushed_region). This area (needs_blend_region) is blended rather than copied at the end of the frame. * If we're drawing a gl texture with alpha we first copy the current cairo_surface inside the target region to the back buffer before we blend over it. These two operations allow us full stacking of transparent gl and cairo regions.
2014-10-09 08:45:44 +00:00
dpy = gdk_x11_display_get_xdisplay (display);
if (!glXQueryExtension (dpy, &error_base, &event_base))
return FALSE;
screen_num = GDK_X11_SCREEN (screen)->screen_num;
display_x11->have_glx = TRUE;
display_x11->glx_version = epoxy_glx_version (dpy, screen_num);
display_x11->glx_error_base = error_base;
display_x11->glx_event_base = event_base;
display_x11->has_glx_create_context =
epoxy_has_glx_extension (dpy, screen_num, "GLX_ARB_create_context_profile");
display_x11->has_glx_swap_interval =
epoxy_has_glx_extension (dpy, screen_num, "GLX_SGI_swap_control");
display_x11->has_glx_texture_from_pixmap =
epoxy_has_glx_extension (dpy, screen_num, "GLX_EXT_texture_from_pixmap");
display_x11->has_glx_video_sync =
epoxy_has_glx_extension (dpy, screen_num, "GLX_SGI_video_sync");
display_x11->has_glx_buffer_age =
epoxy_has_glx_extension (dpy, screen_num, "GLX_EXT_buffer_age");
display_x11->has_glx_sync_control =
epoxy_has_glx_extension (dpy, screen_num, "GLX_OML_sync_control");
display_x11->has_glx_multisample =
epoxy_has_glx_extension (dpy, screen_num, "GLX_ARB_multisample");
display_x11->has_glx_visual_rating =
epoxy_has_glx_extension (dpy, screen_num, "GLX_EXT_visual_rating");
gdk: Add support for OpenGL This adds the new type GdkGLContext that wraps an OpenGL context for a particular native window. It also adds support for the gdk paint machinery to use OpenGL to draw everything. As soon as anyone creates a GL context for a native window we create a "paint context" for that GdkWindow and switch to using GL for painting it. This commit contains only an implementation for X11 (using GLX). The way painting works is that all client gl contexts draw into offscreen buffers rather than directly to the back buffer, and the way something gets onto the window is by using gdk_cairo_draw_from_gl() to draw part of that buffer onto the draw cairo context. As a fallback (if we're doing redirected drawing or some effect like a cairo_push_group()) we read back the gl buffer into memory and composite using cairo. This means that GL rendering works in all cases, including rendering to a PDF. However, this is not particularly fast. In the *typical* case, where we're drawing directly to the window in the regular paint loop we hit the fast path. The fast path uses opengl to draw the buffer to the window back buffer, either by blitting or texturing. Then we track the region that was drawn, and when the draw ends we paint the normal cairo surface to the window (using texture-from-pixmap in the X11 case, or texture from cairo image otherwise) in the regions where there is no gl painted. There are some complexities wrt layering of gl and cairo areas though: * We track via gdk_window_mark_paint_from_clip() whenever gtk is painting over a region we previously rendered with opengl (flushed_region). This area (needs_blend_region) is blended rather than copied at the end of the frame. * If we're drawing a gl texture with alpha we first copy the current cairo_surface inside the target region to the back buffer before we blend over it. These two operations allow us full stacking of transparent gl and cairo regions.
2014-10-09 08:45:44 +00:00
GDK_NOTE (OPENGL,
g_print ("GLX version %d.%d found\n"
" - Vendor: %s\n"
" - Checked extensions:\n"
"\t* GLX_ARB_create_context_profile: %s\n"
"\t* GLX_SGI_swap_control: %s\n"
"\t* GLX_EXT_texture_from_pixmap: %s\n"
"\t* GLX_SGI_video_sync: %s\n"
"\t* GLX_EXT_buffer_age: %s\n"
"\t* GLX_OML_sync_control: %s\n",
display_x11->glx_version / 10,
display_x11->glx_version % 10,
glXGetClientString (dpy, GLX_VENDOR),
display_x11->has_glx_create_context ? "yes" : "no",
display_x11->has_glx_swap_interval ? "yes" : "no",
display_x11->has_glx_texture_from_pixmap ? "yes" : "no",
display_x11->has_glx_video_sync ? "yes" : "no",
display_x11->has_glx_buffer_age ? "yes" : "no",
display_x11->has_glx_sync_control ? "yes" : "no"));
return TRUE;
}
#define MAX_GLX_ATTRS 30
static gboolean
find_fbconfig_for_visual (GdkDisplay *display,
GdkVisual *visual,
GLXFBConfig *fb_config_out,
GError **error)
gdk: Add support for OpenGL This adds the new type GdkGLContext that wraps an OpenGL context for a particular native window. It also adds support for the gdk paint machinery to use OpenGL to draw everything. As soon as anyone creates a GL context for a native window we create a "paint context" for that GdkWindow and switch to using GL for painting it. This commit contains only an implementation for X11 (using GLX). The way painting works is that all client gl contexts draw into offscreen buffers rather than directly to the back buffer, and the way something gets onto the window is by using gdk_cairo_draw_from_gl() to draw part of that buffer onto the draw cairo context. As a fallback (if we're doing redirected drawing or some effect like a cairo_push_group()) we read back the gl buffer into memory and composite using cairo. This means that GL rendering works in all cases, including rendering to a PDF. However, this is not particularly fast. In the *typical* case, where we're drawing directly to the window in the regular paint loop we hit the fast path. The fast path uses opengl to draw the buffer to the window back buffer, either by blitting or texturing. Then we track the region that was drawn, and when the draw ends we paint the normal cairo surface to the window (using texture-from-pixmap in the X11 case, or texture from cairo image otherwise) in the regions where there is no gl painted. There are some complexities wrt layering of gl and cairo areas though: * We track via gdk_window_mark_paint_from_clip() whenever gtk is painting over a region we previously rendered with opengl (flushed_region). This area (needs_blend_region) is blended rather than copied at the end of the frame. * If we're drawing a gl texture with alpha we first copy the current cairo_surface inside the target region to the back buffer before we blend over it. These two operations allow us full stacking of transparent gl and cairo regions.
2014-10-09 08:45:44 +00:00
{
static int attrs[MAX_GLX_ATTRS];
Display *dpy = gdk_x11_display_get_xdisplay (display);
GLXFBConfig *configs;
int n_configs, i;
gboolean use_rgba;
gboolean retval = FALSE;
VisualID xvisual_id = XVisualIDFromVisual(gdk_x11_visual_get_xvisual (visual));
gdk: Add support for OpenGL This adds the new type GdkGLContext that wraps an OpenGL context for a particular native window. It also adds support for the gdk paint machinery to use OpenGL to draw everything. As soon as anyone creates a GL context for a native window we create a "paint context" for that GdkWindow and switch to using GL for painting it. This commit contains only an implementation for X11 (using GLX). The way painting works is that all client gl contexts draw into offscreen buffers rather than directly to the back buffer, and the way something gets onto the window is by using gdk_cairo_draw_from_gl() to draw part of that buffer onto the draw cairo context. As a fallback (if we're doing redirected drawing or some effect like a cairo_push_group()) we read back the gl buffer into memory and composite using cairo. This means that GL rendering works in all cases, including rendering to a PDF. However, this is not particularly fast. In the *typical* case, where we're drawing directly to the window in the regular paint loop we hit the fast path. The fast path uses opengl to draw the buffer to the window back buffer, either by blitting or texturing. Then we track the region that was drawn, and when the draw ends we paint the normal cairo surface to the window (using texture-from-pixmap in the X11 case, or texture from cairo image otherwise) in the regions where there is no gl painted. There are some complexities wrt layering of gl and cairo areas though: * We track via gdk_window_mark_paint_from_clip() whenever gtk is painting over a region we previously rendered with opengl (flushed_region). This area (needs_blend_region) is blended rather than copied at the end of the frame. * If we're drawing a gl texture with alpha we first copy the current cairo_surface inside the target region to the back buffer before we blend over it. These two operations allow us full stacking of transparent gl and cairo regions.
