gtk/testsuite/gsk/rounded-rect.c

101 lines
3.6 KiB
C
Raw Normal View History

/*
* Copyright © 2020 Benjamin Otte
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library. If not, see <http://www.gnu.org/licenses/>.
*
* Authors: Benjamin Otte <otte@gnome.org>
*/
#include "config.h"
#include <gtk/gtk.h>
static void
test_contains_rect (void)
{
static double points[] = { -5, 0, 5, 10, 15, 85, 90, 95, 100, 105 };
#define LAST (G_N_ELEMENTS(points) - 1)
GskRoundedRect rounded;
guint x1, x2, y1, y2;
gsk_rounded_rect_init_from_rect (&rounded, &GRAPHENE_RECT_INIT (0, 0, 100, 100), 10);
for (x1 = 0; x1 < G_N_ELEMENTS (points); x1++)
for (x2 = x1 + 1; x2 < G_N_ELEMENTS (points); x2++)
for (y1 = 0; y1 < G_N_ELEMENTS (points); y1++)
for (y2 = y1 + 1; y2 < G_N_ELEMENTS (points); y2++)
{
graphene_rect_t rect;
gboolean inside;
/* check all points are in the bounding box */
inside = x1 > 0 && y1 > 0 && x2 < LAST && y2 < LAST;
/* now check all the corners */
inside &= x1 > 2 || y1 > 2 || (x1 == 2 && y1 == 2);
inside &= x2 < LAST - 2 || y1 > 2 || (x2 == LAST - 2 && y1 == 2);
inside &= x2 < LAST - 2 || y2 < LAST - 2 || (x2 == LAST - 2 && y2 == LAST - 2);
inside &= x1 > 2 || y2 < LAST - 2 || (x1 == 2 && y2 == LAST - 2);
graphene_rect_init (&rect, points[x1], points[y1], points[x2] - points[x1], points[y2] - points[y1]);
if (inside)
g_assert_true (gsk_rounded_rect_contains_rect (&rounded, &rect));
else
g_assert_false (gsk_rounded_rect_contains_rect (&rounded, &rect));
}
#undef LAST
}
static void
test_intersects_rect (void)
{
static double points[] = { -1, 0, 1, 99, 100, 101 };
#define ALL_THE_POINTS (G_N_ELEMENTS(points))
#define HALF_THE_POINTS (ALL_THE_POINTS / 2)
GskRoundedRect rounded;
guint x1, x2, y1, y2;
gsk_rounded_rect_init_from_rect (&rounded, &GRAPHENE_RECT_INIT (0, 0, 100, 100), 10);
for (x1 = 0; x1 < ALL_THE_POINTS; x1++)
for (x2 = x1 + 1; x2 < ALL_THE_POINTS; x2++)
for (y1 = 0; y1 < ALL_THE_POINTS; y1++)
for (y2 = y1 + 1; y2 < ALL_THE_POINTS; y2++)
{
graphene_rect_t rect;
gboolean should_contain_x, should_contain_y;
graphene_rect_init (&rect, points[x1], points[y1], points[x2] - points[x1], points[y2] - points[y1]);
should_contain_x = x1 < HALF_THE_POINTS && x2 >= HALF_THE_POINTS && y2 > 1 && y1 < ALL_THE_POINTS - 2;
should_contain_y = y1 < HALF_THE_POINTS && y2 >= HALF_THE_POINTS && x2 > 1 && x1 < ALL_THE_POINTS - 2;
if (should_contain_x || should_contain_y)
g_assert_true (gsk_rounded_rect_intersects_rect (&rounded, &rect));
else
g_assert_false (gsk_rounded_rect_intersects_rect (&rounded, &rect));
}
#undef ALL_THE_POINTS
#undef HALF_THE_POINTS
}
int
main (int argc,
char *argv[])
{
gtk_test_init (&argc, &argv, NULL);
g_test_add_func ("/rounded-rect/contains-rect", test_contains_rect);
g_test_add_func ("/rounded-rect/intersects-rect", test_intersects_rect);
return g_test_run ();
}