2014-10-09 08:45:44 +00:00
i = 0;
attrs[i++] = GLX_DRAWABLE_TYPE;
attrs[i++] = GLX_WINDOW_BIT;
attrs[i++] = GLX_RENDER_TYPE;
attrs[i++] = GLX_RGBA_BIT;
attrs[i++] = GLX_DOUBLEBUFFER;
attrs[i++] = GL_TRUE;
attrs[i++] = GLX_RED_SIZE;
attrs[i++] = 1;
gdk: Add support for OpenGL This adds the new type GdkGLContext that wraps an OpenGL context for a particular native window. It also adds support for the gdk paint machinery to use OpenGL to draw everything. As soon as anyone creates a GL context for a native window we create a "paint context" for that GdkWindow and switch to using GL for painting it. This commit contains only an implementation for X11 (using GLX). The way painting works is that all client gl contexts draw into offscreen buffers rather than directly to the back buffer, and the way something gets onto the window is by using gdk_cairo_draw_from_gl() to draw part of that buffer onto the draw cairo context. As a fallback (if we're doing redirected drawing or some effect like a cairo_push_group()) we read back the gl buffer into memory and composite using cairo. This means that GL rendering works in all cases, including rendering to a PDF. However, this is not particularly fast. In the *typical* case, where we're drawing directly to the window in the regular paint loop we hit the fast path. The fast path uses opengl to draw the buffer to the window back buffer, either by blitting or texturing. Then we track the region that was drawn, and when the draw ends we paint the normal cairo surface to the window (using texture-from-pixmap in the X11 case, or texture from cairo image otherwise) in the regions where there is no gl painted. There are some complexities wrt layering of gl and cairo areas though: * We track via gdk_window_mark_paint_from_clip() whenever gtk is painting over a region we previously rendered with opengl (flushed_region). This area (needs_blend_region) is blended rather than copied at the end of the frame. * If we're drawing a gl texture with alpha we first copy the current cairo_surface inside the target region to the back buffer before we blend over it. These two operations allow us full stacking of transparent gl and cairo regions.
2014-10-09 08:45:44 +00:00
attrs[i++] = GLX_GREEN_SIZE;
attrs[i++] = 1;
gdk: Add support for OpenGL This adds the new type GdkGLContext that wraps an OpenGL context for a particular native window. It also adds support for the gdk paint machinery to use OpenGL to draw everything. As soon as anyone creates a GL context for a native window we create a "paint context" for that GdkWindow and switch to using GL for painting it. This commit contains only an implementation for X11 (using GLX). The way painting works is that all client gl contexts draw into offscreen buffers rather than directly to the back buffer, and the way something gets onto the window is by using gdk_cairo_draw_from_gl() to draw part of that buffer onto the draw cairo context. As a fallback (if we're doing redirected drawing or some effect like a cairo_push_group()) we read back the gl buffer into memory and composite using cairo. This means that GL rendering works in all cases, including rendering to a PDF. However, this is not particularly fast. In the *typical* case, where we're drawing directly to the window in the regular paint loop we hit the fast path. The fast path uses opengl to draw the buffer to the window back buffer, either by blitting or texturing. Then we track the region that was drawn, and when the draw ends we paint the normal cairo surface to the window (using texture-from-pixmap in the X11 case, or texture from cairo image otherwise) in the regions where there is no gl painted. There are some complexities wrt layering of gl and cairo areas though: * We track via gdk_window_mark_paint_from_clip() whenever gtk is painting over a region we previously rendered with opengl (flushed_region). This area (needs_blend_region) is blended rather than copied at the end of the frame. * If we're drawing a gl texture with alpha we first copy the current cairo_surface inside the target region to the back buffer before we blend over it. These two operations allow us full stacking of transparent gl and cairo regions.
2014-10-09 08:45:44 +00:00
attrs[i++] = GLX_BLUE_SIZE;
attrs[i++] = 1;
gdk: Add support for OpenGL This adds the new type GdkGLContext that wraps an OpenGL context for a particular native window. It also adds support for the gdk paint machinery to use OpenGL to draw everything. As soon as anyone creates a GL context for a native window we create a "paint context" for that GdkWindow and switch to using GL for painting it. This commit contains only an implementation for X11 (using GLX). The way painting works is that all client gl contexts draw into offscreen buffers rather than directly to the back buffer, and the way something gets onto the window is by using gdk_cairo_draw_from_gl() to draw part of that buffer onto the draw cairo context. As a fallback (if we're doing redirected drawing or some effect like a cairo_push_group()) we read back the gl buffer into memory and composite using cairo. This means that GL rendering works in all cases, including rendering to a PDF. However, this is not particularly fast. In the *typical* case, where we're drawing directly to the window in the regular paint loop we hit the fast path. The fast path uses opengl to draw the buffer to the window back buffer, either by blitting or texturing. Then we track the region that was drawn, and when the draw ends we paint the normal cairo surface to the window (using texture-from-pixmap in the X11 case, or texture from cairo image otherwise) in the regions where there is no gl painted. There are some complexities wrt layering of gl and cairo areas though: * We track via gdk_window_mark_paint_from_clip() whenever gtk is painting over a region we previously rendered with opengl (flushed_region). This area (needs_blend_region) is blended rather than copied at the end of the frame. * If we're drawing a gl texture with alpha we first copy the current cairo_surface inside the target region to the back buffer before we blend over it. These two operations allow us full stacking of transparent gl and cairo regions.
2014-10-09 08:45:44 +00:00
use_rgba = (visual == gdk_screen_get_rgba_visual (gdk_display_get_default_screen (display)));
if (use_rgba)
{
attrs[i++] = GLX_ALPHA_SIZE;
attrs[i++] = 1;
}
else
{
attrs[i++] = GLX_ALPHA_SIZE;
attrs[i++] = GLX_DONT_CARE;
}
attrs[i++] = None;
g_assert (i < MAX_GLX_ATTRS);
configs = glXChooseFBConfig (dpy, DefaultScreen (dpy), attrs, &n_configs);
if (configs == NULL || n_configs == 0)
{
g_set_error_literal (error, GDK_GL_ERROR,
GDK_GL_ERROR_UNSUPPORTED_FORMAT,
_("No available configurations for the given pixel format"));
return FALSE;
}
for (i = 0; i < n_configs; i++)
{
XVisualInfo *visinfo;
visinfo = glXGetVisualFromFBConfig (dpy, configs[i]);
if (visinfo == NULL)
continue;
gdk: Add support for OpenGL This adds the new type GdkGLContext that wraps an OpenGL context for a particular native window. It also adds support for the gdk paint machinery to use OpenGL to draw everything. As soon as anyone creates a GL context for a native window we create a "paint context" for that GdkWindow and switch to using GL for painting it. This commit contains only an implementation for X11 (using GLX). The way painting works is that all client gl contexts draw into offscreen buffers rather than directly to the back buffer, and the way something gets onto the window is by using gdk_cairo_draw_from_gl() to draw part of that buffer onto the draw cairo context. As a fallback (if we're doing redirected drawing or some effect like a cairo_push_group()) we read back the gl buffer into memory and composite using cairo. This means that GL rendering works in all cases, including rendering to a PDF. However, this is not particularly fast. In the *typical* case, where we're drawing directly to the window in the regular paint loop we hit the fast path. The fast path uses opengl to draw the buffer to the window back buffer, either by blitting or texturing. Then we track the region that was drawn, and when the draw ends we paint the normal cairo surface to the window (using texture-from-pixmap in the X11 case, or texture from cairo image otherwise) in the regions where there is no gl painted. There are some complexities wrt layering of gl and cairo areas though: * We track via gdk_window_mark_paint_from_clip() whenever gtk is painting over a region we previously rendered with opengl (flushed_region). This area (needs_blend_region) is blended rather than copied at the end of the frame. * If we're drawing a gl texture with alpha we first copy the current cairo_surface inside the target region to the back buffer before we blend over it. These two operations allow us full stacking of transparent gl and cairo regions.
2014-10-09 08:45:44 +00:00
if (visinfo->visualid != xvisual_id)
{
XFree (visinfo);
continue;
}
gdk: Add support for OpenGL This adds the new type GdkGLContext that wraps an OpenGL context for a particular native window. It also adds support for the gdk paint machinery to use OpenGL to draw everything. As soon as anyone creates a GL context for a native window we create a "paint context" for that GdkWindow and switch to using GL for painting it. This commit contains only an implementation for X11 (using GLX). The way painting works is that all client gl contexts draw into offscreen buffers rather than directly to the back buffer, and the way something gets onto the window is by using gdk_cairo_draw_from_gl() to draw part of that buffer onto the draw cairo context. As a fallback (if we're doing redirected drawing or some effect like a cairo_push_group()) we read back the gl buffer into memory and composite using cairo. This means that GL rendering works in all cases, including rendering to a PDF. However, this is not particularly fast. In the *typical* case, where we're drawing directly to the window in the regular paint loop we hit the fast path. The fast path uses opengl to draw the buffer to the window back buffer, either by blitting or texturing. Then we track the region that was drawn, and when the draw ends we paint the normal cairo surface to the window (using texture-from-pixmap in the X11 case, or texture from cairo image otherwise) in the regions where there is no gl painted. There are some complexities wrt layering of gl and cairo areas though: * We track via gdk_window_mark_paint_from_clip() whenever gtk is painting over a region we previously rendered with opengl (flushed_region). This area (needs_blend_region) is blended rather than copied at the end of the frame. * If we're drawing a gl texture with alpha we first copy the current cairo_surface inside the target region to the back buffer before we blend over it. These two operations allow us full stacking of transparent gl and cairo regions.
2014-10-09 08:45:44 +00:00
if (fb_config_out != NULL)
*fb_config_out = configs[i];
gdk: Add support for OpenGL This adds the new type GdkGLContext that wraps an OpenGL context for a particular native window. It also adds support for the gdk paint machinery to use OpenGL to draw everything. As soon as anyone creates a GL context for a native window we create a "paint context" for that GdkWindow and switch to using GL for painting it. This commit contains only an implementation for X11 (using GLX). The way painting works is that all client gl contexts draw into offscreen buffers rather than directly to the back buffer, and the way something gets onto the window is by using gdk_cairo_draw_from_gl() to draw part of that buffer onto the draw cairo context. As a fallback (if we're doing redirected drawing or some effect like a cairo_push_group()) we read back the gl buffer into memory and composite using cairo. This means that GL rendering works in all cases, including rendering to a PDF. However, this is not particularly fast. In the *typical* case, where we're drawing directly to the window in the regular paint loop we hit the fast path. The fast path uses opengl to draw the buffer to the window back buffer, either by blitting or texturing. Then we track the region that was drawn, and when the draw ends we paint the normal cairo surface to the window (using texture-from-pixmap in the X11 case, or texture from cairo image otherwise) in the regions where there is no gl painted. There are some complexities wrt layering of gl and cairo areas though: * We track via gdk_window_mark_paint_from_clip() whenever gtk is painting over a region we previously rendered with opengl (flushed_region). This area (needs_blend_region) is blended rather than copied at the end of the frame. * If we're drawing a gl texture with alpha we first copy the current cairo_surface inside the target region to the back buffer before we blend over it. These two operations allow us full stacking of transparent gl and cairo regions.
2014-10-09 08:45:44 +00:00
XFree (visinfo);
retval = TRUE;
goto out;
gdk: Add support for OpenGL This adds the new type GdkGLContext that wraps an OpenGL context for a particular native window. It also adds support for the gdk paint machinery to use OpenGL to draw everything. As soon as anyone creates a GL context for a native window we create a "paint context" for that GdkWindow and switch to using GL for painting it. This commit contains only an implementation for X11 (using GLX). The way painting works is that all client gl contexts draw into offscreen buffers rather than directly to the back buffer, and the way something gets onto the window is by using gdk_cairo_draw_from_gl() to draw part of that buffer onto the draw cairo context. As a fallback (if we're doing redirected drawing or some effect like a cairo_push_group()) we read back the gl buffer into memory and composite using cairo. This means that GL rendering works in all cases, including rendering to a PDF. However, this is not particularly fast. In the *typical* case, where we're drawing directly to the window in the regular paint loop we hit the fast path. The fast path uses opengl to draw the buffer to the window back buffer, either by blitting or texturing. Then we track the region that was drawn, and when the draw ends we paint the normal cairo surface to the window (using texture-from-pixmap in the X11 case, or texture from cairo image otherwise) in the regions where there is no gl painted. There are some complexities wrt layering of gl and cairo areas though: * We track via gdk_window_mark_paint_from_clip() whenever gtk is painting over a region we previously rendered with opengl (flushed_region). This area (needs_blend_region) is blended rather than copied at the end of the frame. * If we're drawing a gl texture with alpha we first copy the current cairo_surface inside the target region to the back buffer before we blend over it. These two operations allow us full stacking of transparent gl and cairo regions.
2014-10-09 08:45:44 +00:00
}
g_set_error (error, GDK_GL_ERROR,
GDK_GL_ERROR_UNSUPPORTED_FORMAT,
_("No available configurations for the given RGBA pixel format"));
out:
XFree (configs);
return retval;
}
struct glvisualinfo {
int supports_gl;
int double_buffer;
int stereo;
int alpha_size;
int depth_size;
int stencil_size;
int num_multisample;
int visual_caveat;
};
static gboolean
visual_compatible (const GdkVisual *a, const GdkVisual *b)
{
return a->type == b->type &&
a->depth == b->depth &&
a->red_mask == b->red_mask &&
a->green_mask == b->green_mask &&
a->blue_mask == b->blue_mask &&
a->colormap_size == b->colormap_size &&
a->bits_per_rgb == b->bits_per_rgb;
}
static gboolean
visual_is_rgba (const GdkVisual *visual)
{
return
visual->depth == 32 &&
visual->red_mask == 0xff0000 &&
visual->green_mask == 0x00ff00 &&
visual->blue_mask == 0x0000ff;
}
/* This picks a compatible (as in has the same X visual details) visual
that has "better" characteristics on the GL side */
static GdkVisual *
pick_better_visual_for_gl (GdkX11Screen *x11_screen,
struct glvisualinfo *gl_info,
GdkVisual *compatible)
{
GdkVisual *visual;
int i;
gboolean want_alpha = visual_is_rgba (compatible);
/* First look for "perfect match", i.e:
* supports gl
* double buffer
* alpha iff visual is an rgba visual
* no unnecessary stuff
*/
for (i = 0; i < x11_screen->nvisuals; i++)
{
visual = x11_screen->visuals[i];
if (visual_compatible (visual, compatible) &&
gl_info[i].supports_gl &&
gl_info[i].double_buffer &&
!gl_info[i].stereo &&
(want_alpha ? (gl_info[i].alpha_size > 0) : (gl_info[i].alpha_size == 0)) &&
(gl_info[i].depth_size == 0) &&
(gl_info[i].stencil_size == 0) &&
(gl_info[i].num_multisample == 0) &&
(gl_info[i].visual_caveat == GLX_NONE_EXT))
return visual;
}
if (!want_alpha)
{
/* Next, allow alpha even if we don't want it: */
for (i = 0; i < x11_screen->nvisuals; i++)
{
visual = x11_screen->visuals[i];
if (visual_compatible (visual, compatible) &&
gl_info[i].supports_gl &&
gl_info[i].double_buffer &&
!gl_info[i].stereo &&
(gl_info[i].depth_size == 0) &&
(gl_info[i].stencil_size == 0) &&
(gl_info[i].num_multisample == 0) &&
(gl_info[i].visual_caveat == GLX_NONE_EXT))
return visual;
}
}
/* Next, allow depth and stencil buffers: */
for (i = 0; i < x11_screen->nvisuals; i++)
{
visual = x11_screen->visuals[i];
if (visual_compatible (visual, compatible) &&
gl_info[i].supports_gl &&
gl_info[i].double_buffer &&
!gl_info[i].stereo &&
(gl_info[i].num_multisample == 0) &&
(gl_info[i].visual_caveat == GLX_NONE_EXT))
return visual;
}
/* Next, allow multisample: */
for (i = 0; i < x11_screen->nvisuals; i++)
{
visual = x11_screen->visuals[i];
if (visual_compatible (visual, compatible) &&
gl_info[i].supports_gl &&
gl_info[i].double_buffer &&
!gl_info[i].stereo &&
(gl_info[i].visual_caveat == GLX_NONE_EXT))
return visual;
}
return compatible;
}
static gboolean
get_cached_gl_visuals (GdkDisplay *display, int *system, int *rgba)
{
gboolean found;
Atom type_return;
gint format_return;
gulong nitems_return;
gulong bytes_after_return;
guchar *data = NULL;
Display *dpy;
dpy = gdk_x11_display_get_xdisplay (display);
found = FALSE;
gdk_x11_display_error_trap_push (display);
if (XGetWindowProperty (dpy, DefaultRootWindow (dpy),
gdk_x11_get_xatom_by_name_for_display (display, "GDK_VISUALS"),
0, 2, False, XA_INTEGER, &type_return,
&format_return, &nitems_return,
&bytes_after_return, &data) == Success)
{
if (type_return == XA_INTEGER &&
format_return == 32 &&
nitems_return == 2 &&
data != NULL)
{
long *visuals = (long *) data;
*system = (int)visuals[0];
*rgba = (int)visuals[1];
found = TRUE;
}
}
gdk_x11_display_error_trap_pop_ignored (display);
if (data)
XFree (data);
return found;
}
static void
save_cached_gl_visuals (GdkDisplay *display, int system, int rgba)
{
long visualdata[2];
Display *dpy;
dpy = gdk_x11_display_get_xdisplay (display);
visualdata[0] = system;
visualdata[1] = rgba;
gdk_x11_display_error_trap_push (display);
XChangeProperty (dpy, DefaultRootWindow (dpy),
gdk_x11_get_xatom_by_name_for_display (display, "GDK_VISUALS"),
XA_INTEGER, 32, PropModeReplace,
(unsigned char *)visualdata, 2);
gdk_x11_display_error_trap_pop_ignored (display);
}
void
_gdk_x11_screen_update_visuals_for_gl (GdkScreen *screen)
{
GdkX11Screen *x11_screen;
GdkDisplay *display;
GdkX11Display *display_x11;
Display *dpy;
struct glvisualinfo *gl_info;
int i;
int system_visual_id, rgba_visual_id;
x11_screen = GDK_X11_SCREEN (screen);
display = x11_screen->display;
display_x11 = GDK_X11_DISPLAY (display);
dpy = gdk_x11_display_get_xdisplay (display);
/* We save the default visuals as a property on the root window to avoid
having to initialize GL each time, as it may not be used later. */
if (get_cached_gl_visuals (display, &system_visual_id, &rgba_visual_id))
{
for (i = 0; i < x11_screen->nvisuals; i++)
{
GdkVisual *visual = x11_screen->visuals[i];
int visual_id = gdk_x11_visual_get_xvisual (visual)->visualid;
if (visual_id == system_visual_id)
x11_screen->system_visual = visual;
if (visual_id == rgba_visual_id)
x11_screen->rgba_visual = visual;
}
return;
}
if (!gdk_x11_screen_init_gl (screen))
return;
gl_info = g_new0 (struct glvisualinfo, x11_screen->nvisuals);
for (i = 0; i < x11_screen->nvisuals; i++)
{
XVisualInfo *visual_list;
XVisualInfo visual_template;
int nxvisuals;
visual_template.screen = x11_screen->screen_num;
visual_template.visualid = gdk_x11_visual_get_xvisual (x11_screen->visuals[i])->visualid;
visual_list = XGetVisualInfo (x11_screen->xdisplay, VisualIDMask| VisualScreenMask, &visual_template, &nxvisuals);
if (visual_list == NULL)
continue;
glXGetConfig (dpy, &visual_list[0], GLX_USE_GL, &gl_info[i].supports_gl);
glXGetConfig (dpy, &visual_list[0], GLX_DOUBLEBUFFER, &gl_info[i].double_buffer);
glXGetConfig (dpy, &visual_list[0], GLX_STEREO, &gl_info[i].stereo);
glXGetConfig (dpy, &visual_list[0], GLX_ALPHA_SIZE, &gl_info[i].alpha_size);
glXGetConfig (dpy, &visual_list[0], GLX_DEPTH_SIZE, &gl_info[i].depth_size);
glXGetConfig (dpy, &visual_list[0], GLX_STENCIL_SIZE, &gl_info[i].stencil_size);
if (display_x11->has_glx_multisample)
glXGetConfig(dpy, &visual_list[0], GLX_SAMPLE_BUFFERS_ARB, &gl_info[i].num_multisample);
if (display_x11->has_glx_visual_rating)
glXGetConfig(dpy, &visual_list[0], GLX_VISUAL_CAVEAT_EXT, &gl_info[i].visual_caveat);
else
gl_info[i].visual_caveat = GLX_NONE_EXT;
XFree (visual_list);
}
x11_screen->system_visual = pick_better_visual_for_gl (x11_screen, gl_info, x11_screen->system_visual);
if (x11_screen->rgba_visual)
x11_screen->rgba_visual = pick_better_visual_for_gl (x11_screen, gl_info, x11_screen->rgba_visual);
2014-10-29 12:52:04 +00:00
g_free (gl_info);
save_cached_gl_visuals (display,
gdk_x11_visual_get_xvisual (x11_screen->system_visual)->visualid,
x11_screen->rgba_visual ? gdk_x11_visual_get_xvisual (x11_screen->rgba_visual)->visualid : 0);
}
gdk: Add support for OpenGL This adds the new type GdkGLContext that wraps an OpenGL context for a particular native window. It also adds support for the gdk paint machinery to use OpenGL to draw everything. As soon as anyone creates a GL context for a native window we create a "paint context" for that GdkWindow and switch to using GL for painting it. This commit contains only an implementation for X11 (using GLX). The way painting works is that all client gl contexts draw into offscreen buffers rather than directly to the back buffer, and the way something gets onto the window is by using gdk_cairo_draw_from_gl() to draw part of that buffer onto the draw cairo context. As a fallback (if we're doing redirected drawing or some effect like a cairo_push_group()) we read back the gl buffer into memory and composite using cairo. This means that GL rendering works in all cases, including rendering to a PDF. However, this is not particularly fast. In the *typical* case, where we're drawing directly to the window in the regular paint loop we hit the fast path. The fast path uses opengl to draw the buffer to the window back buffer, either by blitting or texturing. Then we track the region that was drawn, and when the draw ends we paint the normal cairo surface to the window (using texture-from-pixmap in the X11 case, or texture from cairo image otherwise) in the regions where there is no gl painted. There are some complexities wrt layering of gl and cairo areas though: * We track via gdk_window_mark_paint_from_clip() whenever gtk is painting over a region we previously rendered with opengl (flushed_region). This area (needs_blend_region) is blended rather than copied at the end of the frame. * If we're drawing a gl texture with alpha we first copy the current cairo_surface inside the target region to the back buffer before we blend over it. These two operations allow us full stacking of transparent gl and cairo regions.
2014-10-09 08:45:44 +00:00
GdkGLContext *
gdk_x11_window_create_gl_context (GdkWindow *window,
gboolean attached,
GdkGLContext *share,
GError **error)
gdk: Add support for OpenGL This adds the new type GdkGLContext that wraps an OpenGL context for a particular native window. It also adds support for the gdk paint machinery to use OpenGL to draw everything. As soon as anyone creates a GL context for a native window we create a "paint context" for that GdkWindow and switch to using GL for painting it. This commit contains only an implementation for X11 (using GLX). The way painting works is that all client gl contexts draw into offscreen buffers rather than directly to the back buffer, and the way something gets onto the window is by using gdk_cairo_draw_from_gl() to draw part of that buffer onto the draw cairo context. As a fallback (if we're doing redirected drawing or some effect like a cairo_push_group()) we read back the gl buffer into memory and composite using cairo. This means that GL rendering works in all cases, including rendering to a PDF. However, this is not particularly fast. In the *typical* case, where we're drawing directly to the window in the regular paint loop we hit the fast path. The fast path uses opengl to draw the buffer to the window back buffer, either by blitting or texturing. Then we track the region that was drawn, and when the draw ends we paint the normal cairo surface to the window (using texture-from-pixmap in the X11 case, or texture from cairo image otherwise) in the regions where there is no gl painted. There are some complexities wrt layering of gl and cairo areas though: * We track via gdk_window_mark_paint_from_clip() whenever gtk is painting over a region we previously rendered with opengl (flushed_region). This area (needs_blend_region) is blended rather than copied at the end of the frame. * If we're drawing a gl texture with alpha we first copy the current cairo_surface inside the target region to the back buffer before we blend over it. These two operations allow us full stacking of transparent gl and cairo regions.
2014-10-09 08:45:44 +00:00
{
GdkDisplay *display;
gdk: Add support for OpenGL This adds the new type GdkGLContext that wraps an OpenGL context for a particular native window. It also adds support for the gdk paint machinery to use OpenGL to draw everything. As soon as anyone creates a GL context for a native window we create a "paint context" for that GdkWindow and switch to using GL for painting it. This commit contains only an implementation for X11 (using GLX). The way painting works is that all client gl contexts draw into offscreen buffers rather than directly to the back buffer, and the way something gets onto the window is by using gdk_cairo_draw_from_gl() to draw part of that buffer onto the draw cairo context. As a fallback (if we're doing redirected drawing or some effect like a cairo_push_group()) we read back the gl buffer into memory and composite using cairo. This means that GL rendering works in all cases, including rendering to a PDF. However, this is not particularly fast. In the *typical* case, where we're drawing directly to the window in the regular paint loop we hit the fast path. The fast path uses opengl to draw the buffer to the window back buffer, either by blitting or texturing. Then we track the region that was drawn, and when the draw ends we paint the normal cairo surface to the window (using texture-from-pixmap in the X11 case, or texture from cairo image otherwise) in the regions where there is no gl painted. There are some complexities wrt layering of gl and cairo areas though: * We track via gdk_window_mark_paint_from_clip() whenever gtk is painting over a region we previously rendered with opengl (flushed_region). This area (needs_blend_region) is blended rather than copied at the end of the frame. * If we're drawing a gl texture with alpha we first copy the current cairo_surface inside the target region to the back buffer before we blend over it. These two operations allow us full stacking of transparent gl and cairo regions.
2014-10-09 08:45:44 +00:00
GdkX11GLContext *context;
GdkVisual *visual;
gdk: Add support for OpenGL This adds the new type GdkGLContext that wraps an OpenGL context for a particular native window. It also adds support for the gdk paint machinery to use OpenGL to draw everything. As soon as anyone creates a GL context for a native window we create a "paint context" for that GdkWindow and switch to using GL for painting it. This commit contains only an implementation for X11 (using GLX). The way painting works is that all client gl contexts draw into offscreen buffers rather than directly to the back buffer, and the way something gets onto the window is by using gdk_cairo_draw_from_gl() to draw part of that buffer onto the draw cairo context. As a fallback (if we're doing redirected drawing or some effect like a cairo_push_group()) we read back the gl buffer into memory and composite using cairo. This means that GL rendering works in all cases, including rendering to a PDF. However, this is not particularly fast. In the *typical* case, where we're drawing directly to the window in the regular paint loop we hit the fast path. The fast path uses opengl to draw the buffer to the window back buffer, either by blitting or texturing. Then we track the region that was drawn, and when the draw ends we paint the normal cairo surface to the window (using texture-from-pixmap in the X11 case, or texture from cairo image otherwise) in the regions where there is no gl painted. There are some complexities wrt layering of gl and cairo areas though: * We track via gdk_window_mark_paint_from_clip() whenever gtk is painting over a region we previously rendered with opengl (flushed_region). This area (needs_blend_region) is blended rather than copied at the end of the frame. * If we're drawing a gl texture with alpha we first copy the current cairo_surface inside the target region to the back buffer before we blend over it. These two operations allow us full stacking of transparent gl and cairo regions.
2014-10-09 08:45:44 +00:00
GLXFBConfig config;
display = gdk_window_get_display (window);
if (!gdk_x11_screen_init_gl (gdk_window_get_screen (window)))
gdk: Add support for OpenGL This adds the new type GdkGLContext that wraps an OpenGL context for a particular native window. It also adds support for the gdk paint machinery to use OpenGL to draw everything. As soon as anyone creates a GL context for a native window we create a "paint context" for that GdkWindow and switch to using GL for painting it. This commit contains only an implementation for X11 (using GLX). The way painting works is that all client gl contexts draw into offscreen buffers rather than directly to the back buffer, and the way something gets onto the window is by using gdk_cairo_draw_from_gl() to draw part of that buffer onto the draw cairo context. As a fallback (if we're doing redirected drawing or some effect like a cairo_push_group()) we read back the gl buffer into memory and composite using cairo. This means that GL rendering works in all cases, including rendering to a PDF. However, this is not particularly fast. In the *typical* case, where we're drawing directly to the window in the regular paint loop we hit the fast path. The fast path uses opengl to draw the buffer to the window back buffer, either by blitting or texturing. Then we track the region that was drawn, and when the draw ends we paint the normal cairo surface to the window (using texture-from-pixmap in the X11 case, or texture from cairo image otherwise) in the regions where there is no gl painted. There are some complexities wrt layering of gl and cairo areas though: * We track via gdk_window_mark_paint_from_clip() whenever gtk is painting over a region we previously rendered with opengl (flushed_region). This area (needs_blend_region) is blended rather than copied at the end of the frame. * If we're drawing a gl texture with alpha we first copy the current cairo_surface inside the target region to the back buffer before we blend over it. These two operations allow us full stacking of transparent gl and cairo regions.
2014-10-09 08:45:44 +00:00
{
g_set_error_literal (error, GDK_GL_ERROR,
GDK_GL_ERROR_NOT_AVAILABLE,
_("No GL implementation is available"));
return NULL;
}
visual = gdk_window_get_visual (window);
if (!find_fbconfig_for_visual (display, visual, &config, error))
gdk: Add support for OpenGL This adds the new type GdkGLContext that wraps an OpenGL context for a particular native window. It also adds support for the gdk paint machinery to use OpenGL to draw everything. As soon as anyone creates a GL context for a native window we create a "paint context" for that GdkWindow and switch to using GL for painting it. This commit contains only an implementation for X11 (using GLX). The way painting works is that all client gl contexts draw into offscreen buffers rather than directly to the back buffer, and the way something gets onto the window is by using gdk_cairo_draw_from_gl() to draw part of that buffer onto the draw cairo context. As a fallback (if we're doing redirected drawing or some effect like a cairo_push_group()) we read back the gl buffer into memory and composite using cairo. This means that GL rendering works in all cases, including rendering to a PDF. However, this is not particularly fast. In the *typical* case, where we're drawing directly to the window in the regular paint loop we hit the fast path. The fast path uses opengl to draw the buffer to the window back buffer, either by blitting or texturing. Then we track the region that was drawn, and when the draw ends we paint the normal cairo surface to the window (using texture-from-pixmap in the X11 case, or texture from cairo image otherwise) in the regions where there is no gl painted. There are some complexities wrt layering of gl and cairo areas though: * We track via gdk_window_mark_paint_from_clip() whenever gtk is painting over a region we previously rendered with opengl (flushed_region). This area (needs_blend_region) is blended rather than copied at the end of the frame. * If we're drawing a gl texture with alpha we first copy the current cairo_surface inside the target region to the back buffer before we blend over it. These two operations allow us full stacking of transparent gl and cairo regions.
2014-10-09 08:45:44 +00:00
return NULL;
context = g_object_new (GDK_TYPE_X11_GL_CONTEXT,
"display", display,
gdk: Add support for OpenGL This adds the new type GdkGLContext that wraps an OpenGL context for a particular native window. It also adds support for the gdk paint machinery to use OpenGL to draw everything. As soon as anyone creates a GL context for a native window we create a "paint context" for that GdkWindow and switch to using GL for painting it. This commit contains only an implementation for X11 (using GLX). The way painting works is that all client gl contexts draw into offscreen buffers rather than directly to the back buffer, and the way something gets onto the window is by using gdk_cairo_draw_from_gl() to draw part of that buffer onto the draw cairo context. As a fallback (if we're doing redirected drawing or some effect like a cairo_push_group()) we read back the gl buffer into memory and composite using cairo. This means that GL rendering works in all cases, including rendering to a PDF. However, this is not particularly fast. In the *typical* case, where we're drawing directly to the window in the regular paint loop we hit the fast path. The fast path uses opengl to draw the buffer to the window back buffer, either by blitting or texturing. Then we track the region that was drawn, and when the draw ends we paint the normal cairo surface to the window (using texture-from-pixmap in the X11 case, or texture from cairo image otherwise) in the regions where there is no gl painted. There are some complexities wrt layering of gl and cairo areas though: * We track via gdk_window_mark_paint_from_clip() whenever gtk is painting over a region we previously rendered with opengl (flushed_region). This area (needs_blend_region) is blended rather than copied at the end of the frame. * If we're drawing a gl texture with alpha we first copy the current cairo_surface inside the target region to the back buffer before we blend over it. These two operations allow us full stacking of transparent gl and cairo regions.
2014-10-09 08:45:44 +00:00
"window", window,
"shared-context", share,
gdk: Add support for OpenGL This adds the new type GdkGLContext that wraps an OpenGL context for a particular native window. It also adds support for the gdk paint machinery to use OpenGL to draw everything. As soon as anyone creates a GL context for a native window we create a "paint context" for that GdkWindow and switch to using GL for painting it. This commit contains only an implementation for X11 (using GLX). The way painting works is that all client gl contexts draw into offscreen buffers rather than directly to the back buffer, and the way something gets onto the window is by using gdk_cairo_draw_from_gl() to draw part of that buffer onto the draw cairo context. As a fallback (if we're doing redirected drawing or some effect like a cairo_push_group()) we read back the gl buffer into memory and composite using cairo. This means that GL rendering works in all cases, including rendering to a PDF. However, this is not particularly fast. In the *typical* case, where we're drawing directly to the window in the regular paint loop we hit the fast path. The fast path uses opengl to draw the buffer to the window back buffer, either by blitting or texturing. Then we track the region that was drawn, and when the draw ends we paint the normal cairo surface to the window (using texture-from-pixmap in the X11 case, or texture from cairo image otherwise) in the regions where there is no gl painted. There are some complexities wrt layering of gl and cairo areas though: * We track via gdk_window_mark_paint_from_clip() whenever gtk is painting over a region we previously rendered with opengl (flushed_region). This area (needs_blend_region) is blended rather than copied at the end of the frame. * If we're drawing a gl texture with alpha we first copy the current cairo_surface inside the target region to the back buffer before we blend over it. These two operations allow us full stacking of transparent gl and cairo regions.
2014-10-09 08:45:44 +00:00
NULL);
context->glx_config = config;
context->is_attached = attached;
gdk: Add support for OpenGL This adds the new type GdkGLContext that wraps an OpenGL context for a particular native window. It also adds support for the gdk paint machinery to use OpenGL to draw everything. As soon as anyone creates a GL context for a native window we create a "paint context" for that GdkWindow and switch to using GL for painting it. This commit contains only an implementation for X11 (using GLX). The way painting works is that all client gl contexts draw into offscreen buffers rather than directly to the back buffer, and the way something gets onto the window is by using gdk_cairo_draw_from_gl() to draw part of that buffer onto the draw cairo context. As a fallback (if we're doing redirected drawing or some effect like a cairo_push_group()) we read back the gl buffer into memory and composite using cairo. This means that GL rendering works in all cases, including rendering to a PDF. However, this is not particularly fast. In the *typical* case, where we're drawing directly to the window in the regular paint loop we hit the fast path. The fast path uses opengl to draw the buffer to the window back buffer, either by blitting or texturing. Then we track the region that was drawn, and when the draw ends we paint the normal cairo surface to the window (using texture-from-pixmap in the X11 case, or texture from cairo image otherwise) in the regions where there is no gl painted. There are some complexities wrt layering of gl and cairo areas though: * We track via gdk_window_mark_paint_from_clip() whenever gtk is painting over a region we previously rendered with opengl (flushed_region). This area (needs_blend_region) is blended rather than copied at the end of the frame. * If we're drawing a gl texture with alpha we first copy the current cairo_surface inside the target region to the back buffer before we blend over it. These two operations allow us full stacking of transparent gl and cairo regions.
2014-10-09 08:45:44 +00:00
return GDK_GL_CONTEXT (context);
}
gboolean
gdk: Add support for OpenGL This adds the new type GdkGLContext that wraps an OpenGL context for a particular native window. It also adds support for the gdk paint machinery to use OpenGL to draw everything. As soon as anyone creates a GL context for a native window we create a "paint context" for that GdkWindow and switch to using GL for painting it. This commit contains only an implementation for X11 (using GLX). The way painting works is that all client gl contexts draw into offscreen buffers rather than directly to the back buffer, and the way something gets onto the window is by using gdk_cairo_draw_from_gl() to draw part of that buffer onto the draw cairo context. As a fallback (if we're doing redirected drawing or some effect like a cairo_push_group()) we read back the gl buffer into memory and composite using cairo. This means that GL rendering works in all cases, including rendering to a PDF. However, this is not particularly fast. In the *typical* case, where we're drawing directly to the window in the regular paint loop we hit the fast path. The fast path uses opengl to draw the buffer to the window back buffer, either by blitting or texturing. Then we track the region that was drawn, and when the draw ends we paint the normal cairo surface to the window (using texture-from-pixmap in the X11 case, or texture from cairo image otherwise) in the regions where there is no gl painted. There are some complexities wrt layering of gl and cairo areas though: * We track via gdk_window_mark_paint_from_clip() whenever gtk is painting over a region we previously rendered with opengl (flushed_region). This area (needs_blend_region) is blended rather than copied at the end of the frame. * If we're drawing a gl texture with alpha we first copy the current cairo_surface inside the target region to the back buffer before we blend over it. These two operations allow us full stacking of transparent gl and cairo regions.
2014-10-09 08:45:44 +00:00
gdk_x11_display_make_gl_context_current (GdkDisplay *display,
GdkGLContext *context)
{
GdkX11GLContext *context_x11;
Display *dpy = gdk_x11_display_get_xdisplay (display);
GdkWindow *window;
GdkScreen *screen;
gboolean do_frame_sync = FALSE;
if (context == NULL)
{
glXMakeContextCurrent (dpy, None, None, NULL);
return TRUE;
gdk: Add support for OpenGL This adds the new type GdkGLContext that wraps an OpenGL context for a particular native window. It also adds support for the gdk paint machinery to use OpenGL to draw everything. As soon as anyone creates a GL context for a native window we create a "paint context" for that GdkWindow and switch to using GL for painting it. This commit contains only an implementation for X11 (using GLX). The way painting works is that all client gl contexts draw into offscreen buffers rather than directly to the back buffer, and the way something gets onto the window is by using gdk_cairo_draw_from_gl() to draw part of that buffer onto the draw cairo context. As a fallback (if we're doing redirected drawing or some effect like a cairo_push_group()) we read back the gl buffer into memory and composite using cairo. This means that GL rendering works in all cases, including rendering to a PDF. However, this is not particularly fast. In the *typical* case, where we're drawing directly to the window in the regular paint loop we hit the fast path. The fast path uses opengl to draw the buffer to the window back buffer, either by blitting or texturing. Then we track the region that was drawn, and when the draw ends we paint the normal cairo surface to the window (using texture-from-pixmap in the X11 case, or texture from cairo image otherwise) in the regions where there is no gl painted. There are some complexities wrt layering of gl and cairo areas though: * We track via gdk_window_mark_paint_from_clip() whenever gtk is painting over a region we previously rendered with opengl (flushed_region). This area (needs_blend_region) is blended rather than copied at the end of the frame. * If we're drawing a gl texture with alpha we first copy the current cairo_surface inside the target region to the back buffer before we blend over it. These two operations allow us full stacking of transparent gl and cairo regions.
2014-10-09 08:45:44 +00:00
}
context_x11 = GDK_X11_GL_CONTEXT (context);
if (context_x11->glx_context == NULL)
{
g_critical ("No GLX context associated to the GdkGLContext; you must "
"call gdk_gl_context_realize() first.");
return FALSE;
}
gdk: Add support for OpenGL This adds the new type GdkGLContext that wraps an OpenGL context for a particular native window. It also adds support for the gdk paint machinery to use OpenGL to draw everything. As soon as anyone creates a GL context for a native window we create a "paint context" for that GdkWindow and switch to using GL for painting it. This commit contains only an implementation for X11 (using GLX). The way painting works is that all client gl contexts draw into offscreen buffers rather than directly to the back buffer, and the way something gets onto the window is by using gdk_cairo_draw_from_gl() to draw part of that buffer onto the draw cairo context. As a fallback (if we're doing redirected drawing or some effect like a cairo_push_group()) we read back the gl buffer into memory and composite using cairo. This means that GL rendering works in all cases, including rendering to a PDF. However, this is not particularly fast. In the *typical* case, where we're drawing directly to the window in the regular paint loop we hit the fast path. The fast path uses opengl to draw the buffer to the window back buffer, either by blitting or texturing. Then we track the region that was drawn, and when the draw ends we paint the normal cairo surface to the window (using texture-from-pixmap in the X11 case, or texture from cairo image otherwise) in the regions where there is no gl painted. There are some complexities wrt layering of gl and cairo areas though: * We track via gdk_window_mark_paint_from_clip() whenever gtk is painting over a region we previously rendered with opengl (flushed_region). This area (needs_blend_region) is blended rather than copied at the end of the frame. * If we're drawing a gl texture with alpha we first copy the current cairo_surface inside the target region to the back buffer before we blend over it. These two operations allow us full stacking of transparent gl and cairo regions.
2014-10-09 08:45:44 +00:00
GDK_NOTE (OPENGL,
g_print ("Making GLX context current to drawable %lu\n",
(unsigned long) context_x11->drawable));
if (!glXMakeContextCurrent (dpy, context_x11->drawable, context_x11->drawable,
context_x11->glx_context))
{
GDK_NOTE (OPENGL,
g_print ("Making GLX context current failed\n"));
return FALSE;
}
gdk: Add support for OpenGL This adds the new type GdkGLContext that wraps an OpenGL context for a particular native window. It also adds support for the gdk paint machinery to use OpenGL to draw everything. As soon as anyone creates a GL context for a native window we create a "paint context" for that GdkWindow and switch to using GL for painting it. This commit contains only an implementation for X11 (using GLX). The way painting works is that all client gl contexts draw into offscreen buffers rather than directly to the back buffer, and the way something gets onto the window is by using gdk_cairo_draw_from_gl() to draw part of that buffer onto the draw cairo context. As a fallback (if we're doing redirected drawing or some effect like a cairo_push_group()) we read back the gl buffer into memory and composite using cairo. This means that GL rendering works in all cases, including rendering to a PDF. However, this is not particularly fast. In the *typical* case, where we're drawing directly to the window in the regular paint loop we hit the fast path. The fast path uses opengl to draw the buffer to the window back buffer, either by blitting or texturing. Then we track the region that was drawn, and when the draw ends we paint the normal cairo surface to the window (using texture-from-pixmap in the X11 case, or texture from cairo image otherwise) in the regions where there is no gl painted. There are some complexities wrt layering of gl and cairo areas though: * We track via gdk_window_mark_paint_from_clip() whenever gtk is painting over a region we previously rendered with opengl (flushed_region). This area (needs_blend_region) is blended rather than copied at the end of the frame. * If we're drawing a gl texture with alpha we first copy the current cairo_surface inside the target region to the back buffer before we blend over it. These two operations allow us full stacking of transparent gl and cairo regions.
2014-10-09 08:45:44 +00:00
if (context_x11->is_attached && GDK_X11_DISPLAY (display)->has_glx_swap_interval)
gdk: Add support for OpenGL This adds the new type GdkGLContext that wraps an OpenGL context for a particular native window. It also adds support for the gdk paint machinery to use OpenGL to draw everything. As soon as anyone creates a GL context for a native window we create a "paint context" for that GdkWindow and switch to using GL for painting it. This commit contains only an implementation for X11 (using GLX). The way painting works is that all client gl contexts draw into offscreen buffers rather than directly to the back buffer, and the way something gets onto the window is by using gdk_cairo_draw_from_gl() to draw part of that buffer onto the draw cairo context. As a fallback (if we're doing redirected drawing or some effect like a cairo_push_group()) we read back the gl buffer into memory and composite using cairo. This means that GL rendering works in all cases, including rendering to a PDF. However, this is not particularly fast. In the *typical* case, where we're drawing directly to the window in the regular paint loop we hit the fast path. The fast path uses opengl to draw the buffer to the window back buffer, either by blitting or texturing. Then we track the region that was drawn, and when the draw ends we paint the normal cairo surface to the window (using texture-from-pixmap in the X11 case, or texture from cairo image otherwise) in the regions where there is no gl painted. There are some complexities wrt layering of gl and cairo areas though: * We track via gdk_window_mark_paint_from_clip() whenever gtk is painting over a region we previously rendered with opengl (flushed_region). This area (needs_blend_region) is blended rather than copied at the end of the frame. * If we're drawing a gl texture with alpha we first copy the current cairo_surface inside the target region to the back buffer before we blend over it. These two operations allow us full stacking of transparent gl and cairo regions.
2014-10-09 08:45:44 +00:00
{
window = gdk_gl_context_get_window (context);
/* If the WM is compositing there is no particular need to delay
* the swap when drawing on the offscreen, rendering to the screen
* happens later anyway, and its up to the compositor to sync that
* to the vblank. */
screen = gdk_window_get_screen (window);
do_frame_sync = ! gdk_screen_is_composited (screen);
if (do_frame_sync != context_x11->do_frame_sync)
{
context_x11->do_frame_sync = do_frame_sync;
if (do_frame_sync)
glXSwapIntervalSGI (1);
else
glXSwapIntervalSGI (0);
}
gdk: Add support for OpenGL This adds the new type GdkGLContext that wraps an OpenGL context for a particular native window. It also adds support for the gdk paint machinery to use OpenGL to draw everything. As soon as anyone creates a GL context for a native window we create a "paint context" for that GdkWindow and switch to using GL for painting it. This commit contains only an implementation for X11 (using GLX). The way painting works is that all client gl contexts draw into offscreen buffers rather than directly to the back buffer, and the way something gets onto the window is by using gdk_cairo_draw_from_gl() to draw part of that buffer onto the draw cairo context. As a fallback (if we're doing redirected drawing or some effect like a cairo_push_group()) we read back the gl buffer into memory and composite using cairo. This means that GL rendering works in all cases, including rendering to a PDF. However, this is not particularly fast. In the *typical* case, where we're drawing directly to the window in the regular paint loop we hit the fast path. The fast path uses opengl to draw the buffer to the window back buffer, either by blitting or texturing. Then we track the region that was drawn, and when the draw ends we paint the normal cairo surface to the window (using texture-from-pixmap in the X11 case, or texture from cairo image otherwise) in the regions where there is no gl painted. There are some complexities wrt layering of gl and cairo areas though: * We track via gdk_window_mark_paint_from_clip() whenever gtk is painting over a region we previously rendered with opengl (flushed_region). This area (needs_blend_region) is blended rather than copied at the end of the frame. * If we're drawing a gl texture with alpha we first copy the current cairo_surface inside the target region to the back buffer before we blend over it. These two operations allow us full stacking of transparent gl and cairo regions.
2014-10-09 08:45:44 +00:00
}
return TRUE;
gdk: Add support for OpenGL This adds the new type GdkGLContext that wraps an OpenGL context for a particular native window. It also adds support for the gdk paint machinery to use OpenGL to draw everything. As soon as anyone creates a GL context for a native window we create a "paint context" for that GdkWindow and switch to using GL for painting it. This commit contains only an implementation for X11 (using GLX). The way painting works is that all client gl contexts draw into offscreen buffers rather than directly to the back buffer, and the way something gets onto the window is by using gdk_cairo_draw_from_gl() to draw part of that buffer onto the draw cairo context. As a fallback (if we're doing redirected drawing or some effect like a cairo_push_group()) we read back the gl buffer into memory and composite using cairo. This means that GL rendering works in all cases, including rendering to a PDF. However, this is not particularly fast. In the *typical* case, where we're drawing directly to the window in the regular paint loop we hit the fast path. The fast path uses opengl to draw the buffer to the window back buffer, either by blitting or texturing. Then we track the region that was drawn, and when the draw ends we paint the normal cairo surface to the window (using texture-from-pixmap in the X11 case, or texture from cairo image otherwise) in the regions where there is no gl painted. There are some complexities wrt layering of gl and cairo areas though: * We track via gdk_window_mark_paint_from_clip() whenever gtk is painting over a region we previously rendered with opengl (flushed_region). This area (needs_blend_region) is blended rather than copied at the end of the frame. * If we're drawing a gl texture with alpha we first copy the current cairo_surface inside the target region to the back buffer before we blend over it. These two operations allow us full stacking of transparent gl and cairo regions.
2014-10-09 08:45:44 +00:00
}
/**
* gdk_x11_display_get_glx_version:
* @display: a #GdkDisplay
* @major: (out): return location for the GLX major version
* @minor: (out): return location for the GLX minor version
*
* Retrieves the version of the GLX implementation.
*
* Returns: %TRUE if GLX is available
*
2014-10-12 03:17:34 +00:00
* Since: 3.16
gdk: Add support for OpenGL This adds the new type GdkGLContext that wraps an OpenGL context for a particular native window. It also adds support for the gdk paint machinery to use OpenGL to draw everything. As soon as anyone creates a GL context for a native window we create a "paint context" for that GdkWindow and switch to using GL for painting it. This commit contains only an implementation for X11 (using GLX). The way painting works is that all client gl contexts draw into offscreen buffers rather than directly to the back buffer, and the way something gets onto the window is by using gdk_cairo_draw_from_gl() to draw part of that buffer onto the draw cairo context. As a fallback (if we're doing redirected drawing or some effect like a cairo_push_group()) we read back the gl buffer into memory and composite using cairo. This means that GL rendering works in all cases, including rendering to a PDF. However, this is not particularly fast. In the *typical* case, where we're drawing directly to the window in the regular paint loop we hit the fast path. The fast path uses opengl to draw the buffer to the window back buffer, either by blitting or texturing. Then we track the region that was drawn, and when the draw ends we paint the normal cairo surface to the window (using texture-from-pixmap in the X11 case, or texture from cairo image otherwise) in the regions where there is no gl painted. There are some complexities wrt layering of gl and cairo areas though: * We track via gdk_window_mark_paint_from_clip() whenever gtk is painting over a region we previously rendered with opengl (flushed_region). This area (needs_blend_region) is blended rather than copied at the end of the frame. * If we're drawing a gl texture with alpha we first copy the current cairo_surface inside the target region to the back buffer before we blend over it. These two operations allow us full stacking of transparent gl and cairo regions.
2014-10-09 08:45:44 +00:00
*/
gboolean
gdk_x11_display_get_glx_version (GdkDisplay *display,
2014-10-12 03:17:34 +00:00
gint *major,
gint *minor)
gdk: Add support for OpenGL This adds the new type GdkGLContext that wraps an OpenGL context for a particular native window. It also adds support for the gdk paint machinery to use OpenGL to draw everything. As soon as anyone creates a GL context for a native window we create a "paint context" for that GdkWindow and switch to using GL for painting it. This commit contains only an implementation for X11 (using GLX). The way painting works is that all client gl contexts draw into offscreen buffers rather than directly to the back buffer, and the way something gets onto the window is by using gdk_cairo_draw_from_gl() to draw part of that buffer onto the draw cairo context. As a fallback (if we're doing redirected drawing or some effect like a cairo_push_group()) we read back the gl buffer into memory and composite using cairo. This means that GL rendering works in all cases, including rendering to a PDF. However, this is not particularly fast. In the *typical* case, where we're drawing directly to the window in the regular paint loop we hit the fast path. The fast path uses opengl to draw the buffer to the window back buffer, either by blitting or texturing. Then we track the region that was drawn, and when the draw ends we paint the normal cairo surface to the window (using texture-from-pixmap in the X11 case, or texture from cairo image otherwise) in the regions where there is no gl painted. There are some complexities wrt layering of gl and cairo areas though: * We track via gdk_window_mark_paint_from_clip() whenever gtk is painting over a region we previously rendered with opengl (flushed_region). This area (needs_blend_region) is blended rather than copied at the end of the frame. * If we're drawing a gl texture with alpha we first copy the current cairo_surface inside the target region to the back buffer before we blend over it. These two operations allow us full stacking of transparent gl and cairo regions.
2014-10-09 08:45:44 +00:00
{
g_return_val_if_fail (GDK_IS_DISPLAY (display), FALSE);
if (!GDK_IS_X11_DISPLAY (display))
return FALSE;
if (!gdk_x11_screen_init_gl (gdk_display_get_default_screen (display)))
gdk: Add support for OpenGL This adds the new type GdkGLContext that wraps an OpenGL context for a particular native window. It also adds support for the gdk paint machinery to use OpenGL to draw everything. As soon as anyone creates a GL context for a native window we create a "paint context" for that GdkWindow and switch to using GL for painting it. This commit contains only an implementation for X11 (using GLX). The way painting works is that all client gl contexts draw into offscreen buffers rather than directly to the back buffer, and the way something gets onto the window is by using gdk_cairo_draw_from_gl() to draw part of that buffer onto the draw cairo context. As a fallback (if we're doing redirected drawing or some effect like a cairo_push_group()) we read back the gl buffer into memory and composite using cairo. This means that GL rendering works in all cases, including rendering to a PDF. However, this is not particularly fast. In the *typical* case, where we're drawing directly to the window in the regular paint loop we hit the fast path. The fast path uses opengl to draw the buffer to the window back buffer, either by blitting or texturing. Then we track the region that was drawn, and when the draw ends we paint the normal cairo surface to the window (using texture-from-pixmap in the X11 case, or texture from cairo image otherwise) in the regions where there is no gl painted. There are some complexities wrt layering of gl and cairo areas though: * We track via gdk_window_mark_paint_from_clip() whenever gtk is painting over a region we previously rendered with opengl (flushed_region). This area (needs_blend_region) is blended rather than copied at the end of the frame. * If we're drawing a gl texture with alpha we first copy the current cairo_surface inside the target region to the back buffer before we blend over it. These two operations allow us full stacking of transparent gl and cairo regions.
2014-10-09 08:45:44 +00:00
return FALSE;
if (major != NULL)
*major = GDK_X11_DISPLAY (display)->glx_version / 10;
if (minor != NULL)
*minor = GDK_X11_DISPLAY (display)->glx_version % 10;
return TRUE;
}